

City, University of London Institutional Repository

Citation: Netkachova, K. (2012). The model and implementation of Safety Case Cores.

Information & Security, 28(2), pp. 286-295.

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4809/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

INFORMATION & SECURITY. An International Journal, Vol.28, No. 2, 2012, 286-295.
© ProCon Ltd. This article cannot be reprinted, published on-line or sold without written permission by ProCon.

 I&S

MODEL AND IMPLEMENTATION
OF SAFETY CASE CORES

Kateryna NETKACHOVA

Abstract: The paper introduces a general concept of Safety Case Core, which is
an extension of the Safety Case methodology. The definition of the safety case core
is provided, the scope, principles and structure of a core are outlined, and a general
set-theoretical model is presented. An approach to tracking and managing vulner-
ability information, assessing security and reliability characteristics of ready-made
software components is discussed. To demonstrate the practical relevance and ap-
plicability of the proposed approach, a safety case core for assessing off-the-shelf
components is developed. The database schema of the developed safety case core,
modelled using the entity-relationship diagram, is presented; the important design
and implementation details and techniques are outlined. The integration of the core
with ASCE software tool as a plug-in and implementation as a web service for off-
the-shelf component assessment are presented.

Keywords: Safety case core, security, vulnerability, OTS component assessment,
ASCE plug-in, web service.

Introduction

Safety plays a crucial role in the modern society. Assuring safe operation is one of the
vitally important tasks faced by system developers and experts. The concept of Safety
Case has been evolving for over 20 years. World famous scientists such as Peter
Bishop, Tim Kelly, J Górski and others made a great impact on the concept and its
implementation.1 The concept has evolved, grown and nowadays become a common
and generally accepted practice. However, future research is still needed to develop
the approach further on and make it even more useful, accurate, efficient, and of
course, automated.

In this paper we introduce a concept of Safety Case Core, which can be considered
one of the Safety Case methods. We also discuss an approach to assessing security
characteristics of OTS components. In order to help security experts in software as-
sessment, vulnerability tracking and management processes, a special Safety Case

 Kateryna Netkachova

287

core for assessing OTS components was developed and implemented as a plug-in for
ASCE software tool and as a web service for OTS components assessment.

The paper is structured in the following way: Section 1 provides a definition of safety
case core, describes it structure, model and the main concept; Section 2 presents a
core for assessing OTS components and gives some implementation details; Sections
3 and 4 describe the implementation of the core as an ASCE plug-in and as a web
service for assessing OTS components and tracking vulnerabilities. The paper ends
with concluding remarks, future directions and extensions to this work.

1. Safety Case Core concept

Safety Case Core can be defined as a reusable configurable unit that contains a piece
of safety assessment logic and can perform various tasks to assist in safety case de-
velopment and maintaining processes. The concept of safety case cores can be easily
understood by viewing the entire system safety assessment process from the stand-
point of independent tasks that need to be performed. Some of these tasks are essen-
tially the same or similar in many systems and it would be sensible not to perform
those tasks over and over again. Instead, it is better to create separate safety case
cores for such tasks and transfer safety assessment logic to the level of such cores.
The next steps would be to automate tasks performed within the cores by writing
code, and adding a parameterization feature to support various input parameters. The
parameterization feature is very important as it makes the core much more flexible,
configurable and easier to reuse in different systems.

Parameters serve as input for safety case cores. The values of parameters are usually
retrieved from the system requirement profile, because in most cases parameters rep-
resent the requirements established for a part of the system assessed using a particular
safety case core.

A general set-theoretical model of safety case core can be set up as follows:

SCC = {X, Y, F, D, G, H}

where X = {x1… xn} is a set of input parameters, which is a subset of all parameters P
= {p1, …, pc} supported by the Safety Case core, X  P; c – number of supported pa-
rameters; n – number of requirements used as core parameters when assessing a par-
ticular system, n  c; yi = F(xi), i=1...n; Y = <H(F(x1)…F(xn)), G(F(x1)…F(xn))> – the
output result from the core; F = {f1…fm} – a set of functions, defined within the core;

}DD,DD{D
p1n1 dfdfsfsff  - a set of formalized data used by the core, where

Form = {Form1, … Form t} –is a set of data formats, Мform = {Mform1, … Mformm} – a
set of data conversion methods,

kj`k fnfform DD:M  ; H – function that processes

and combines the results of F functions execution; G – function that provides a for-

288 Model and Implementation of Safety Case Cores

mal representation of the results using one of the safety case notations. The core
should pass through all these steps during its execution. The general structure of a
core is shown on Figure 1. Figure 2 presents the respective data flow diagram for as-
sessment utilising Safety Case Cores.

2. Safety Case Core for assessing OTS components

There are a number of channels that provide information about software vulnerabili-
ties and are designed to help identify and solve the known security problems. CVE,2
NVD,3 Secunia,4 SecurityFocus,5 OVAL,6 and CERT 7 represent just a partial list of
such information sources. The need to efficiently store, manage and manipulate this
information is at the heart of the assessment process. Thus selecting, organizing and
storing vulnerabilities data is one of the first and important steps in the preparation
for assessment. The structure of the database should be kept simple and understand-
able, but at the same time it should be complex enough to include all the necessary
characteristics, tables and relations between them. Having analyzed the semantics and
structure of the most common vulnerability databases and sources, we propose the
following conceptual database schema modelled using the ER diagram (Figure 3):

In order to fill this database with data from various vulnerability sources, a parser
converting the information to the appropriate structure is needed. We propose the
following basic steps that should be taken to convert the information and load it to the
database:

1. Convert the information from the original source format into an object
model;

2. Filter the objects created on the previous step to only retrieve vulnerabilities;

3. Map the obtained object properties onto the object properties of our data-
base object model;

4. Convert the resulting object model into the relational database model.

We note that there may be other ways to load the data, for example, by working with
relational database models. However, using object-oriented models is, in our opinion,
a better and more practical solution, especially when the structure of a third-party
database is quite different from our database structure, and we need to retrieve and
load large amounts of data.

Figure 1: The general structure of safety case core.

 Kateryna Netkachova

289

Figure 2: Data flow diagram of the assessment process using Safety Case Cores.

After the vulnerabilities data is loaded, it is possible to manipulate it and obtain vari-
ous software reliability characteristics, such as the number of discovered vulnerabili-
ties, their severity rates, failure frequency, evaluate recovery time etc. The assessment

290 Model and Implementation of Safety Case Cores

Figure 3: Entity-Relationship diagram.

techniques have subject of analysis.8 The calculated attribute values are compared
with software requirements received as input parameters in order to verify whether
the requirements are met or not. After that, the output information from the core is
passed onto the next step, folded with other results, if necessary, and used in the sys-
tem safety case development process.

3. Integration with ASCE tool

The ASCE tool developed by Adelard 9 is the leading commercial system for the
development and management of assurance cases and safety cases. ASCE is designed
to help creating and managing safety cases with the use of formal notations such as
Claims-Arguments-Evidence (CAE) and Goal Structuring Notation (GSN). As part of
our work, we implemented a Safety Case Core for OTS components assessment as a
plug-in for ASCE tool and demonstrated its applicability by using it to assess several
characteristics of OTS components. The main elements of user interface such as the

 Kateryna Netkachova

291

contextual right click menu and the steps of the OTS safety case core wizard are
shown Figures 4 and 5. The implementation was performed using Ascad notation as a
basis for representation.10

Figure 4: Contextual menu of OTS core integrated into ASCE software tool.

4. Implementation as a web service

Based on the same concept, a web service was developed in order to assist in OTS
component assessment, vulnerability tracking and management processes. The web
service helps increase the overall reliability of software systems and protect them
from malicious attacks. It provides information about discovered vulnerabilities and
patches that are available to fix them, thus assisting in remediation of system compo-
nents and preventing the exploitation of already known vulnerabilities. The service
also calculates various software security and reliability characteristics, which can help
client applications that support decision making and reconfiguration activities dy-
namically reconfigure the software based on the obtained results.

The web service is developed on Microsoft .Net platform using IIS and MS Sql
server. The interface is described in a machine-processable WSDL format. Client ap-
plications interact with the web service using SOAP messages, transmitted over
HTTP protocol with POST method. In our scheme Configuration Control Server acts
as a client. It contains information about all software components used within the
system as well as the way those components are configured.

292 Model and Implementation of Safety Case Cores

Figure 5: The interface of the OTS core wizard steps.

The whole process of using the web service can be summarized in the following
steps:

1. The Configuration Control Server (CCS) checks the security state of its
components on a periodic basis by sending POST requests to invoke a web
service operation. The body of such request is composed of an XML mes-

 Kateryna Netkachova

293

sage that contains the list of software products, their vendors, versions and
languages.

2. Web service processes the request and connects to the database to retrieve
the necessary information for each particular software product. Based on the
retrieved information, open security threats are identified. Then various se-
curity and reliability characteristics such as the number of discovered vul-
nerabilities, their severity rates, failure frequency, recovery time, faultness
probability etc. are calculated and prediction based on extrapolation of cal-
culated results is carried out.11 If available, the links to security patches are
retrieved. The obtained and calculated information is used for generating a
SOAP response.

3. Based on the response from the web service, CCS makes a decision to
dynamically reconfigure the system, apply patches to vulnerable software
products or reboot the hosts with alternative non-vulnerable components.

The Configuration Control Server can also contain logic for comparing characteris-
tics of different software products and choosing an optimal system configuration even
when there are no open security breaches or when every product of the same type has
some sort of vulnerabilities in it. The web service architecture is presented on Figure
6.

Figure 6. Web service architecture.

294 Model and Implementation of Safety Case Cores

To summarize, the main advantages of the developed web service are as follows:

 The web service helps monitoring security channels for vulnerability an-
nouncements and alerts a client to the danger when a new vulnerability is
discovered.

 Calculates various software security and reliability characteristics based on
the information about previous failures (retrospective analysis). This feature
is of great help in analyzing products in-service history. It also allows pre-
dicting the potential issues that may occur in the future.

 Provides information about security patches. As a rule patches are provided
by software vendors or third-party developers and located on their official
websites. Monitoring and applying those patches are tedious and time-con-
suming tasks, which often require manual effort. That’s why it is useful to
have a single place that contains security patches for all applications. The
links to security patches are returned within the web service response, which
allows the client application to configure automatic updates and deploy
patches without any, or with very little manual manipulations.

The developed web service is recommended to be used in conjunction with the intru-
sion-tolerant architecture 12 or similar architectures for constructing complex software
based systems.

Conclusion

In this paper we have outlined the concept of Safety Case Cores and presented a core
for assessing OTS components. The core was developed using an object-oriented ap-
proach and integrated both as a plug-in for ASCE tool and as a web service for as-
sessing OTS components. The practical applicability of the core was confirmed by
taking a set of OTS components, evaluating their reliability characteristics and com-
paring them with the required values. For future work, we plan to extend the func-
tionality of our OTS core and deploy our web service as a cloud-based solution.

Notes:

1 Peter Bishop and Robin Bloomfield, “Methodology for Safety Case Development,” Pro-

ceedings of the Sixth Safety-critical Systems Symposium, Birmingham, UK, February 1998;
Timothy Patrick Kelly, “Arguing Safety – A Systematic Approach to Managing Safety
Cases,” PhD diss. (University of York, 1998); Timothy Kelly, “Managing Complex Safety
Cases,” in Proc. 11th Safety Critical System Symposium (Berlin: Springer, 2003): 99–115;
Janusz Gorski, “Trust Case – a case for trustworthiness of IT infrastructures,” in Janusz S.

 Kateryna Netkachova

295

Kowalik, Janusz Gorski, and Anatoly Sachenko, eds., Cyberspace Security and Defense:
Research Issues (Berlin: Springer, 2005), 125-41.

2 Common Vulnerabilities and Exposures, Mitre Corp, www.cve.mitre.org.
3 National Vulnerability Database, http://nvd.nist.gov.
4 Vulnerability and Virus Information, http://secunia.com.
5 Community of Security Professionals, www.securityfocus.com.
6 Open Vulnerability and Assessment Language, http://oval.mitre.org.
7 Computer Emergency Response Team, www.cert.org.
8 K.I. Lobachova and Vyacheslav S. Kharchenko, “Assessing Software Vulnerabilities and

Recovery Time: Elements of Technique and Results”, Radioelectronic and Computer Sys-
tems 8 (2007): 61-65; Sung-Whan Woo, Omar H. Alhazmi, and Yashwant K. Malaiya, “As-
sessing Vulnerabilities in Apache and IIS HTTP Servers,” Proceedings of the 2nd IEEE In-
ternational Symposium on Dependable, Autonomic and Secure Computing (DASC’06),
103-10; Report on the Application of Safety Techniques to Security, Part 2, Quantitative
Modeling Produced (London: Adelard LLP, 2010).

9 See the company website at www.adelard.com.
10 ASCAD: Adelard Safety Case Development Manual (London: Adelard, 2010).
11 For details on the evaluation techniques see Lobachova and Kharchenko; Woo, Alhazmi,

and Malaiya; and part 2 of the Adelard Report on the Application of Safety Techniques to
Security.

12 Anatoliy Gorbenko, Vyacheslav Kharchenko, Olga Tarasyuk, and A. Furmanov, “F(I)MEA-
Technique of Web-services analysis and Dependability Ensuring,” in Michael Butler, Cliff
B. Jones, Alexander Romanovsky, and Elena Troubitsyna, eds., Rigorous Development of
Complex Fault-Tolerant Systems (Berlin: Springer, 2006), 153-67.

KATERYNA NETKACHOVA is a post-graduate student. She received a specialist degree in
Computer Systems and Network from Tavrida National V.I.Vernadsky University. Research
interests: safety analysis techniques, software security and reliability assessment, formalization
and automation of the assessment process. She is currently finalising the work on her PhD
thesis.

	Introduction
	1. Safety Case Core concept
	2. Safety Case Core for assessing OTS components
	3. Integration with ASCE tool
	4. Implementation as a web service
	Conclusion
	Notes

