
              

City, University of London Institutional Repository

Citation: Rubython, A. & Maiden, N. (2014). The effect of variability modeling on 

requirements satisfaction for the configuration and implementation of off-the-shelf software 
packages. In: Requirements Engineering Conference (RE), 2014 IEEE 22nd International. 
(pp. 394-401). Institute of Electrical and Electronics Engineers Inc.. ISBN 9781479930333 
doi: 10.1109/RE.2014.6912290 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/4876/

Link to published version: https://doi.org/10.1109/RE.2014.6912290

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


 

The Effect of Variability Modeling on 
Requirements Satisfaction for the Configuration and 

Implementation of Off-The-Shelf Software 
Packages 

Amanda Rubython 
City&Guilds Kineo 

Brighton, UK 
amanda.rubython@kineo.com 

Neil Maiden 
Centre for Human-Computer Interaction Design 

City University London, London, UK 
N.A.M.Maiden@city.ac.uk 

 
 

Abstract—An industrial experience of the use of a method for 
discovering customer requirements with which to configure an 
off-the-shelf software package for implementation is reported. 
The method uses an adapted form of product variability model to 
provide common ground between the customer and supplier 
about requirements and capabilities. An associated decision sup-
port software tool guides the supplier and customer through a 
model-based walkthrough to discover new requirements, based 
on equivalent capabilities described in the product variability 
model. We applied the method in the work processes of the com-
mercial provider of a software-based learning management sys-
tem, and collected quantitative and qualitative data from suppli-
er-customer interactions. Our first experiences with the method 
led to an increased exposure and expression of customer re-
quirements in the customer-supplier dialogue, compared to the 
baseline dialogue during software package demonstrations. The 
paper also reports some first lessons learned to improve the 
method and adopt its use with other software supplier organiza-
tions. 

Index Terms- software packages; requirements-led 
configurations; product variability modelling; transcript analysis 

I.  REQUIREMENTS-LED CONFIGURATION OF SOFTWARE 
PACKAGES 

Whilst methods and software tools are now available to 
support customers to select off-the-shelf software packages 
that satisfy their requirements [e.g. 1,2,5], there is relatively 
little research with which to understand how to support soft-
ware suppliers to adapt (or otherwise) these same off-the-shelf 
packages, so that a customer’s requirements will be satisfied 
when the package is implemented. Various researchers [e.g. 7] 
have reported methods and software tools to extract, analyze 
and manage new requirements on future releases of software 
packages, however, the role of requirements in the implemen-
tation of a selected software package at each customer’s site is 
less understood, and few methods or software tools are availa-
ble to support it. In this paper, we report experiences with a 
method based on software product variability modeling and an 
associated decision support tool that was developed to provide 
common ground between a software supplier and customer to 

articulate and agree requirements in response to possible soft-
ware package variations. 

Although methods and tools now exist, specifying re-
quirements, understanding off-the-shelf software packages and 
aligning requirements to package features remain difficult 
tasks for customers to undertake, for at least two reasons. The 
first is that the information that suppliers often provide about 
their off-the-shelf software packages is influenced by the need 
to make sales, rather than to provide comprehensive detail 
about what the software does and does not do. The second 
reason, which follows from this first, is that customers often 
experience problems when determining the extent to which 
their requirements can be satisfied by a software package’s 
features [1]. One consequence is that more information about 
the software package needs to be made available, and more 
guidance about how to use this information needs to be pro-
vided. In our work, undertaken on behalf of a supplier of soft-
ware packages, we sought to develop then evaluate a solution 
to these problems from the supplier side. 

The software supplier, City & Guilds Kineo (CGK), is a 
global learning and technology company that provides work-
place e-learning and learning systems to businesses from in-
dustries such as retail and telecoms to travel, electronics and 
the public sector. The core learning system that CGK offers is 
called Totara, a configurable, off-the-shelf learning manage-
ment system. Currently, after a customer selects to purchase or 
to upgrade the Totara software package, one of CGK’s solu-
tion architects works closely with customer representatives to 
understand their requirements so that the package can be con-
figured and/or customized to better satisfy these requirements. 
The solution architect role combines business analysis and 
interaction design, and involves liaising with customers to 
implement Totara into the customer’s organization. Such anal-
ysis work is increasingly needed to configure and to customize 
the package’s features to satisfy the requirements for the wide 
range of industries that purchase CGK’s products – rarely can 
one software package satisfy the requirements of such a di-
verse customer base.  

However, CGK’s experiences have revealed how little 
knowledge their customers can sometimes have during the 



 

post-sales process of both Totara’s capabilities and their re-
quirements on it. This lack of understanding can lead to unre-
alistic customer expectations about the system that can cause 
problems during implementation, and can be attributed to two 
factors. The first is that some customers fail to have detailed 
requirements discussions at the purchasing stage due to an 
over-reliance on Request for Proposals, with the decision to 
buy based on how CGK responded to a list of customer re-
quirements in writing, rather than a practical assessment of 
Totara capabilities per se. The second factor is that the dia-
logue between CGK and the customer at the sales stage is usu-
ally supported by software demonstrations that do not illus-
trate specific system features and configurations to meet cus-
tomer needs. Moreover, the inevitable time and resource pres-
sures on both supplier and customer imposed by a procure-
ment exercise can exacerbate both of these factors.       

Therefore, to improve customer understanding of Totara 
and to support requirements specification during the CGK 
sales process, we developed a new method to provide a cus-
tomer with explicit information about requirements-level ca-
pabilities that Totara was originally developed to provide to 
users. The method is new in that it combines variability mod-
eling from software product line engineering with text-based 
requirements and use case specification techniques to describe 
possible variations in the configuration of Totara in a form that 
non-technical customers can understand. We sought to ex-
plore, through studies conducted as part of CGK’s sales activi-
ties with its own customers, whether the method could: 
Q1: Expose more customer requirements on the Totara soft-

ware package implementation, compared to the current 
software package demonstration process? 

Q2: Improve customer understanding of software package 
capabilities, compared to the Totara current software 
package demonstration process? 

Q3: Allow supplier and customer to align customer require-
ments and software package capabilities more effective-
ly, compared to the Totara current software package 
demonstration process? 

The remainder of this experience report is in 4 sections. 
Section 2 outlines the method, called ETHER, introduced into 
CGK’s sales work process, and selected variability modeling 
developed for the Totara software package used in the method. 
Section 3 reports experiences from the use of the method with 
4 different CGK’s customers, as well as a comparative base-
line process undertaken with a 5th customer without the 
ETHER method. Analyses of the transcripts of the customer 
representative-solution architect discussions are reported to 
seek first answers to the above questions. Section 4 reports 
lessons learned from the analyses of the experiences, and out-
lines both future research opportunities and the next steps for 
CGK. 

II. THE ETHER APPROACH 
Currently, when selecting the Totara software package for 

their organization, customers ask CGK for information about 
the package. A sales consultant is responsible for investigating 
requirements with the customer, providing information about 
Totara to the customer, and costing the proposal. However, 
when a customer requests more information about one or more 
Totara features, a solution architect is called upon to demon-

strate features to customer representatives. This normally in-
volves an optional short exploration of the customer require-
ments, then a detailed presentation of the feature and its func-
tions in the software package that lasts about one hour. 

We developed the ETHER (Expose THE Requirements) 
method to replace these software-led feature demonstrations 
with more effective, requirements-level communication about 
how the system can be configured to meet customer require-
ments more effectively, as well as to allow CGK to produce 
more accurate requirements-based costings for customers.  
The ETHER method can be applied either in a face-to-face 
meeting or in a webinar in which the solution architecture and 
customer representatives explore requirements, package capa-
bilities and their alignment. The method is composed of a 
four-step process and a decision support software tool that was 
developed to support some of these steps. Each of the four 
steps of the method is outlined in turn. 

A. Step 1: Introduction  
First of all, the solution architect presents the Totara fea-

tures to be explored, and sets customer expectations – not all 
customer requirements can be satisfied by a feature, so more 
expensive software customization and/or business process 
change might sometimes be needed. 

B.  Step 2: Build Common Ground 
Requirements information is exchanged between customer 

representatives and the solution architect to build common 
ground needed for later communication. Common ground is 
defined as what two or more individuals jointly know or be-
lieve [4, p93] – a form of common self-awareness – and com-
munication between people cannot be effective unless all par-
ticipants share the same perception of knowledge and beliefs 
[4, p120]. Therefore, the solution architect seeks to build 
common ground about the customer’s requirements and capa-
bilities of Totara to satisfy these requirements, independent of 
the design and implementation of the software features. To do 
this, the solution architect first elicits relevant business re-
quirements from the customer representatives, then shares a 
glossary of relevant Totara terms to avoid potential miscom-
munication about the software package. Afterwards, the solu-
tion architect verbally provides the customer representatives 
with a high-level description of package capabilities, to pre-
pare the customer for the more in-depth analysis in the next 
step. 

C. Step 3: Requirements that the Product Supports 
Then, rather than walk through relevant software features 

without reference to requirements as undertaken in the current 
process, the solution architect uses ETHER to walk the cus-
tomer through a bespoke support tool with which to guide 
decision-making about requirements on the Totara implemen-
tation. The decision support tool guides the solution architect 
and customer representatives through key requirements-based 
decisions to make about selected Totara features. Support for 
each decision to make with the tool is based on an underlying 
goal variability model that was developed as part of the meth-
od. This goal variability modeling is based on variability mod-
els from software product lines engineering, a paradigm which 
aims to reduce time and cost in software development by reus-
ing components across a product line [9]. Each variability 



 

model shows where variations can occur in the product line 
and why, as well as the relationships of dependency and con-
straint [3]. In ETHER, each goal variability model specifies 
the possible variations in the capabilities of Totara features, 
independent of their software implementation. The solution 
architect uses the model and decision support tool to guide the 
decision-making about requirements that can be satisfied by 
Totara.  

For example, to create a goal variability model for a Totara 
feature such as performance management, a CGK solution 
architect first defines the requirements achievable using the 
feature, then maps these requirements to one or more compo-
nents of the feature, and to a sub-requirement that was a means 
to achieve the requirements. For each sub-requirement that is 
not further refined into requirements, a use case was specified 
of the step-by-step actions using Totara to achieve the re-
quirement. The resulting model for one top-level requirement 
related to the performance management feature of Totara is 
depicted in Figure 1. The model specifies four variations to 
achieve the requirement R1. Setting performance expectations. 
One variation is R1.1 Align employee performance with com-
pany strategic goal(s), which is in turn achieved by complet-
ing the use case UC1 Create Goals and assigning goal, which 
in turn be accomplished in 4 ways represented by 4 use cases. 

Whilst it is possible that each goal variability model, on  its 
own, could provide common ground in discussions between 
the solution architect and customer representatives, first expe-
riences with such models indicated that its form was too diffi-
cult for most customer representatives to understand. There-
fore, the ETHER method was extended with the decision sup-
port software tool that presents each variation point in each 
model as a requirement-based decision to make to the solution 

architect and customer representatives. During this step, the 
solution architect and customer representatives walk through 
decisions about product capabilities, guided by ETHER’s deci-
sion support tool. For each decision point, which is equivalent 
to an alternative capability in the model achieved by use of the 
Totara package, the solution architect describes alternative 
capabilities, and asks which of these align to one or more cus-
tomer requirements. If the customer’s answer is yes for any of 
the capabilities, then the solution architect selects that option 
in the decision support tool, and explores each set of associat-
ed lower-level capabilities using the same process. At the low-
est-level node of each hierarchy of capabilities is a description 
of a use case that specifies the steps needed to perform a task 
to deliver the capability – steps that the architect could later 
demonstrate with the software package, beyond the current 
scope of the method. Examples of alternative capabilities of 
Totara’s performance management feature presented in 
ETHER’s decision support tool are shown in Figure 2. The 
left-hand side shows alternative capabilities, and the right-
hand side alternative means to achieve one capability. 

D. Step 4: Session Review 
After all alternative requirements-level capabilities for the 

feature have been walked through, the solution architect asks 
the customer representatives if there are any remaining re-
quirements to investigate. Once these other requirements have 
been considered, the solution architect produces a written 
summary of the session and sends it to the customer for agree-
ment. 

 
 
 
 

Figure 1: The goal variability model developed for the Performance Management feature of the Totara 2.5 software package  
 



 

E. Delivering a First Version of the ETHER Method 
We developed a first complete version of the ETHER 

method, with descriptions of the steps and a prototype decision 
support software tool, and made it available to CGK for use by 
its solution architects. Experiences of use of the method are 
reported at length in the next section. 

III. FIRST EXPERIENCES WITH THE ETHER METHOD 
In order to evaluate the ETHER method, the first author or-

ganised sessions with 5 CGK customers to present the perfor-
mance management feature available in Totara version 2.5. At 
the time of the evaluation, Totara 2.5 was scheduled for release 
to customers, so each session offered an early opportunity for 
each customer to preview the new feature and to start to make 
budgetary decisions regarding whether to upgrade or not their 
version of Totara. The 5 customers were recruited via the CGK 
sales team as customers who had previously shown interest in 
implementing appraisals and performance reviews into their 
learning management systems. They had very little knowledge 
of what capabilities the new performance management feature 
consisted of. Each session was run as either a face-to-face 
meeting or a webinar depending on the customer’s preference. 
One solution architect facilitated each session. The first webi-
nar session was undertaken as a baseline session in order to 
capture data about the current demonstration process used in 
CGK that data from the other sessions would be compared to. 
During the other 4 sessions, the solution architect applied the 
ETHER method. Three of these sessions were webinars, and 1 
was conducted in a face-to-face meeting. Three different CGK 
solution architects undertook the 5 sessions with 5 different 
customers in 5 different sectors, and the durations of the ses-
sions was from 45 to 143 minutes, see Table 1. 

Each of the 5 sessions was successful, in that the solution 
architect was able to demonstrate software features of Totara in 
session 1, and step through all 4 steps of the ETHER method in 
the other 4 sessions to investigate alternative requirement-level 

capabilities. The one failure to apply the ETHER method as 
specified occurred in the first step of all 4 sessions, when the 
solution architects did not support their verbal summaries of 
each session with the planned written reports due to lack of 
resources to complete the tasks. 

Interviews undertaken by the first author with solution ar-
chitects after each session revealed some first perceived ad-
vantages and disadvantages of the ETHER method over the 
current software package demonstration process. After session 
2, for example, the solution architect reported that: “Yeah it 
did help more than doing a demo without it in the sense of I 
feel that after that amount of time I have a better idea of what 
they are trying to achieve then when I don’t use something 
that is this structured and then do a Totara demo”. Some of 
the customer representatives also reported benefits, for exam-
ple: “.. opportunity to see the system at a high level in order to 
think about/initiate discussion around our own business re-
quirements”. That said, after the third session, the solution 
architect stated his belief that some of the method steps were 
more useful than others: “I find the walkthrough really, really 
useful for the first half but for the second half I feel that you 
don’t have to use it as much, more as a prompt so when I’m 
like ah okay which bit do I need to focus on next I go back to 
it….” The use of the glossary of terms to describe the software 
package was important during step 2 for building common 
ground: “I think internally as they didn’t have terminology for 
some of these things it was more an agreement of OK this is 
what it means. I’m not certain it made a great deal of differ-
ence when I was doing the demo. It is a useful thing to do and 
also introduces them to the terminology. It introduces them to 
the characters they will come across in the demo… you know 
here are a list of people we are dealing with – that sort of 
thing”. Establishing the glossary of package terms also ap-
peared to improve understanding: “Yes so, well I ran through 
the glossary, terminology thingy, they call them what we call 
them, but that was actually quite useful as they said we don’t 

 

 

Figure 2: Two screenshots from the ETHER decision support tool that replaces demonstration of concrete software features. The left-hand side shows 
alternative capabilities to achieve R1: Setting performance expectations. The right-hand side depicts the lower-level capability R1.1 Align employee per-

formance with company strategic goal(s) has been selected 



 

use that, we don’t do that so that set my expectations for what 
I then covered, so what do you call competencies, we don’t 
call them anything, we don’t use them”. 

 
Table 1: Comparative data about the 5 solution architect-customer repre-

sentative sessions 
Session  Led 

by 
Number 
of cus-
tomer 

attendees 

Customer 
industry 

Format Duration 
(mins) 

Baseline SA3 3 Training 
Provider 

Webinar 60 

Session 1 SA1 2 Catering / 
Facilities 

management 

Webinar 45 

Session 2 SA2 1 Newspaper 
/Magazine 
wholesaler 

Webinar 143 

Session 3 SA1 3 Property 
Development 

Face to 
face 

73 

Session 4 SA2 2 Retail Webinar 75 
 

That said, the solution architect in the first session reported 
that it: “.. took longer to do the demo than originally thought 
as you need to cover areas that they don’t know about e.g. 
learning plans (which leads onto questions about programs) 
and competencies.  These in themselves open further questions 
so it’s easy to be drawn into other areas of Totara….. In gen-
eral it covered everything they needed to know, but it was 
quite high level.  Will definitely require follow up demos more 
targeted at their actual requirements”. The comment indicated 
that the solution architects might have preferred to combine 
use of the ETHER method and tool with the demonstration of 
software package features. 

The use of the decision support tool for the method was 
perceived to aid the process, but the potential for further fea-
tures was identified. One solution architect reported that: “us-
ing the tool gives a nice structure to the demo although some 
parts raise questions about other areas that I covered later, so 
you need be able to answer questions early, or manage the 
demo to say it’s coming later.  Might be worth adding in addi-
tional links to jump around the structure to get to related are-
as so that the demo isn’t so prescriptive in its flow and order”. 
Another solution architect identified the tool as useful in parts 
of the session: “so actually probably a good high level com-
ment that I have is this feature – this – this section – perfor-
mance expectations was really good and really helped, but 
facilitating the appraisal process I didn’t really use it for, the 
reason why was because this one is more about the consultan-
cy of how we are going to do it, whereas facilitating the ap-
praisal process was more you set up the form, you set up the 
stages, there is not so much consultancy.” 

Overall, the feedback from these interviews revealed both 
the potential benefits and the limitations of the first version of 
the ETHER method. However, to investigate the effectiveness 
of the method in more detail, we audio-recorded the solution 
architect-customer representative dialogue in each session. 
This dialogue was the primary means of exposing require-
ments then communicating and aligning them with product 
capabilities in face-to-face meetings and webinars, therefore a 
first-hand analysis of the dialogue was expected to reveal new 

insights into use of the ETHER method. Each full audio re-
cording was transcribed, and information from the screen cap-
tures from the decision support tool was described and added 
to the transcript. We then applied a simple thematic coding to 
each transcript segment. The set of codes generated from the 
research questions and reported in Table 2 was developed and 
applied to each transcript from each session. 
 
Table 2: Thematic codes used to analyze the transcripts of the 5 solution 

architect-customer representative sessions 
Code Description 

Requirement 
  

An expression of capability and/or quality 
needed or wanted by the customer 

Requirement-capability 
alignment 

An expression of a requirement’s alignment to 
one or more product capabilities 

Requirement-capability 
non-alignment 

An expression of a requirement’s explicit non-
alignment to one or more product capabilities 

Customer understanding 
     

An explicit expression of understanding of one 
or more package capabilities, features or quali-
ties 

 
To analyze the codified transcripts, the totals of instances of 

each type of coded segment were computed and compared 
across the 5 sessions. We then undertook a content analysis for 
each codified transcript segment to compute the totals of re-
quirements. In the next sections, we report key results from this 
analysis of the data collected from the 5 sessions. 

A. Exposed Requirements 
First of all, we applied results from the contents analysis to 

calculate the totals of different atomic requirements that were 
articulated in each session. We also calculated the totals of the-
se articulated requirements that were stated to be satisfied by 
the package capabilities, and the totals stated explicitly to be 
unsatisfied by these capabilities. 

In the baseline session, the customer representatives and so-
lution architect did not articulate any requirements in the one-
hour session, a result consistent with previous CGK experienc-
es. In contrast, in the 4 sessions during which the ETHER 
method was used, the customer representatives and solution 
architects articulated a total of 67 different atomic requirements 
– an average of almost 17 requirements per session, see Table 
3. 
 
Table 3: The totals of different atomic requirements articulated in each of 

the sessions, and the totals of these requirements explicitly matched to 
package capabilities, and explicitly not matched to package capabilities 
Session Totals of Artic-

ulated Atomic 
Requirements  

Totals of 
Requirement 

Capability 
Alignment 

Totals of Require-
ments Capability 
Non-Alignment 

Baseline 0 0 0 
Session 1 18 3 0 
Session 2 29 8 4 
Session 3 16 3 0 
Session 4 4 2 1 

 
That said, the sessions varied – session 2 led to the articula-

tion of 29 requirements, whereas session 4 led to the articula-
tion of only 4 requirements. Both of these sessions were ran by 
the same solution architect, but session 2 ran for twice as long 
as session 4. Of the total of 67 requirements, only 16 (24%) 
were aligned to package capabilities in the sessions, 5 (7%) 



 

were recognised as unaligned to any package capabilities in the 
sessions, and the remaining 44 (69%) were not associated to 
any package capability. This result revealed that the sessions 
with the ETHER method did not manage to associate most cus-
tomer requirements to the package capabilities. 

In contrast, the ETHER method did appear to increase the 
number of customer requirements articulated, compared with 
its current software package demonstration process, even if 
most customer requirements were not explicitly identified as 
satisfied or not by the package capabilities. To explore possi-
ble reasons for this, we examined which steps of the ETHER 
method each requirement was articulated in. 

B. Where and How Requirements were Exposed 
The totals of the requirements that were articulated in the 4 

steps of the ETHER method are reported in Table 4. The major-
ity – 46 (69%) –  were articulated in step 2 – building common 
ground – when the solution architects asked customer repre-
sentatives to express their requirements. The remaining re-
quirements were articulated first in step 3 – requirements that 
the product supports – revealing that the role of the decision 
support tool to explore alternative package capabilities and 
surface new requirements. No new requirements were articu-
lated during introductions and reviews in steps 1 and 4. 

We also undertook a simple content analysis of all of the 67 
requirements that were articulated during the 4 sessions, to 
understand the nature of the requirements exposed by use of 
the ETHER method. To do this, we categorized each of the 67 
requirements as a member of one of 3 possible types: 
• An independent requirement: a customer representative 

states explicitly that the customer wants a capability, 
function, feature or quality, independently of any package 
capabilities, for example we need to do x, if it could do x, 
and they would need x; 

• A deficient business process: a customer representative 
expresses what is needed in terms of deficiencies in the 
current process. Examples include: so at the moment we 
do x, to describe the process, and we have x, to describe 
an element of the process, such as a form or an element of 
the current system in place; 

• A requirement that is generated directly from package 
capabilities: these types of requirements arise from the 
dialogue about package capabilities. The customer repre-
sentative makes a statement about the capability and how 
they will use it, for example: ok so I can have x, to de-
scribe what the customer would like, and so if the pack-
age does x, then we can do y. 

 
Table 4: Totals of different atomic requirements reported in each of the 4 

steps of the ETHER method, in each session 
Session Step 1 Step 2 Step 3 Step 4 
Session 1 0 12 6 0 
Session 2 0 19 10 0 
Session 3 0 12 4 0 
Session 4 0 3 1 0 
Total 0 46 21 0 

 
Table 5 reports the total number of occurrences of each 

type of requirement in the 4 sessions. 
 

Table 5: The totals of different atomic requirements, by type, reported in 
each session 

Session Independent 
requirement 

Deficient business 
process 

Requirement gener-
ated from package 

capabilities 
Session 1 2 14 2 
Session 2 6 19 4 
Session 3 0 14 2 
Session 4 1 3 0 
Total 9 50 8 

 
Most of the requirements, 50 of the 67, were expressed as 

deficiencies in current work processes to resolve, as this ex-
tract from session 2 demonstrates: “At the moment we use a 
separate system…and basically we have an online scorecard 
where people can create online goals - the executees create 
their goals at the start of the financial year which is the 1st 
September so we're just beginning that process now. Those 
goals are cascaded to senior team and then they are cascaded 
down the organization and then individuals are asked to go in 
and amend the goals to make them more appropriate and ap-
plicable to themselves basically”. In this event, 4 requirements 
were exposed – for executees to create performance objectives 
for the company and assign objectives to the senior manage-
ment team, for the senior management team to assign objec-
tives to individual employees, and for individual to amend 
objectives.  

In contrast, the customer representatives expressed many 
fewer requirements independent of the package capabilities, 
for example: “We need to be mindful that that human element 
is going to be taken away we need some robust logic that says 
this equals that and therefore you get this document rather 
than their manager saying I'm not really sure”, and “I’m 
wondering whether we could set a learner or a user up to cre-
ate their own 360 forms so perhaps their manager approves it 
or something. That might be quite useful.” These new re-
quirements specified the role for learners to create their own 
360 forms and for managers to approve these forms.    

More surprisingly, only 8 of the 69 requirements were 
generated directly from package capabilities. For example in 
session 2, the customer recognizes a requirement when the 
options for assigning a company goal are shown on screen: “I 
think we’d want to do both really depending on who the learn-
er is sometimes it would be learner driven sometimes it would 
be manager driven. The ideal is that all learners go out and 
manage objectives but I didn’t that’s reality so I think flexibil-
ity to do both please.” The customer generated this require-
ment from capabilities of the package, in contrast to software 
demonstrations in which the customer was not encouraged to 
compare capabilities directly to their business activities. How-
ever, such instances of requirements generation were few and 
far between during the sessions. 

A qualitative analysis of the relevant transcript segments 
revealed that each statement of satisfaction between a require-
ment and a package capability emerged in one of two different 
ways. In the first way, the solution architect or one of the cus-
tomer representatives would refer back to a requirement articu-
lated in step 2 when common ground was established, then 
aligned or otherwise that requirement to one or more capabili-
ties of the package, for example in session 1 the solution archi-



 

tect says: “So the defining the appraisal is what we just run 
through, so it setting up those stages, setting up those pages to 
view, assigning appraisals as I just mentioned you can assign 
using audiences positions and organization hierarchies so we 
can get the right things to the right people. As you say you’ve 
got multiple forms so what you can do within the system is cre-
ate multiple appraisals”. Often the solution architects appeared 
to recall the customer requirements because they did not make 
external notes of customer requirements during the sessions. 

The second way in which a statement of satisfaction was 
made was to align a new requirement directly to one or more 
package capabilities immediately in the session. Both the solu-
tion architects and customer representatives articulated compli-
ance statements when recognizing that a new requirement that 
might align to a capabilities currently being described. For ex-
ample, one of the customer representatives asked: “is there a 
way of completing appraisals off-line at some point? For ex-
ample they use down time whenever they can they may not al-
ways be on the Internet, they may be on a train or somewhere 
else and maybe not necessarily now, but in the future will there 
be some sort of functionality to do stuff off-line because some 
people have teams of about 50 people and it’s such a huge task 
for them”. The solution architect responded: “Yeah yeah I 
know, I can definitely see why. Unfortunately no, as you have 
said the site is web-based so it does require the Internet…”, 
thereby articulating an explicit lack of alignment of that pack-
age capability to the requirement. 

C. Customer Understanding 
The coding of the transcript segments to reveal evidence of 

understanding package capabilities by customer representa-
tives summarized in Table 6 revealed that the customers artic-
ulated all but one statement of understanding in step 3 explor-
ing requirements supported by the package. In contrast, the 
customers did not make such statements during the other 2 
steps of the method. 

 
Table 6 - Where understanding occurred 

Session Step 2 Step 3 Steps 1 and 4 
Session 1 1 8 0 
Session 2 0 1 0 
Session 3 0 4 0 
Session 4 0 0 0 
Total 1 13 0 

 
Moreover, most of the statements of understanding were 

expressed as questions such as: “hmmm, so we can have lots of 
different messages going out at different stages…?” The state-
ments were often prompted by information displayed on the 
screen shared by the solution architect and customer. For ex-
ample, in session 1, the solution architect explained: “…but 
what I can do is add a specific, those are the company goals, I 
can add in a goal from a manager”, to which one of the cus-
tomer representatives replied: “so those goals are added based 
on the audience those goals area added based on the audience 
automatically?”. The solution architect then responded: “yup, I 
think actually, this is where I may get a little bit vague. I think 
what it might be is when you… I think on this version when you 
go in, you have to manually add them in. My understanding is 
for the release version it will automatically pull them in for 
you”. 

To conclude, analysis of the dialogue transcripts revealed 
little direct evidence of customer understanding, although there 
was also little direct evidence of misunderstanding between 
each solution architect and customer representatives. 

IV. REVISITING THE QUESTIONS, AND LESSONS LEARNED 
We reviewed the outcomes from this first use of the 

ETHER method against the 3 questions, presented at the start of 
the paper, to extract some first lessons learned for both CGK 
and for requirements research applied to implementing off-the-
shelf software packages.  

To answer the research question Q1, the results indicated 
that use of the ETHER method did expose more customer re-
quirements on the implementation of the software package 
compared to CGK’s current demonstration process. Both 
CGK’s past experiences and the baseline session revealed that 
few requirements are exposed and documented during demon-
stration sessions. In contrast, the 4 ETHER sessions exposed a 
total of 67 customer requirements. In simple terms, the ses-
sions revealed that replacing the software package implemen-
tation with decision support about requirements-level capabili-
ties increased the exposure of requirements in the dialogue 
between supplier and customer. Although perhaps not the 
most surprising result, the result does indicate that the level of 
abstraction at which information is presented to customers has 
the potential to influence the discovery of and communication 
about requirements. However, most of the exposed require-
ments were expressed not as direct features or qualities that 
the implementation should have, but in terms of deficiencies in 
each customer’s current business process that could be en-
hanced by the Totara package. The customer representatives 
expressed most of these requirements in a relaxed and natural 
way, perhaps in part because they expected the CGK solution 
architects to formalize the requirements afterwards on their 
behalf. Indeed, one interpretation of this behaviour was that the 
customer representatives were waiting to understand the pack-
age capabilities before seeking to formalize requirements fur-
ther. For example, the customer who participated in Session 2 
requested a follow-up requirements session before finally de-
ciding to buy the performance management feature. One 
broader implication is that the ETHER method needs further 
guidance to extract requirements from deficiencies in the cus-
tomer’s current situation. We explore this implication further 
in the lessons learned reported at the end of this section. 

To answer the research question Q2, the use of ETHER re-
vealed only limited evidence of improved understanding of 
software package capabilities by the customers, compared to 
CGK’s current software package demonstration process. One 
possible reason for this result is the good level of understand-
ing that the Totara customers already had of these capabilities 
– customers in all 5 sessions reported that the sessions were 
‘very effective’ for ensuring understanding of the performance 
management feature. 

Finally, to answer the research question Q3, the use of the 
ETHER method did not appear to allow the supplier and cus-
tomer representatives to align customer requirements and 
software package capabilities more effectively, compared to 
the current software package demonstration process. Whilst 
there was an increase in the number of requirements that were 
both explicitly aligned to and not aligned to package capabili-



 

ties in ETHER sessions over the baseline session, this increase 
was not large, and most requirements that were exposed dur-
ing the sessions with the ETHER method were not either ex-
plicitly aligned or unaligned with the package capabilities. The 
original design of the ETHER method assumed that customers 
would provide well defined and clearly stated business re-
quirements at the start of each session. The result indicates that 
this did not happen. Instead, the method will need to provide 
more support for aligning requirements and capabilities. 

From the results, we drew a number of simple lessons 
learned that can be applied first by both CGK and researchers 
seeking to align off-the-shelf software packages and require-
ments from customers more effectively. The first lesson is that 
supporting software package demonstrations with equivalent 
artifacts that describe the requirements-level capabilities of 
these packages can lead to the exposure of more customer re-
quirements on packages. In this work we report the combined 
use of an adapted product variability model and explicit soft-
ware decision support tool to walk customers through the capa-
bilities of a system and the requirements that it supports. Of 
course, other types of artifact that depict goals and require-
ments which are reverse-engineered from software package 
features can also be used, but the focus of goal variability mod-
els on decision points made them an effective mechanism with 
which to focus on requirements-based decisions to make. 

The second lesson is one that will be applied to future uses 
of ETHER in CGK, who will extend the method with one of 
more mechanisms with which to structure and record customer 
requirements more explicitly. This explicit record of each re-
quirement will be needed, we believe, to facilitate the more 
effective alignment of requirements to the software package 
capabilities – one area of method use that was weak in the re-
ported experiences. Existing requirements templates such as 
VOLERE [8] and writing guidelines such as EARS [6] can be 
used to guide customers to write and structure key require-
ments before each session and during step 2 when building 
common ground, although care will be needed to ensure that 
this change does not result in a long list of detailed require-
ments from the customer and a transactional approach similar 
to the Request for Proposal process. Moreover, the method will 
need to provide guidance to extract clear requirements state-
ments from descriptions of business process deficiencies. The 
session dialogue between the solution architect and customer 
representatives can then extended with an explicit handshake 
process, in which the solution architect verbally presents new 
customer requirements back to the customer representatives 
during the session. Simple tabular or graphical representations 
can be used to externalize and encourage alignments to be 

specified between requirements and package capabilities. The-
se representations can be supported digitally to allow solution 
architects to align emerging requirements with modeled pack-
age features. 

Finally, a wider possible change is to extend the scope of 
the ETHER method beyond the sessions involving the solution 
architect and customer representatives. For example, rather 
than present the software package capabilities to customers 
during each session with the decision support tool, the goal 
variability model and/or decision support tool could be provid-
ed to customer representatives to familiarize themselves with 
the key decisions to make, prior to the session. Of course, pre-
senting different package capability options to customers with-
out expert guidance from suppliers would create risks, and ne-
cessitate additional documentation about the software package 
to be delivered. 

We are looking forward to implementing these changes, 
and reporting on their use in the near future. 

ACKNOWLEDGMENT 
We acknowledge the support of both City&Guilds Kineo and 
their customers to undertake the evaluation studies reported in 
this paper. 

REFERENCES 
[1] Alves, C., Finkelstein, A., 2002. 'Challenges in COTS decision-making: 

a goal-driven requirements engineering perspective', in: Proceedings of 
the 14th International Conference on Software Engineering and 
Knowledge Engineering. pp. 789–794. 

[2] Alves, C., Franch, X., Carvallo, J.P., Finkelstein, A., 2005. 'Using goals 
and quality models to support the matching analysis during cots 
selection', in: COTS-Based Software Systems. Springer, pp. 146–156. 

[3] Bühne, S., Lauenroth, K., Pohl, K., 2004. 'Why is it not sufficient to 
model requirements variability with feature models', in: Proceedings of 
the Workshop: Automotive Requirements Engineering (AURE’04), Co-
Located at RE’04, Nagoya, Japan. 

[4] Clark, H., 1996. 'Using language',. Cambridge University Press. 
[5] Maiden N.A.M. & Ncube C., 1998, 'Acquiring Requirements for 

Commercial Off-The-Shelf Package Selection', IEEE Software, 15(2), 
46-56. 

[6] Mavin A., 2009, ‘Easy Approach to Requirements Syntax (EARS)’, 
Proceedings 17th IEEE Requirements Engineering Conference, IEEE 
Computer Society Press, 317-322. 

[7] Natt och Dag J., Gervasi V., Brinkkemper S. & Regnell R., 2005, ‘A 
Linguistic-Engineering Approach to Large-Scale Requirements 
Management’, IEEE Software 22(1), 32-39. 

[8] Robertson, S., Robertson, J., 2013. 'Mastering the requirements process: 
getting requirements right'., 3rd ed. ed. Addison-Wesley. 

[9] Schmid, K., Santana de Almeida, E., 2013. 'Product Line Engineering'. 
Softw. IEEE 30, 24–30.

 


