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Abstract

This paper shows that recent published mortality projections with unob-

served exposure can be understood as structured density estimation. The

structured density is only observed on a sub-sample corresponding to his-

torical calendar time. The mortality forecast is obtained by extrapolating

the structured density to future calendar times using that the components

of the density are identified within sample. The new method is illustrated

on the important practical problem of forecasting mesothelioma for the UK

population. Full asymptotic theory is provided. The theory is given in such

generality that it also introduces mathematical statistical theory for the recent

continuous chain ladder model. This allows a modern approach to classical re-

serving techniques used every day in any non-life insurance company around

the globe. Applications to mortality data and non-life insurance data are

provided along with relevant small sample simulation studies.

Keywords: Non-parametric; Kernel density estimation; Reserve risk; Multi-

plicative; Chain Ladder.

1 Introduction

Let us assume that we have a structured density defined as a density that is a known

function of one-dimensional densities, see Mammen and Nielsen (2003) for the equiv-

alent definition of structured regression. Assume furthermore that observations are

available from this structured density on a restricted support only. Finally assume

that the character of this restricted support is such that in-sample information is

available for all the one-dimensional functions defining the original structured den-

sity. In this situation, an extrapolation or forecast is immediately available for that

part of the support without observations. It turns out that one of the most impor-

tant problems in non-life insurance, estimation of outstanding liabilities in reserving,

has exactly this form. The structured density is most often a multiplicative density

in this case. The support with observations represents insurance claims until the

current calendar time, and the support without observations represents future in-

surance claims. This forecast method has traditionally been called the chain ladder

technique in actuarial science and the multiplicative density has been estimated as

a structured histogram or equivalently from maximum likelihood assuming a mul-

tiplicative Poisson structure, see Wüthrich and Merz (2008) for and overview and

Kuang et al. (2009), Verrall et al. (2010), Mart́ınez-Miranda et al. (2011, 2012,

2013a,b,c), for recent reformulations of classical chain ladder in mathematical sta-

tistical terms published in the actuarial literature. Other recent contributions in
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reserving considering statistical models based on individual claims include Antonio

and Plat (2014) and Pigeon et al. (2013,2014). The longevity problem is another

important application of structured density forecasting and as in non-life insurance

a histogram type of approach is widely used and analysed, see Haberman and Ren-

shaw (2012) and Hatzopoulos and Haberman (2013). In this paper we propose to

use our alternative approach based on structured non-parametric models and we will

illustrate its power by applying it to mesothelioma mortality forecasts. We compare

our empirical findings with Mart́ınez-Miranda et al. (2014) who used a classical

approach based on a multiplicative Poisson structure.

While we stick to the multiplicative density structure in this paper, it is evi-

dent that important generalizations are possible. One could add a variety of one-

dimensional densities to the overall structure leading to non-multiplicative struc-

tures. It would also be interesting to generalize the approach of this paper to other

sources of mortality than age and cohort. One example would be to add calen-

dar time effects generalizing the histogram approach to calendar effect estimation

developed in Kuang et al.(2008a,b). Another would be to add time independent

or time dependent covariates. It would be also interesting to consider the work of

Zhang et al. (2013) to develop distribution free prediction sets, see Lei et al. (2013).

Finally, the approach of projecting a multivariate density smoother down on the

structure of interest is not restricted to local linear density smoothers and could be

generalised to other multivariate density smoothers including Panaretosa and Konis

(2012), Xiao et al. (2013) and Lu et al. (2013).

The paper is organized as follows. In Section 2 the structured density model is

formulated in the special multiplicative case. A projection approach based on local

linear density estimation is defined. The asymptotic properties of the suggested

method is provided in Section 6 (with more details and proofs deferred to the Ap-

pendix). Applications to non-life insurance and mesothelioma mortality forecasting

are explained in Section 3. While these two applications rely on the multiplicative

density structure, observations are available on very different underlying supports.

However, for both applications the entering one-dimensional densities are identified

by the observed data. The analyses of two datasets are described in Section 4. Sec-

tion 5 includes a brief simulation study with simulation settings defined to be close

to real life situations. All the calculations in the paper have been performed with

R, R Development Core Team (2011).
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2 Multiplicative density forecasting

2.1 Model formulation

Let us consider n i.i.d. observations {(Xi, Yi), i = 1, . . . , n} from a two-dimensional

variable (X, Y ) having a density f with support on a subset If of the rectangle

Sf = {(x, y) : 0 ≤ x ≤ T1, 0 ≤ y ≤ T2}, with T1, T2 > 0. The aim is to forecast the

density of (X, Y ) in Sf from the given observations that are only available in the

set If . To this goal let us assume that f is multiplicative, this is, it is of the form:

f(x, y) = cff1(x)f2(y), (1)

where f1 and f2 are probability densities on [0, T1] and [0, T2], respectively. The

constant cf is chosen such that

∫

If

cff1(x)f2(y)dx dy = 1. (2)

This formulation transforms the original forecasting problem to an estimation

problem of the densities f1 and f2. The approach of this paper is developed for a

general support If including the two different support structures that came up in our

two applications (mortality studies and insurance reserving). See also Nielsen and

Linton (1998) for related projection methods in structured nonparametric regression.

Note that if the support where the densities are observed is a rectangle, then

the estimation problem would be trivial and both components could be estimated

separately. The non-rectangular supports considered in this paper implies that the

estimation problem is more complicated. However, we are only considering non-

rectangular supports, where the multiplicative components are still estimable in-

sample. While the term in-sample forecasting is defined in this paper, the in-sample

forecasting trick is an old one and has been used in non-life insurance in actuar-

ial science as long as anyone remembers. In actuarial science the non-rectangular

support is a triangle and the multiplicative structure is estimated via a paramet-

ric approach related to maximum-likelihood estimation, see Kuang et al. (2009).

It has recently been pointed out that this classical actuarial forecasting methodol-

ogy can be understood as first estimating a multiplicatively structured histogram

and then extrapolating into the future, see Mart́ınez-Miranda et al. (2013a). More

complicated structures violating the independence assumption between X and Y

could also be considered. This is, however, beyond the scope of this paper. Among

many examples one could imagine that a calendar time effect enters the model in

some multiplicative way, see Kuang et al. (2011)for a classical structured histogram

approach to forecasting including such a calendar effect.
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2.2 The projection approach

Consider the density f with support If and consider one point (x, y) ∈ If . The local

linear estimator introduced in Nielsen (1999) and Müller and Stadtmüller (1999) is

derived by solving the following minimization problem:

Θ̂ = min

Θ

lim
b→0

∫

If

{
f̃b(u, v)− θ1 − θ2,1(u− x)− θ2,2(v − y)

}2

Kh1
(u−x)Kh2

(v−y)du dv,

(3)

where Θ = (θ1, θ2,1, θ2,2), Θ̂ = (θ̂1, θ̂2,1, θ̂2,2) and f̃b(u, v) = n−1
∑n

i=1 Kb(Xi −

u)Kb(Yi − v). Here Kb(u) = b−1K(u/b), for a one-dimensional symmetric kernel

function K and bandwidth parameters b > 0, h1 > 0, h2 > 0. The local linear

density of f(x, y) is given by f̂h;If (x, y) = θ̂1, which is defined for any given vector

of bandwidth parameters h = (h1, h2) ∈ IR2
+.

Note that f̂h;If (x, y) is an estimator of the density f of (X, Y ) restricted to the

support If . Forecasting into the future amounts to extrapolating our estimated

density to the full support Sf . This forecast or extrapolation is only possible under

some assumptions on the functional form of f(x, y). In this paper, we consider one of

the simplest structured density options (1) and project the unrestricted local linear

estimator down on the relevant multiplicative space. Specifically cf , f1 and f2 are

estimated by minimizing the following expression:

min

cf , f1, f2

∫

If

(
f̂h;If (x, y)− cff1(x)f2(y)

)2
w(x, y)dx dy, (4)

under the constrain that
∫ T1

0
f1(x)dx = 1 and

∫ T2

0
f2(y)dy = 1. Here w is some

weighting function such that w(x, y) > 0.

In practice, the above minimization can be done by using the following iterative

algorithm:

1. Let consider the estimator f̂h;If derived above and f̂
(0)
1,h being an initial esti-

mator of f1.

2. Calculate an estimator the f2 as

f̂
(1)
2,h(y) =

∫
Iy
f̂h;If (x, y)w(x, y)dx
∫
Iy
f̂
(0)
1 (x)w(x, y)dx

,

where Iy = {x : (x, y) ∈ If}.
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3. From f̂
(1)
2,h given above, let update the estimator of f1 by

f̂
(1)
1,h(x) =

∫
Ix
f̂h;If (x, y)w(x, y)dy∫
Ix
f̂
(1)
2 (y)w(x, y)dy

,

where Ix = {y : (x, y) ∈ If}.

4. Repeat steps 2 and 3 until convergence.

The constraints in the algorithm are neglected and it suffices to adjust the esti-

mators to hold them at the end. Let denote the final adjusted (to hold the con-

straints) estimates by f̂1 and f̂2, then the constant cf in (4) is estimated such that

cf
∫
If
f̂1(x)f̂2(y)dx dy = 1. A convenient choice for that the initial estimator f̂

(0)
1,h

in step 1 can be a constant function (actually we have made this choice for the

empirical illustrations in the paper).

Note that the above algorithm is similar to the backfitting algorithm used for

fitting additive models and it has also been proposed for the continuous chain-ladder

model in Mart́ınez-Miranda et al. (2013a). Note that in the algorithm it is not needed

that the two-dimensional density f(x, y) is estimated. The algorithm makes only use

of estimates of the marginal quantities
∫
Iy
f(x, y)w(x, y)dx and

∫
Ix
f(x, y)w(x, y)dy.

In our asymptotic theory we will discuss alternative estimation approaches where

these quantities are directly estimated without using estimates of f(x, y).

An important remaining practical problem is data-adaptive choice of the band-

widths (h1, h2). One way would be to use a data-adaptive bandwidth selector for

the estimation of the unstructured two-dimensional density f . In our simulations

and data-examples we used a least squares cross-validation approach. The cross-

validated bandwidth tuple (ĥ1, ĥ2) is defined as the minimizer of

LSCV(h1, h2) =

∫

If

f̂h;If (x, y)
2dx dy − 2

n∑

i=1

∫

If

f̂
[−i]
h;If

(x, y)dF̃n(x, y), (5)

where f̂
[−i]
h;If

is the leave-one-out version of the estimator f̂h;If , and F̃n is the empirical

distribution function. This approach has the disadvantage that the resulting band-

widths are optimal for the nonparametric estimation problem of a two-dimensional

density but not for the one-dimensional components of our structured model, see our

asymptotic theory below. The development of a cross-validation bandwidth selector

that is designed for a structured model is still missing and deserves further research,

which is beyond the scope of this paper.
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3 Two examples: reserving and mesothelioma mor-

tality forecasting

In this section the two main forecasting applications are explained. The first is about

the so called reserve estimating outstanding liabilities. This number is perhaps the

most important number in the accounts of a non-life insurance company and some

of the worst solvency problems non-life insurance company historically have faced

are results of insufficient reserves for outstanding liabilities. The second application

is on forecasting of mesothelioma mortality (Peto et al. (1995), Mart́ınez-Miranda

et al. (2013b)). While this application is also of immense importance for insurance

companies as well, it also has implications for political decisions on economics.

Our practical data are provided in discrete form. The data is not discrete by na-

ture, but have been aggregated by data providers. Standard methods in this area are

designed around aggregated methods and there is a tendency to consider aggregated

data as the original data (Kuang et al. (2009), Hatzopoulos and Haberman (2013),

Clayton and Schifflers (1987)). Statisticians, insisting on working on the original

continuous data only, will have the disadvantage of not being able to work on many

of the most important problems in the two fields. It is therefore encouraging that

our purely continuous approach adapts to aggregated data in a simple, efficient and

robust way. Carroll et al. (2013) concluded in a slightly different context that

cross-validation methods seem more robust to discretization than methods based

on asymptotic expansions such as plug-in methods and they give some theoretical

background for this conclusion. We follow their advice and stick to cross-validation

when choosing the level of smoothing.

3.1 Claims reserving in non-life insurance

Here the data arrange is a triangle support defined as If = {(x, y) : 0 ≤ x, y ≤

T, x + y ≤ T}, where x is the underwriting time, y is the claims development time

and [0, T ] (with T > 0) is the time observation window (see Mart́ınez-Miranda

et al. (2013a)). Traditionally the actuaries work with the data in an aggregated

way, defining the traditional run-off triangles. These triangles can be represented

as sets such as ℵm = {Nij : (i, j) ∈ Im}, where Im = {(i, j) : i = 1, . . . ,m, j =

1, . . . ,m; i+ j − 1 ≤ m}. The available data are then indexed in the set Im, which

is just a discretization in periods such as quarters or years of the continuous triangle

If defined above. The values Nij correspond to aggregated values such as the total

number of claims of insurance incurred in period i, which are reported in period

i+ j− 1 i.e. with j− 1 periods delay from year i, or the total quantity paid for such

7



Observed payments

x
y

0e+00

1e+06

2e+06

3e+06

4e+06

Figure 1: Triangle support in Reserving: paid run-off triangle from a major insurer.

claims. Here n =
∑m

i=1

∑m
j=1 Nij is the sample size, which represent the number of

observed claims or the total paid quantity. Figure 1 shows an example of this kind

of data and the special triangle support is visualized. In this case, the available

information are the total paid quantities for claims incurred between 1990 and 2011.

The payments are arranged into a triangle by the occurrence or underwriting month

and the development month. During these 264 months (22 years) it was paid a total

of 1,362,222,980 pounds (sample size). The classical aim is to forecast in the lower

triangle given by Jm = {(i, j) : i = 1, . . . ,m, j = 1, . . . ,m; i + j − 1 > m}. Note

that Jm represents the future liabilities for the company arising for claims which

happened in the m observed origin periods (i = 1, . . . ,m). In this paper we describe

how this type of data can be analysed and predicted by a multiplicatively structured

density f(x, y) = f1(x)f2(y), where f1 and f2 are respectively the underwriting time

and the development time density components. The support of the observations is

the triangle If and the forecasting goal is to extrapolate the multiplicative density

to the triangle [0, T ]2\If .

3.2 Mesothelioma mortality forecasting

The age-period is one of the most common arranges in mortality data. In this setting,

the data consists of the number of people with age y who died at a period p. Then, a

typical data set can be written as {(pi, aj, Nij)|i = 1, . . . , P, j = 1, . . . , A}, with Nij

being the number of deaths at period pi for the age aj, and n =
∑P

i=1

∑A
j=1Nij is the
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sample size. We use a data set of this type provided by UK Health Service Executive

that consists of annual aggregated counts of deaths caused by exposure to asbestos in

Great Britain. The data are given by age levels and year (periods) of death between

1967-2007. The data array has dimensions A = 65 (age levels) and P = 41 periods.

The observed total number of deaths is 31902 (sample size). Previous analysis of

these data revealed that the main source of asbestos death is the cohort and the

age and it has been argued that a (parametric) age-cohort model should be suitable

for forecasting purposes. We now reformulate the problem as a structured density

estimation problem with restricted support. To translate the (parametric) age-

cohort model to a density formulation we decompose the two-dimensional density

into a cohort and an age component. The model would be exactly the same as

in the above reserving problem if the data would come in an age-cohort arrange.

However the data have been recorded by periods instead of cohorts and therefore

the support of the densities is now a parallelogram. In the asbestos data the cohort

is defined as the transformation x = p − y, and can be indexed by k = A − i + j,

where i = 1, . . . , P = 41 is the index period and a = 1, . . . , A = 65 is the age

index. Let denote by f(x, y) the two-dimensional density, with x and y being the

cohort and the age, respectively. The age-cohort model lead again to a structured

(multiplicative) density, f(x, y) = f1(x)f2(y), where f1 and f2 are the cohort and

age density components. But, since the data come in an aggregated way, the support

of the density f(x, y) is indexed in the discrete set IP,A = {(k, j) : k = 1, . . . , K, j =

1, . . . , A; 1 ≤ A − k + j ≤ P}. Figure 2 shows a histogram of the observed data

and represent the parallelogram support. The forecast purposes in this particular

case, we focus on a horizon of τ = 40 future periods from the latest observed year

2007. Also, since it is expected that no more cohorts will be affected by asbestos,

there is no reason to extrapolate the cohorts. Then the forecast set can be written

as JP+τ,A = {(k, j) : k = 1, . . . , K, j = 1, . . . , A; P + 1 ≤ A − k + j ≤ P + τ}.

The same data set has also been analysed by Mart́ınez-Miranda et al. (2014) using

maximum likelihood on a Poisson multiplicative structure.

4 Structured density forecasting for outstanding

liabilities and mesothelioma mortality

This section provides our empirical results on structured density forecasting. The

empirical findings in our two examples are not too different from the results already

obtained from the structured histogram approach and the multiplicative Poisson

approach. This holds for outstanding liabilities as well as for mesothelioma mortality.

This is comforting and convince us that our intuitive and visual structured density
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Figure 2: Parallelogram support in mesothelioma mortality forecasting.

forecasting methodology provide the type of results we want. The structured density

approach also allows us to derive mathematical statistical asymptotic theory on the

performance of the underlying one-dimensional functions, see Section 6. This type

of mathematical statistical asymptotic theory has been missing in the literature

so far and has restricted the implementation of statistical methods of inference.

Furthermore, the parametric approach does not allow a theoretical investigation

of the important trade off of variance versus bias, that structured non-parametric

theory provide.

4.1 Structured forecasting outlying liabilities in non-life in-

surance: a data study

In Figure 1 the raw data of insurance payments (given in pounds) are plotted on

the observed triangle. Note that the claims development is quite fast for this data

and most of the mass is around small values of y. This is also clear from studying

the two underlying multiplicative densities given in Figure 3. These densities have

been estimated using the methods described in Section 2.2, using the Epanechnikov

kernel. The mass of the outstanding liabilities is obtained by integrating the esti-

mator in the unobserved part of the triangle. The results are shown in Table 1. The

structured kernel density approach predicts a total reserve of 20, 045, 534, which is

close but a bit higher to the 17, 265, 400 obtained using classical reserving methods

(see Mart́ınez-Miranda et al. (2013a) for more details). It as apparent from Table 1,
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Figure 3: Estimated time effects.

that most of the difference of the reserved estimates between classical chain ladder

on the new continuous in-sample forecaster origins from differences in estimating

the last years reserve. It is well known in the reserving literature that this last

year is both the most fragile and the most important year to estimate well. Sta-

bilizing strategies have been developed to improve the stability of classical chain

ladder via expert knowledge using so called Bornhuetter-Fergursson techniques, see

for example Mart́ınez-Miranda et al. (2013b). While smoothing seems to add to the

stability improving on classical chain ladder, then Bornhuetter-Fergursson method-

ologies also seem relevant for future consideration in the continuous chain ladder

context considered in this paper.

4.2 Structured forecasting of mesothelioma mortality: a data

study

In Figure 2 the parallelogram of observed mesothelioma mortality is plotted. While

the support is not a triangle, the one-dimensional densities underlying the multi-

plicative model are still in-sample. Figure 4 shows the two estimated underlying

densities using the kernel approach. We have used again the cross-validated band-

width and the Epanechnikov kernel. Figure 5 plots the final two-dimensional fore-

casting density. Notice that this estimated multivariate density graph provides a

smooth fit in-sample, where data are available, at the same time as predictions are

provided in the areas where data are not available. As it is shown in Figure 6, the

predicted future mesothelioma mortality peak is 2194 cases in the year 2019, which

is very close to the prediction by Mart́ınez-Miranda et al. (2014) of 2220 deaths

at the same year (see Table 2 in the paper in the case of using the full dataset).
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Table 1: Outstanding liabilities forecasts. Comparison between the kernel structured

density with cross-validated bandwidth (LL–LSCV) and the classical reserving ap-

proach (Pois−ML).

Year LL-LSCV Pois−ML

1 18, 256, 059 15, 414, 076

2 868, 681 893, 305

3 416, 166 432, 549

4 223, 499 236, 865

5 128, 257 133, 692

6 72, 906 76, 662

7 39, 334 37, 491

8 20, 903 22, 054

9 12, 318 11, 934

10 3627 3284

11 1715 1993

12 957 809

13 544 385

14 365 302

15 202 0

Tot. 20, 045, 534 17, 265, 400
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Figure 4: Estimated cohort and age effects in mesothelioma mortality.

This figure plots the shape of the future predicted mortality obtained by using our

density approach (solid line). Notice that our forecast is quite close to the forecast

by Mart́ınez-Miranda et al. (2014) (dashed line).

5 Simulation study

In this section we describe a brief simulation study where we have compared the

structured kernel density forecast with classical approaches. In the simulations the

nonparametric approach clearly outperformed the latter ones. We have simulated

three models assuming the multiplicative structure (1). The density components

for each model are shown in Figure 7. The chosen models were motivated by our

data examples from reserving and mortality prediction. The first two models mimic

reserving problems, where the density f1 corresponds to the underwriting time effect

and f2 is the development time density. The third model represents the underlying

structure in the mesothelioma mortality data, where f1 and f2 are the densities

corresponding to cohort and age effects, respectively. Compare Model 1 with the

shapes in Figure 3 and Model 3 with the shapes in Figure 4. As in the data examples,

we have simulated the data in an aggregated base. For Models 1 and 2 we have

simulated monthly reserving data during 10 years. The data exhibits a triangle

support such as shown in Figure 1. For the mortality model we have simulated data

with a parallelogram support as in Figure 2 and we have used 105 cohorts and 65

ages as was also the case in our data set. We have run the simulations for sample

sizes n = 103, 104 and 105.

For each model and each sample size, we have generated 250 samples. In the

simulations we have compared the structured kernel density approach with Pois-
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Figure 7: Simulated models.

son maximum likelihood, that is the popular chain ladder technique on reserving

data aggregated into a yearly run-off triangle; and the recent age-cohort model by

Mart́ınez-Miranda et al. (2014) for the mortality data. The performance of the

methods has been evaluated by using the following ISE criterion:

ISE(f̂) =

∫

Sf\If

{
f̂(x, y)− f(x, y)

}2

dx dy, (6)

where f̂(x, y) = f̂1(x)f̂2(y) is the estimator of the actual multiplicative density,

f(x, y) = f1(x)f2(y). Notice that we are measuring the quality of the forecasts in

the set Sf\If .

The structured kernel density estimator has been calculated using the Epanech-

nikov kernel for two different bandwidth choices. On the one hand we consider the

optimal bandwidths for each simulated sample in the ISE sense (6). This is an infea-

sible choice that we consider here as a benchmark. Furthermore, we used the least

squares cross-validation criterion defined in (5). In both cases, the minimization has

been done using a grid of 400 vectors of bandwidths h = (h1, h2).

Figures 8-10 show box plots of the empirical distribution of the square root of

the performance measure (6) (square root multiplied by 104), obtained from the

250 simulated samples, for each model and for each sample size. Table 2 shows a

numerical summary of the distribution. The overall conclusion is clear, structured

kernel density forecasting beats the Poisson maximum likelihood approaches (Pois–

ML) in all the scenarios. The improvement is quite remarkable using the ISE-optimal
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Table 2: Summary of the ISE errors for each simulated model and sample size.

Model 1 Model 2 Model 3

n LL−ISE LL-LSCV Pois-ML LL-ISE LL-LSCV Pois-ML LL-ISE LL-LSCV Pois-ML

103 Median 0.074 0.123 0.382 0.221 0.640 0.850 0.793 1.302 3.668

Mean 0.079 0.145 0.391 0.256 1.542 0.872 0.911 1.862 5.003

SD 0.035 0.078 0.054 0.124 8.958 0.439 0.519 2.134 3.742

104 Median 0.030 0.054 0.357 0.126 0.421 0.398 0.446 0.668 1.686

Mean 0.032 0.058 0.359 0.150 0.490 0.430 0.479 1.025 2.040

SD 0.010 0.021 0.015 0.073 0.470 0.093 0.209 1.389 1.302

105 Median 0.013 0.017 0.355 0.100 0.288 0.357 0.232 0.301 0.675

Mean 0.015 0.019 0.355 0.112 0.289 0.361 0.252 0.352 0.806

SD 0.006 0.008 0.005 0.050 0.053 0.015 0.087 0.203 0.550
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Figure 8: Model 1: box plots of the ISE errors at each simulated sample. Com-

parison between the kernel structured density (LL-ISE, LL-LSCV) and the Poisson

maximum likelihood approach (Pois-ML).

bandwidth choice (LL–ISE) but, even using the simple cross-validated estimators

(LL–LSCV), the quality of the forecasts is quite impressive. The differences in the

performance between the ISE-optimal bandwidth choice (LL–ISE) and the cross-

validated estimators (LL–LSCV) suggests that there is need for investigating more

efficient bandwidth selectors that are better suited for the structured estimation

problem. As remarked above the cross-validated bandwidth is designed for the

estimation of the unstructured density and not for our structured model.
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Figure 9: Model 2: box plots of the ISE errors at each simulated sample. Com-

parison between the kernel structured density (LL-ISE, LL-LSCV) and the Poisson

maximum likelihood approach (Pois-ML).

LL−ISE LL−LSCV Pois−ML

2
4

6
8 Model 3

n=1000

LL−ISE LL−LSCV Pois−ML

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Model 3

n=10000

LL−ISE LL−LSCV Pois−ML

0.
2

0.
4

0.
6

0.
8

1.
0

Model 3

n=1e+05

Figure 10: Model 3: box plots of the ISE errors at each simulated sample. Com-

parison between the kernel structured density (LL-ISE, LL-LSCV) and the Poisson

maximum likelihood approach (Pois-ML).
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6 Asymptotic theory

We restrict our theory to the triangular support If = {(x, y) : 0 ≤ x, y ≤ 1, x+ y ≤

1}, and, for simplicity, we consider the time into the interval [0, 1]. Note that more

general supports as the one we find in the mesothelioma mortality data set follow

the same type of derivations.

We observe n i.i.d. observations (Xi, Yi) with density f on If = {(x, y) : 0 ≤

x, y ≤ 1, x+ y ≤ 1}. We assume that f is of the form:

f(x, y) = cff1(x)f2(y),

where f1 and f2 are probability densities on [0, 1]. The constant cf is chosen such

that
∫

If

cff1(x)f2(y)dx dy = 1. (7)

We choose g1(x) =
∫ 1−x

0
f(x, y)w(x, y) dy, g2(y) =

∫ 1−y

0
f(x, y)w(x, y) dx and

some weight function w(x, y) > 0 and we assume that some estimators ĝ1 and ĝ2

are given for the functions g1 and g2. Note that if the weight function w fulfills

w(x, y) ≡ 1 we get that g1 is the marginal density of X and g2 is the marginal

density of Y . There are several options for the estimation of g1 and g2. A first

option is a weighted kernel density estimator

ĝLC1 (x) = ĝLC1,h1
(x) =

1

n

n∑

i=1

Kh1
(Xi, x)w(Xi, Yi),

ĝLC2 (x) = ĝLC2,h2
(y) =

1

n

n∑

i=1

Kh2
(Yi, y)w(Xi, Yi),

where Kh(u, v) is a kernel function that is equal to Kh(u − v) for v in an appro-

priate interior of [0, 1] and equal to a boundary kernel otherwise. Here, Kh(u) =

h−1K(h−1u) is a kernel function with bandwidth h and probability density function

K. One could also choose a local linear version where ĝLL1 (x) = ĝLL1,h1
(x) = θ1,1 and

ĝLL2 (y) = ĝLL2,h2
(y) = θ2,1 with

(
θ1,1

θ1,2

)
= argminθ1,1,θ1,2

{
lim
w→0

∫ [
ĝLC1,w(u)− θ1,1 − θ1,2(u− x)

]2

×Kh1
(u− x) du

}
,

(
θ2,1

θ2,2

)
= argminθ2,1,θ2,2

{
lim
w→0

∫ [
ĝLC2,w(u)− θ2,1 − θ2,2(u− x)

]2

×Kh2
(u− x) du

}
.
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Another option would be that we choose ĝ1(x) =
∫ 1−x

0
f̂(x, y)w(x, y) dy and ĝ2(y) =∫ 1−y

0
f̃(x, y)w(x, y) dx where f̂ and f̃ are estimators of f that may differ or that may

be equal. Because of its relation to marginal integration we call this the marginal

integration estimator. In our data example and in our simulations we used f̂(x, y) =

f̃(x, y) = f̂h;If (x, y) where f̂h;If is the local linear estimator defined in Subsection

2.2. With this estimator we get the following estimator of g1 and g2

ĝMI
1 (x) =

∫ 1−x

0

f̂h;If (x, y)w(x, y) dy, (8)

ĝMI
2 (y) =

∫ 1−y

0

f̂h;If (x, y)w(x, y) dx. (9)

In our first theorem we do not assume that any of these three pilot estimators

is chosen. We only use the main assumption is that the estimators ĝ1 and ĝ2 allow

the following expansions

ĝ1(x)− g1(x)

g1(x)
= OP (εn), (10)

ĝ2(y)− g2(y)

g2(y)
= OP (εn), (11)

uniformly for 0 ≤ x, y ≤ 1, where εn is some sequence converging to 0.

If f allows two derivatives kernel density estimators of g1 and g2 have bias terms

of order h2 and a variance of order (nh)−1 with h = h1 or h = h2, respectively.

This holds in the interior [0, 1]. At the boundary we get a variance of order (nh2)−1

and bias terms of order h or h2, depending on the chosen kernel estimator. At

the boundary the bias and variance terms are balanced by bandwidth choices of

order n−1/6 or n−1/4. This results in a rate of convergence of order n−1/3 or n−1/4,

respectively. The uniform expansion then holds with εn = n−1/3(log n)1/2. Local

linear kernel density estimators with multiplicative bias correction have bias terms

of order h4, under higher order smoothness assumptions. With a bandwidth choice

of order n−1/10 this gives estimators with point wise rate of convergence n−2/5. Here

we get that the expansion holds with εn = n−2/5(log n)1/2.

Let define

F(c, r1, r2)(x, y) =

(
c r1(x)

1
g1(x)

∫ 1−x

0
r2(v)w(x, v)dv − 1

c r2(y)
1

g2(y)

∫ 1−y

0
r1(u)w(u, y)du− 1

)
. (12)

Our estimators ĉf , f̂1 and f̂2 of cf , f1 and f2 are given as solution of the equation

F̂(ĉf , f̂1, f̂2) = 0

under the constraint
∫ 1

0
f̂1(u)du = 1 and

∫ 1

0
f̂2(v)dv = 1. Here F̂ denotes the sample

analogue to F in (12). In Subsection 2.2 we have described an iterative backfitting
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algorithm to solve the equation F̂(ĉf , f̂1, f̂2). There we used the choice ĝ1 = ĝMI
1

and ĝ2 = ĝMI
2 , see (8)–(9). Later, we will make use of the fact that the functional

(12) is approximately equal to

F(c, r1, r2)(x, y) =

(
c r1(x)

1
g1(x)

∫ 1−x

0
r2(v)w(x, v)dv − 1

c r2(y)
1

g2(y)

∫ 1−y

0
r1(u)w(u, y)du− 1

)
.

For (δ0, δ1(·), δ2(·)) ∈ M = {(µ0, µ1, µ2) :
∫ 1

0
f1(u)µ1(u)du = 0 and

∫ 1

0
f2(v)µ2(v)dv =

0} we put

G0(δ0, δ1, δ2)(x, y) = F(cf (1 + δ0), f1(1 + δ1), f2(1 + δ2))(x, y).

The derivative of the functional at δ0 = 0, δ1 = 0, δ2 = 0 in direction (µ0, µ1(·), µ2(·)) ∈

M is equal to

G ′
0(µ0, µ1, µ2)(x, y) =

(
µ0 + µ1(x)

µ0 + µ2(y)

)
+H0(µ0, µ1, µ2)(x, y),

H0(µ0, µ1, µ2)(x, y) =

(
g1(x)

−1
∫ 1−x

0
µ2(v)f(x, v)w(x, v)dv

g2(y)
−1
∫ 1−y

0
µ1(u)f(u, y)w(u, y)du

)
.

We denote the inverse of this functional by G ′
0
−1. We will show below that the

inverse exists under our assumptions. We now define c̃, f̃1(x) and f̃2(y) by




c̃f−cf
cf

f̃1(x)−f1(x)
f1(x)

f̃2(y)−f2(y)
f2(y)


 = G ′

0
−1

(
µ̃1

µ̃2

)
(x, y),

where

µ̃1(x) = −
ĝ1(x)− g1(x)

g1(x)
,

µ̃2(y) = −
ĝ2(y)− g2(y)

g2(y)
.

For the marginal integration estimator we use the following definition for the choices

x = 1 and y = 1: µ̃1(1) = − f̂(1,0)−f(1,0)
f(1,0)

, and µ̃2(1) = − f̂(0,1)−f(0,1)
f(0,1)

.

Our first result shows that c̃f , f̃1(x) and f̃2(y) provide a first order approximation

to ĉf , f̂1(x) and f̂2(y).

Theorem 1 Let us assume that assumptions (7)–(11) apply and that w(x, y) and

f(x, y) are bounded from below and from above for 0 ≤ x, y ≤ 1, x + y ≤ 1. Then
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with probability tending to one, there exists a solution ĉf , f̂1 and f̂2 of the equation

F̂(ĉf , f̂1, f̂2) = 0 with

|ĉf − c̃f | = OP

(
ε2n
)
,

sup
0≤x≤1

|f̂1(x)− f̃1(x)| = OP

(
ε2n
)
,

sup
0≤y≤1

|f̂2(y)− f̃2(y)| = OP

(
ε2n
)
.

Note that the reminder term in the theorem suffices for the above discussed

examples for appropriate choices of bandwidths.

For a further analysis of the asymptotics of f̂1(x) and f̂2(y) we assume that ĝ1(x)

and ĝ2(y) allows the following decomposition

ĝ1(x) = g1(x) + ĝA1 (x) + ĝB1 (x) + oP (ε
∗
n),

ĝ2(y) = g1(x) + ĝA2 (y) + ĝB2 (y) + oP (ε
∗
n)

uniformly for 0 ≤ x, y ≤ 1, x+ y ≤ 1, where ĝB1 and ĝB2 are some deterministic bias

terms, and ĝA1 and ĝA2 are the asymptotic stochastic part of ĝ1 or ĝ2, respectively.

Furthermore, ε∗n is the rate of convergence of f̂1 and f̂2. With arguments as in the

proof of Theorem 1 one can show that

|ĉ− c− c̃B − c̃A| = oP (ε∗n) ,

sup
0≤x≤1

|f̂1(x)− f1(x)− f̃A
1 (x)− f̃B

1 (x)| = oP (ε∗n) ,

sup
0≤y≤1

|f̂2(y)− f2(y)− f̃A
2 (y)− f̃B

2 (y)| = oP (ε∗n) ,

where for j = A,B 


c̃j

c
f̃j
1
(x)

f1(x)
f̃j
2
(y)

f2(y)


 = G ′

0
−1

(
µ̃j
1

µ̃j
2

)
(x, y),

with

µ̃j
1(x) = −

ĝj1(x)

gj1(x)
, µ̃j

2(y) = −
ĝj2(y)

gj2(y)
.

A close inspection of the operator G ′
0
−1, see also the proof of Theorem 1 shows that

(c̃j, f̃ j
1 (x), f̃

j
2 (y))

⊤ is of the same order as (µ̃j
1, µ̃

j
2)

⊤. Thus we get that the estimators

f̂1 and f̂2 have bias terms of the same order as ĝ1 and ĝ2 with explicit formulas given

by the above equations. For the stochastic terms of f̂1 and f̂2 the rate depends on

x or y, respectively. For fixed x or y with 0 ≤ x < 1, 0 ≤ y < 1 one gets for kernel
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smoothers under regularity conditions that µ̃A
1 (x) and µ̃A

2 (y) has one-dimensional

rate (nh)−1/2. Moreover, one can show that for 0 ≤ x < 1, 0 ≤ y < 1 it holds that

G ′
0
−1

(
µ̃A
1

µ̃A
2

)
(x, y)−

(
µ̃A
1

µ̃A
2

)
(x, y) = oP ((nh)

−1/2),

compare also similar results for smooth backfitting in Mammen, Linton and Nielsen

(1999). This allows a direct calculation of the pointwise asymptotic limit of f̂1 and

f̂2 for x or y with 0 ≤ x < 1, 0 ≤ y < 1.

We summarize these findings in the following corollary, where the assumptions

needed for a rigorous argumentation are also specified.

Corollary 2 Suppose that the kernel K has support [−1, 1] abnd that it is symmetric

and Lipschitz continuous. We suppose that
∫ 1

0
Kh(u, x) du = 1 for x ∈ [0, 1], that

|Kh(u, x)| ≤ ch−1 for some c > 0, that Kh(u, x) = 0 for |u − x| > h, and that

Kh(u, x) = h−1K(h−1(u− x)) for c∗h ≤ x ≤ 1− c∗h for some c∗ > 0. Furthermore,

we assume that the densities f1 and f2 are twice continuously differentiable and

bounded away from 0 on [0, 1]. The bandwidths fulfill n1/5hj → cj for some constants

cj > 0. Choose ĝj = ĝrj for j = 1, 2 with r = LC, r = LL or r = MI.

Then for 0 < x, y < 1, n2/5f1(x)
−1(f̂1(x)− f1(x)) and n2/5f2(y)

−1(f̂2(y)− f2(y))

are asymptotically independent and have an asymptotic normal limit with mean β1(x)

or β2(y), respectively, and with variance σ2
1(x) or σ2

2(y), respectively, where

β1(x) =
f̃B
1 (x)

f1(x)
,

β2(y) =
f̃B
2 (y)

f2(y)
,

σ2
1(x) =

∫ 1−x

0
w2(x, v)f(x, v) dv

[∫ 1−x

0
w(x, v)f(x, v) dv

]2 ,

σ2
2(y) =

∫ 1−y

0
w2(u, y)f(u, y) du

[∫ 1−y

0
w(u, y)f(u, y) du

]2 .

Note that σ2
1(x) or σ

2
2(y) are the asymptotic variances of µ̃A

1 and µ̃A
2 , respectively.

Furthermore, because of

[∫ 1−x

0

w(x, v)f(x, v) dv

]2
≤

[∫ 1−x

0

w2(x, v)f(x, v) dv

] [∫ 1−x

0

f(x, v) dv

]
,

we get that σ2
1(x) is minimal for the choice w(x, y) ≡ 1. The same holds for σ2

2(y).

Thus, the weighting w(x, y) ≡ 1 is optimal.
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Let us shortly mention an alternative estimator of f1 and f2. The idea of this

estimator is based on the observation that log f(x, y) = log c+ log f1(x) + log f2(y).

This motivates the estimator

(ĉ, f̂1, f̂2) = argminc,f1,f2

∫

If

[
log f̂(x, y)− log c− log f1(x)− log f2(y)

]2

×w(x, y)dx dy.

This estimator can be calculated by the iterations

log ĉ[l+1,a] + log f̂
[l+1]
1 (x) =

∫ 1−x

0

[
log f̂(x, y)− log f̂

[l]
2 (y)

]
w(x, y)dy

∫ 1−x

0
w(x, y)dy

,

log ĉ[l+1,b] + log f̂
[l+1]
2 (x) =

∫ 1−y

0

[
log f̂(x, y)− log f̂

[l+1]
1 (x)

]
w(x, y)dx

∫ 1−y

0
w(x, y)dx

.

A Proof of Theorem 1

In the proof we will make use of the following theorem.

Theorem 3 (Newton-Kantorovich theorem). Suppose that there exist constants

α, β, k, r and a value ξ0 such that a functional T has a derivative T ′(ξ) for ‖ξ−ξ0‖ ≤

r , T ′ is invertible,

‖T ′(ξ0)
−1T (ξ0)‖ ≤ α,

‖T ′(ξ0)
−1‖ ≤ β,

‖T ′(ξ)− T ′(ξ′)‖ ≤ k‖ξ − ξ′‖,

for all ξ, ξ′ with ‖ξ− ξ0‖ ≤ r, ‖ξ′ − ξ0‖ ≤ r , 2kαβ < 1 and 2α < r. Then T (ξ) = 0

has a unique solution ξ∗ in {ξ : ‖ξ−ξ0‖ ≤ 2α}. Furthermore ξ∗ can be approximated

by Newtons iterative method

ξl+1 = ξl − T ′(ξl)
−1T (ξl).

This algorithm converges with geometric rate

‖ξl+1 − ξ∗‖ ≤ α2−(l−1)q2
l−1

with q = 2αβk < 1.
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For a discussion of this theorem see for example chapter 7 of Deimling (1985). We

will apply this theorem with ξ0 = (ξ00 , ξ
1
0 , ξ

2
0)

⊤ = (
c̃f−cf
cf

, f̃1−f1
f1

, f̃2−f2
f2

)⊤ and T = Ĝξ0

where for ξ = (ξ0, ξ1, ξ2)⊤ with ξ0 ∈ R, and functions ξ1, ξ2 : [0, 1] → R we put

Ĝξ(δ0, δ1, δ2)(x, y) = F̂(cf (1 + ξ0 + δ0), f1(1 + ξ1 + δ1), f2(1 + ξ2 + δ2))(x, y)

for (δ0, δ1, δ2) ∈ M. We will use the Newton-Kantorovich theorem with the follow-

ing norm ‖ξ‖∞ = |ξ0| + sup0≤x≤1 |ξ
1(x)| + sup0≤y≤1 |ξ

2(y)|. The derivative of the

functional Ĝξ at δ0 = 0, δ1 = 0, δ2 = 0 in direction (µ0, µ1(·), µ2(·)) ∈ M is equal to

Ĝ ′
ξ(µ0, µ1, µ2)(x, y) =

(
g1(x)ĝ1(x)

−1(µ0 + µ1(x))

g2(y)ĝ2(y)
−1(µ0 + µ2(y))

)
+ Ĥξ(µ0, µ1, µ2)(x, y),

Ĥξ(µ0, µ1, µ2)(x, y) = Ĥ0(µ0, µ1, µ2)(x, y)

+

(
ĝ1(x)

−1
∫ 1−x

0
d(x, v)f(x, v)w(x, v)dv

ĝ2(y)
−1
∫ 1−y

0
d(u, y)f(u, y)w(u, y)du

)
,

Ĥ0(µ0, µ1, µ2)(x, y) =

(
ĝ1(x)

−1
∫ 1−x

0
µ2(v)f(x, v)w(x, v)dv

ĝ2(y)
−1
∫ 1−y

0
µ1(u)f(u, y)w(u, y)du

)
,

d(x, y) = µ0[ξ
1(x) + ξ2(y) + ξ1(x)ξ2(y)]

+µ1(x)[ξ
0 + ξ2(y) + ξ0ξ2(y)]

+µ2(y)[ξ
0 + ξ1(x) + ξ0ξ1(x)].

Furthermore, the operators Gξ, G
′
ξ and H0 are defined as Ĝξ, Ĝ

′
ξ and Ĥ0 but with ĝ1

and ĝ2 replaced by g1 and g2.

For an application of the Newton-Kantorovich theorem, we first argue that Ĝ ′
ξ

has a (uniformly in n) bounded inverse, with probability tending to one, for ‖ξ‖∞

small enough. Note that Ĝ0 converges to G0 and Ĝ ′
0 converges to G ′

0 in operator

norm, because of (10)–(11). At this stage we use the operator norm with respect to

the norm ‖(µ0, µ1, µ2)‖
2
w = µ2

0+ ‖µ1‖
2
w + ‖µ2‖

2
w where ‖ · ‖w is the norm of the space

L2(P
w) for the probability measure Pw on {(x, y) : 0 ≤ x, y ≤ 1, x + y ≤ 1} with

density ρw(x, y)f(x, y). Here, ρ is a norming constant.

We first argue that G ′
0 has a bounded inverse. For this purpose we proceed sim-

ilarly as in the proof of Lemma 1 in Mammen, Linton and Nielsen (1999). Suppose

that G ′
0(µ0, µ1, µ2)

⊤ = 0. We will argue that this implies that (µ0, µ1, µ2)
⊤ = 0. We

have that Π1µ
+(x) = EPw

[µ+(X, Y )|X = x] = 0 and Π2µ
+(y) = EPw

[µ+(X, Y )|Y =

y] = 0 where µ+(x, y) = µ0 + µ1(x) + µ2(y). We now consider Π1, restricted to the

set Ry = {r : r(x, y) ≡ r∗∗(y) for some function r∗∗ : [0, 1] → R,
∫ 1

0
r∗∗(y)f2(y) dy =

0,
∫ 1

0
r∗∗(y)2g2(y) dy < ∞}. We will show below that for the kernel π1(x, y) =

g−1
1 (x)g−1

2 (y)f(x, y)w(x, y) of Π1

∣∣
Ry

it holds that
∫

π2
1(x, y)g1(x)g2(y) dx dy < ∞. (13)
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This implies that for some constant CH > 0

‖Π1(r)‖w ≤ CH‖r
∗∗‖w (14)

for r ∈ Ry with r(x, y) = r∗∗(y) and that Π1

∣∣
Ry

is a compact operator. Furthermore,

arguing as in Appendix A.4 of Bickel, Klaassen, Ritov and Wellner (1993), see also

the proof of Lemma 1 in Mammen, Linton and Nielsen (1999), one gets that for

some constant c > 0

‖m1 +m2‖w ≥ cmax{‖m1‖w, ‖m2‖w}

for m1 ∈ Rx = {r : r(x, y) ≡ r∗(x) for some function r∗ : [0, 1] → R,
∫ 1

0
r∗(x)

f1(x) dx = 0,
∫ 1

0
r∗(x)2g1(x) dx < ∞} and m2 ∈ Ry. Applied to m1 = µ1 and

m2 = Π1µ2 this gives µ1 = 0 and Π1µ2 = 0, and thus µ0 = 0. By a symmetric

argument we get that µ2 = 0. Thus G ′
0 is invertible. We also get that (14) holds

with CH < 1, see Theorem 2 (B) in Appendix A.4 of Bickel, Klaassen, Ritov and

Wellner (1993). Thus all eigenvalues of the operator H0 are absolutely bounded by

CH < 1. We get that the operator norm of G−1
0 = (I + H0)

−1 with respect to the

norm ‖ · ‖w is bounded by (1− CH)
−1.

We now argue that the operator norm of G−1
0 = (I + H0)

−1 is bounded with

respect to the norm ‖ · ‖∞. We already know that G0 is bijective because the

operator norm G−1
0 = (I +H0)

−1 with respect to ‖ · ‖w is bounded. Thus, according

to the bounded inverse theorem it suffices to show that G0 is bounded with respect

to the norm ‖ · ‖∞. This can be seen by a simple calculation.

From the last fact we get that we have for our choice of ξ0 that ‖ξ0‖∞ = OP (εn).

Using similar arguments as above and some approximation arguments one can show

that the operator norm of Ĝ−1
ξ0

with respect to the norm ‖ · ‖∞ is bounded by a

fixed constant, with probability tending to one. Thus we have verified the second

condition of the Newton-Kantorovich theorem. Also by approximation arguments

one can verify Lipschitz continuity of Ĝ ′
ξ0

(with probability tending to one), as it is

required in the third assumption of the Newton-Kantorovich theorem.

We will show that

‖Ĝξ0(
c̃− c

c
,
f̃1 − f1

f1
,
f̃2 − f2

f2
)‖∞ = OP (ε

2
n). (15)

This implies the first assumption of the Newton-Kantorovich theorem. Thus we can

apply the Newton-Kantorovich theorem. The statement of our theorem then follows

from this theorem.
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It remains to show (13) and (15). For the proof of (13) note that for some

constant C > 0 it holds that

∫
π2
1(x, y)g1(x)g2(y) dx dy ≤ C

∫ 1

0

∫ 1−y

0

(1− x)−1(1− y)−1 dx dy

= −C

∫ 1

0

ln(y)(1− y)−1 dy = −C Li2(1− y)

∣∣∣∣
1

0

= C Li2(1) < ∞,

where Li2 is the dilogarithm.

We now come to the proof of (15). We will show that

‖Ĝ0(
c̃− c

c
,
f̃1 − f1

f1
,
f̃2 − f2

f2
)‖∞ = OP (ε

2
n).

The proof of (15) follows by a slight extension of the arguments. Note that

Ĝ0(
c̃− c

c
,
f̃1 − f1

f1
,
f̃2 − f2

f2
) = F̂(c̃, f̃1, f̃2)

= (F̂ − F)(c̃, f̃1, f̃2) + [F(c̃, f̃1, f̃2)−F(c, f1, f2)].

By using Taylor expansions and crude bounds one can show that, up to terms of

order OP (ε
2
n), the first term is equal to −(µ̃1, µ̃2)

⊤ and the second term is equal to

(µ̃1, µ̃2)
⊤. This gives the desired result.
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