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Abstract

The conjunction fallacy refers to situations when a person judges a con-
junction to be more likely than one of the individual conjuncts, which is a
violation of a key property of classical probability theory. Recently, quan-
tum probability theory has been proposed as a coherent account of these
and many other findings on probability judgment “errors” that violate clas-
sical probability rules, including the conjunction fallacy. Tentori, Crupi, and
Russo (2013) present an alternative account of the conjunction fallacy based
on the concept of inductive confirmation. They present new empirical find-
ings consistent with their account, and they also claim that these results
are inconsistent with the quantum probability theory account. This com-
ment proves that our quantum probability model for the conjunction fallacy
is completely consistent with the main empirical results from Tentori et al.
(2013). Furthermore, we discuss experimental tests that can distinguish the
two alternative accounts.

This comment concerns a recent debate over formal explanations for the conjunction fallacy
(Tversky & Kahneman, 1983). This fallacy occurs when a person judges the likelihood of
the conjunctive event (A and B) to be greater than the likelihood of one of the events, say
A, alone. The most well-known example is about a hypothetical person, Linda (L), who is
described in a way that she looks very much like a feminist (/) and not at all like a bank
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teller (B). Participants are asked to rank order the relative likelihood of various statements
about Linda, including the statement that “Linda is a bank teller” (B) and that “Linda is
a feminist and a bank teller” (F' and B). Participants typically order the (F and B) event
as more likely than the B event. There is an impressive amount of research replicating
and extending this finding, which establishes its robustness (for a review, see Tentori et
al. 2013, hereafter referred to as TCR). Of course, the conjunction fallacy does not occur
all the time, and establishing when it does occur is a critical question. This question was
recently addressed by TCR, who put forth an argument that inductive confirmation (IC)
rather than perceived probability (PP), described below, is a key determinant. TCR provide
strong empirical support for this conclusion; and moreover, they use this conclusion to rule
out many previous formal explanations that rely on probabilistic dependence as the key
factor. However, they go further and argue strongly that the quantum probability (QP)
model (Busemeyer et al., 2011) is inconsistent with their empirical findings (see p. 239 and
p. 247 in TCR). Based on the TCR results, they repeated this point even more strongly
in a subsequent publication (Tentori & Crupi, 2013). The purposes of this comment are
twofold: (a) to clearly prove that our QP model is consistent with the empirical results of
TCR, and (b) to describe experimental tests that can distinguish inductive confirmation
and QP theory by examining their a priori predictions.

Simple quantum model of the basic findings
Perceived probability vs. inductive confirmation

Consider the Linda problem again with B representing Bank Teller, F' representing
feminism, and L representing the Linda story. The notation J(B|L) denotes the judged
probability that Linda is a Bank Teller after being told the Linda story; J(F|L) denotes
the judged probability that Linda is a Feminsit after being told the Linda story; and
J(FandB|L) denotes the judged probability that Linda is a Feminist and a Bank Teller after
being told the Linda story. The PP for a hypothesis F' is measured by first telling participants
the Linda story and also telling them that she is a Bank Teller, and then asking participants
to judge the probability that Linda is a Feminist, which is denoted as J(F'|L and B). The
IC for hypothesis F' is measured by first telling participants the Linda story and also telling
them that she is a Bank Teller, and then asking participants to judge the degree to which
the Feminism hypothesis is confirmed (positive) or disconfirmed (negative) by the Linda
story, which is denoted as ¢(F, L|B). TCR assume that the sign of ¢(F, L|B) is determined
by the sign of the difference J(F|L and B)—J(F|B).! The conjunction fallacy occurs when
J(F and B|L) exceeds J(B|L). According to the perceived probability account, this fallacy
occurs because the PP of the Feminism hypothesis F' is high; according to the inductive
confirmation account, this occurs because the IC of F is positive.

Both the PP and the IC accounts can explain the conjunction fallacy that occurs with
the Linda problem because PP is high in this case, and IC is also positive (see Busemeyer
et al., 2011 and TCR). TCR designed experiments using new stories and hypotheses that
distinguished these two accounts as follows. Define e as the evidence provided by some story,

! Assuming standard probability rules, p(Hz|e A Hy1) > p(Hz|H1) %W > p(Hz|H:), and
dividing both sides by p(Hz|H1), we obtain p(e|H2AH1) > p(e|H1). Thus, c¢(Hs,e|Hy) > 0iff p(e|HoAH1) >

ple[H).
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and define H; as a hypothesis about the story. The basic design of TCR (see p. 241) is to
compare the rate of conjunction fallacy when a hypothesis H; is combined with one of two
other hypotheses: Hy and Hj, where Hs has a higher IC while Hs has a higher PP. The IC
account is empirically supported over the PP account if the following pattern occurs (see p.
241 and p.247, TCR) : J(Hs|e and Hy) > J(Hszle and Hy), but c¢(Ha,e|H1) > ¢(Hs,e|Hy),
and (Hs and Hy) is chosen more frequently than (Hs and Hy) as most likely to be true.

The Linda problem is an example of what is called the M-A paradigm, which pro-
vides explicit evidence e in the form of a story before making the judgments. Another
paradigm is called the A-B paradigm, which does not provide any explicit evidence. For
example, participants can be asked to judge the probability of randomly sampling a person
from a health survey who is over 50 years old (hypothesis Hj) and who has had a heart
attack (hypothesis Hj), and this is compared to the probability of randomly sampling a
person from a health survey who has had a heart attack. The conjunction fallacy occurs
when J(Hy and Hy) > J(H3). According to PP, this fallacy occurs when J(Hsz|H;) is high;
according to IC, this fallacy occurs when J(Hz|H;) exceeds J(Ha2).

TCR started their article with a compelling thought experiment, called the “black
shoes” example, which used e = Linda story, H; =bank teller, Hy = feminist, and Hs =black
shoes. Experiments 1 and 2 used the M-A paradigm (evidence was provided). Specifically,
Experiment 1 used e = a Russian women, H; = a New York inhabitant, Hy = an interpreter,
and Hs = not an interpreter; Experiment 2 used e = a degree in Violin, H; = a mountain
climber, Hs = a music lesson teacher, and H3 = owns an umbrella. Experiments 3 and 4
used the A-B paradigm with e = no evidence (presumably sampling a person in Europe; the
participants were Italian students in the TCR experiments), H; = an American (presumably
from the U.S.), Hy = overweight, and H3 = owns an umbrella. These examples also vary
the size of the PP, and so they provide a broad range of tests. The first part of this comment
applies the QP model to these four prototypic examples from TCR. Although the QP model
generates predictions for all of the probabilities shown in Table 1, the data reported by
TCR only include three statistics: (1) the average rating of PP for each hypothesis, (2) the
average rating of IC for each hypothesis, and (3) the relative frequency that a conjunction
error occurred.

Black shoes and other examples

A compelling reason to argue against PP and in favor of IC is made by the following
thought experiment (p. 236, TCR). Suppose B represents the feature “Bank teller,” F
represents the feature “Feminist,” S represents the feature “owning black Shoes,” and L
represents the evidence provided by the Linda story. TCR argue that the expected result
for this case is that J(Band S|L) < J(B and F|L). This pattern is contrary to PP because
it is expected that J(S|B,L) > J(F|B,L); it is consistent with IC because it is expected
that ¢(F,L|B) > ¢(S,L|B). The latter is based on the intuition that, because almost all
women own black shoes, the Linda story does not produce any increase in the likelihood of
owning black shoes, so the right hand side is zero.

Now consider a simple QP model for this case (for a general introduction to QP theory,
see Busemeyer et al. 2011 and Busemeyer & Bruza 2012). The reader will notice that we
have to make more assumptions than the IC hypothesis to account for findings presented in
TCR. There are two good reasons for this. First, QP theory generates quantitative values for
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all of the relevant probabilities, whereas the IC account only makes qualitative predictions
for the co-occurrence of conjunction fallacies with positive IC. Second, the paradigm used by
TCR was designed to directly test the IC hypothesis, which is not ideal for deriving a priori
tests of QP theory. In the Concluding Comments section, we briefly present paradigms
that do provide a priori tests of QP theory, but the main goal of this comment is to show
that, contrary to the claims of TCR, QP theory is consistent with their findings. It is also
important to note that the basic set up and assumptions used in the first example are re-used
in all of the four examples that we consider in this comment. That is, the same principles are
applied uniformly across all four examples. Furthermore, these same principles are used to
account for many other phenomena, not covered by the IC hypothesis, such as conjunction
fallacies with more than two events, disjunction fallacies, unpacking effects, and order effects
on inference (Busemeyer et al., 2011).

In general, a person’s state of beliefs about the presence or absence of various feature
combinations is represented by a (unit length) vector in an N —dimensional space. For sim-
plicity, we limit the following applications to a 4—dimensional space. Initially, we describe
this space using what we call the occupation basis (since it involves information about the
banker teller occupation), which is defined by four axes, or more technically, four basis vec-
tors, that span the space.? These four basis vectors are symbolized by [SB ,SB,SB ,@,
where S B stands for the presence of feature combination S and B, and SB stands for the
presence of feature combination S and B, etc. Given the Linda story, the person has beliefs
about the presence of each of these four feature combinations. Technically, the strengths of
these beliefs arequantified by the coordinates (also called amplitudes) assigned to the four ba-
sis vectors. For example, we use the coordinate vector oy, = [0.239,0.9562,0.1195, 0.1195]T
to represent the beliefs from the Linda story when described in terms of the occupation basis
(the numerical precision comes from normalizing the length of four integers). Note that the
largest amplitude (.9562) is assigned to SB (consistent with the Linda story). This is just
one example of many possible coordinates that account for the results, and many variations
around this prototype also work.

An important property of the occupation basis is that beliefs about black shoes and
bank tellers are represented by coordinates using the same basis vectors. By doing this,
we have made an important assumption, which is called the compatibility assumption in
QP theory. We are assuming that when evaluating shoe features and the occupation of
bank tellers, the order of evaluation does not matter, so that people can form beliefs about
conjunctions of these two features. We argue that this makes sense for these two features
because it is common knowledge that women have black shoes, so people have considerable
experience with shoes and occupations and their joint characteristics are well known, and
one feature does not affect the meaning of the other.

What about feminism? In this case, we assume that a person does not use a compatible
representation based on all 8 conjunctions formed by combining the binary values all three
features (e.g., S and B and F'). This is plausible for several reasons. Maybe people lack
sufficient experience with combinations of feminist attitudes simultaneously with the other
two features to form a complete joint space of all three features. Indeed, it has been shown
that increased experience with conjunctions reduces the rate of conjunction fallacies (Nilsson

2Technically, we should call this the tensor product shoes @ bank teller basis, but this name is too long,
and so we will just refer to the shorter name.
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et al., 2013). Alternatively, it may require too much mental capacity or effort to form the 8
dimensional space required to represent the conjunctions of all three features. Instead, we
assume that a person evaluates some of the concepts serially, one at a time, using a lower
dimensional representation. This does not mean that people cannot form judgments about
pairs of concepts such as feminism and occupations; instead, this means that the judgment
about these pairs of concepts needs to be performed serially in an order- dependent manner.
In fact, order effects are observed with the conjuction fallacy (Stolarz-Fantino et al., 2003).
This key assumption that people fail to form joint representations of all events is consistent
with previous explanations for the conjunction fallacy (Agnoli & Krantz, 1989; Nilsson,
2008; Wolfe & Reyna, 2009; Yamagishi, 2003).

To answer questions about feminism, QP theory assumes that a person relies on a
different basis from what is used for occupations— that is, a different set of features which
are related to feminism and other ideologies. In the QP model, another basis describing new
features can be formed by rotating the occupation basis. So, when answering questions about
feminism, we assume that the person ‘rotates” from the occupation basis to an ideological
basis that contains feminism. We interpret the four rotated basis vectors as [F, A, B, C],
where F' is a feminist type women and A, B,C are three other types of ideologies (other
than feminism). According to QP theory, we are assuming that the occupation basis, used
to describe bank tellers, is different from, technically incompatible with, the ideological basis
used to describe feminism.? Because no joint representation of occupations and ideologies
is manageable, questions concerning them have to be answered serially (rotating from one
to the other) and the order of questioning matters.

This leaves us with the important issue of how to rotate from the occupation basis
to the ideology basis. This is the key (and technically difficult) part of quantum theory
(see Busemeyer & Bruza 2012 for details). Here we will use perhaps the simplest rotation.
Consider the following 2 x 2 rotation matrix for rotating (counterclockwise) two orthogonal
axes by an angle #; within a 2—dimensional space

| cos(m-6;) sin(m-6;)
U(6:) = —sin (m-0;) cos(m-0;)
Alternatively, the angle 6; is used to rotate (clockwise) the coordinates that describe the
belief state. The angle (measured in radians) —.5 < §; < .5 determines how much to rotate
the bases (negative angles rotate the opposite direction as positive angles). Setting 6; = 0
produces no rotation (leaving the coordinates the same), increasing 6; increases the degree
of change in coordinates until ; = .5 completely reverses the coordinates (e.g., if the first
dimension were certain to be true in one basis, then it becomes certain to be false in the
other basis). Setting 6; = .25 has the following effect: If you were certain about the first
dimension in the first basis, then you would assign equal likelihood to either dimension in
the rotated basis.

This rotation matrix can be extended to a 4-dimensional space by combining two such

3The words “compatible” and “incompatible” are technical terms in QP theory, and they should not be
confused with their natural language usage. Incompatible does not mean mutually exclusive or orthogonal
(on the contrary, mutually exclusive events are always compatible in this technical sense). Instead, being
incompatible means the events are non commutative, and cannot be defined simultaneously using the same
basis.
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rotations to form a 4 dimensional rotation matrix denoted as U (61,6,).* Consider rotating
the four coordinates of the occupation basis to the four coordinates for the ideology basis.
First, 64 is used to rotate each two dimensional subspace for the presence or absence of bank
teller — it is used to rotate the pair of coordinates (SB,SB) when black shoes are present,
and it is also used to rotate the pair of coordinates (SB,SB) when black shoes are absent.
Second, 65 is used to rotate each two dimensional subspace for presence or absence of black
shoes — it is used to rotate the pair of coordinates (SB, SB) when bank teller is present, and
it is also used to rotate the pair of coordinates (SB,SB) when bank teller is absent. For
this first example, we simply use 1 = .30 and 02 = 0, which only rotates the coordinates for
presence or absence of bank teller, because the other rotation for black shoes is not needed
for this particular example.

Recall that the coordinates for the occupation basis were previously defined as af =
[0.239,0.9562,0.1195,0.1195]".  Using the rotation matrix, U (61, 62), we can obtain the
coordinates for the ideology basis from the coordinates in the occupation basis: The state
vector, produced by the same story, but now expressed in the ideology basis, is given by
the matrix product 8 = U (.30,0) - af = [0.9141,0.3686,0.1669,—0.0264}T. Note that
using this rotated basis, the largest amplitude (.9141) is now assigned to the first coordinate
representing the feminism (F) type (consistent with the Linda story).’ Furthermore, we
can rotate from the ideology basis back to the occupation basis by the inverse rotation
ar, = U1 . 8. Thus we can start with either basis and rotate to the other. The power
of quantum reasoning is that it allows a person to evaluate the same state from different
perspectives (technically, different bases, using different coordinate systems).

According to the QP model, the probability of answering “yes” to a question is de-
termined by matching the person’s beliefs to the features corresponding to the question.
Technically, this match is performed by projecting the state vector onto a subspace repre-
senting the answer to a question, and then taking its squared magnitude. This projection is
very easy to do when working with the appropriate coordinates. For example, when using
the occupation basis, we define a projector for the answer “yes” to the “shoes” question as
Mg = diag[1, 1,0, 0] which simply picks out the first two coordinates of «,, that is, the pro-
jection is Mg-ay, = [0.239,0.9562, 0, O]T. Also when using the occupation basis, we define the
projector for the answer “yes” to the bank teller question as Mp = diag|1,0, 1, 0], which sim-
ply picks out the first and third coordinates of a;,. When using the ideology basis, we define
the projector for the answer “yes” to the feminism question as Mg = [1,0, 0, 0], which simply
picks out the first coordinate of 3y, that is, the projection is My - B, = [0.9141,0,0,0]7.

Finally, the squared length of the final projection equals the probability of an answer
or series of answers. The probability of the “yes” to the bank teller question equals p(B|L) =
|Mp - ar|® = 0.2392 + 0.1195% = .0714. The probability of “yes” to the feminist question
equals p(F|L) = |Mp - Br]|* = 91412 = .8356. The probability of “yes” to the black shoes
question and “yes” to the bank teller question is determined by first projecting on black
shoes, and then projecting on bank teller, which equals p(S, B|L) = p(S|L) - p(B|S,L) =
|Mp - Mg - ap|* = .239% = .0571. The probability of “yes” to the feminist question and then
“yes” to the bank teller question is obtained by first projecting on feminism, then rotating

“Technically, this is done by using a Kronecker product U = U(02,60:1) = U (62) ® U (61)
5 Amplitudes do not have to be positive numbers because the probabilities are eventually obtained by
their squared magnitude, as described next.
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Table 1: Probabilities Computed from Quantum Probability Model for Four Examples
Black Shoes Violin (Exp 2)  American (Exp 4) Russian (Exp 1)

p(S|L) = .97 p(U|C) = 1.0 p(U) = 1.0 p(I|N) = .95
p(S|B,L)=.80 p(U|C,V)=.80 p(U|A) = .94 p(I|N, R) = .55
p(F|L) = .84 p(L|C) = .06 p(0) = .16 p(I|N) = .05
p(F|B,L)=.28 p(L|C,V)=.09 p(O]A) = .85 p(I|N,R) = .45
p(B|L) = .07 p(ClV) = .05 p(A) = .011 p(N|R) = .05

p(S,B|L) = .06 p(L,C|V)=.06 pU,A)=.010 p(N,I|R)=.20
p(F,B|L)=.29 pU,CIV)=.04 p(0O,A)=.15 p(N,I|R) = .06

Column 1: S (black shoes), B (bank teller), F (feminism), L (Linda). Column 2: U (um-
brella), C (mountain climber), L (music lessons), V (violin). Column 3: U (umbrella), A
(American), O (overweight). Column 4: N (New York), I (interpreter), R (Russian)

to the occupation basis, and finally projecting on bank teller, which equals p(F,B|L) =
p(F|L)p(B|F,L) = HMB -UT - Mp - BLHQ = .2887. Note that the latter result reproduces
the conjunction fallacy, because p(F, B|L) = .2887 > .0714 = p(B|L). This probability
depends on feminism being evaluated first, and the order of the two judgments matters.
We generally assume that the more likely event, in this case feminism, is evaluated before
the less likely event, in this case, bank teller (see Busemeyer et al. 2011). However, if
the person is first informed that Linda is in fact a Bank teller, then the participant can

also compute the probability of feminist, conditioned on “yes” to bank teller, as follows

p(F|B,L) = HMFII{(%EQLW = '0_(1)27 = .2764. (See Busemeyer & Bruza 2012 for a complete
review of the quantum axioms).

We summarize the calculations from the QP model for the black shoes example in Ta-
ble 1, Column 1. Table 1 also shows the probabilities computed for the other three examples
used in the four experiments reported in TCR. The other three examples are treated using
exactly the same rules as described above (e.g., 4 — d space, the same type of rotation, the
same types of projections, but different bases representing different types of features, and
different state vectors representing different background stories). These details are presented
in the appendix. (The MATLAB computer programs used to compute all probabilities are
available upon request). All of the probabilities in Table 1 are in ordinal agreement with
all of the reported results in TCR. Unfortunately, it is not possible to determine how well
the probabilities in Table 1 fit quantitatively because these probability judgments were not
empirically observed by TCR. The parameters that we chose are therefore somewhat arbi-
trary, and they are only used to show that QP theory is not dispoven by the TCR results.
If quantitative empirical results for Table 1 become available, then we can more rigorously
test the fit of the quantum model.

Summary

In sum, the QP probabilities presented in Table 1 are consistent with all of the main
findings reported by TCR. These probabilities provide counter examples to the claim that the
QP model is inconsistent and falsified by the TCR findings. The reason why the arguments
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presented in Tentori and Crupi Tentori & Crupi (2013) cannot be used to disconfirm our
QP model is that their analysis was restricted to a 2—dimensional space. In fact, we clearly
stated (Busemeyer et al., 2011) that a realistic model requires a high dimensional space
(much greater than 2) to accommodate all the types of questions that we can ask a person.
(A 2—dimensional space is only used as a toy example for illustration of the basic ideas.)
The four examples presented above use a 4 — d space, which is sufficient for accounting for
the main empirical findings reported by TCR, but not necessarily realistic either.® High
dimensional spaces are commonly used in cognitive models of probability judgment (c.f.,
Dougherty et al. 1999).

Why does the QP model work well for explaining the findings from this conjunction
fallacy paradigm? The essential reason in all four examples is that (a) the extremely common
feature (e.g., owning black shoes) is compatible with one of the hypotheses (e.g., bank teller);
(b) the extremely common feature generates such a high probability that additional evidence
does not add anything; and (c) one of the hypotheses (e.g., bank teller) is incompatible with
another hypothesis (e.g., feminism). On the one hand, the compatibility with the extremely
common feature prevents the conjunction fallacy from occurring when the extremely common
feature is involved; on the other hand, the incompatibility between the other two hypotheses
produces a conjunction error. This is the way that the QP model reproduces the observed
pattern of results reported in TCR.

Empirically distinguishing the quantum vs. confirmation accounts

Both the quantum and confirmation accounts of the conjunction fallacy depend on
the presence of a critical antecedent condition. Our QP model requires the two events to
be incompatible, and we need to first empirically determine compatibility or incompatibility
(e.g., by testing for order effects of the two events). The IC account requires the confirma-
tion to be positive, and TCR need to first empirically determine positivity or negativity (by
obtaining confirmation strength judgments). Additionally, both the quantum and confirma-
tion accounts of the conjunction fallacy are asymmetric with respect to the two hypotheses
Hy, Hs. According to the QP model, if the events are incompatible, then the projections are
non-commutative, p(Hi|e)p(Ha|Hi,e) # p(Hz|e)p(Hi|Hs,e), and we assume that the more
likely marginal event is evaluated first. According to the IC account, the measurement of
confirmation ¢(Hs, e|H1) is not necessarily the same as ¢(Hjp,e|Hz), and TCR argue that it
seems more relevant to evaluate the confirmation for the added conjunct Hy when compar-
ing Hy and Hs with H; alone. However, this asymmetry works quite differently for the two
models, which leads to two interesting empirical tests to distinguish the two models.

First, consider the Linda problem once again, but suppose that we manipulate the
order of questions. For both orders, the participant is first told the Linda story. For Order 1,
the participant is first asked to judge the probability of (F' and B) in isolation (not knowing
whether any other question comes next). Afterwards, the participant is asked to judge the
probability of B. For Order 2, the participant is asked to judge the probability of B first,
and then the probability of (F and B).

SA more realistic model would have to allow, e.g., for many different types of occupations other than
bank teller. Also a more realistic model could allow shoes to be compatible with the ideology basis too,
which can be done, but would require more than 4 dimensions. We chose not to use a higher dimensional
model because higher dimensions were not needed to reproduce the TCR results.
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According to the QP model, the conjunction fallacy is predicted to occur more fre-
quently for Order 1 than for Order 2 (see Busemeyer et al. 2011). Using Order 1, we
assume the person computes p(F|L)p(B|F, L) for the first question, and then p(B|L) for
the second, and in this order, p(F|L)p(B|F,L) > p(B|L) . Using Order 2, the person first
computes p(B|L), and having this answer in hand, the person is now encouraged to compute
the second question using p(B|L)p(F|B, L), and in this order, the QP model must predict
p(B|L)p(F|B,L) < p(B, L) (because p(F|B, L) < 1).

According to the IC account, the conjunction fallacy is clearly predicted to occur
for Order 2 but not necessarily for Order 1 for the following reason. Using Order 2, the
person is asked to judge the likelihood of Bank Teller given the Linda story, and having the
background hypothesis B in hand, the second question introduces an added hypothesis F,
and so now the person considers confirmation of F' conditioned on the background of B,
producing ¢(F, L|B), which is positive and so the conjunction fallacy is predicted to occur.
Using Order 1, the person is asked to judge (F and B) in isolation (not knowing whether
any other question comes next), and according to Tentori (personal communication, 2014)
the person uses ¢(F and B, L) to evaluate J(F and B|L) and the sign of ¢(F and B, L) can
be positive or negative.

Interestingly, this experiment actually has been conducted (see Stolarz-Fantino et al.,
2003, Experiment 2), and the results are that the conjunction fallacy occurs with Order
1 and not with Order 2, which agrees with the prediction of the QP model. Gavanski &
Roskos-Ewoldsen (1991) also examined two different orders and found a similar pattern of
results. There may be many reasons for order effects, but they do modify the occurrence
of the conjunction errors, and so a theory that accounts for this moderating effect is clearly
preferredover another that does not.

A second test of the quantum vs. the confirmation account can be achieved by di-
rectly manipulating compatibility. The IC account of the conjunction fallacy only depends
on a positive confirmation ¢(Hsa, e|H1) > 0. According to QP theory, the conjunction fallacy
depends on an incompatible representation of events, which may be changed into a com-
patible representation by presenting the events in two-way tables or nested sets (Busemeyer
et al., 2011). Joint representations of events would encourage use of a single compatible
basis involving all combinations. Assuming that judged confirmation does not change with
manipulations of compatibility, then this manipulation can be used to discriminate between
the two accounts.

In fact, experiments manipulating representation to encourage usage of joint represen-
tations have been highly effective at eliminating conjunction errors ( Agnoli & Krantz, 1989;
Nilsson, 2008; Wolfe & Reyna, 2009; Yamagishi, 2003, Nilsson et al., 2013). These results
suggest that failure to form a joint representation (which corresponds to incompatibility in
QP theory) is the primary source of the conjunction fallacy (Sloman et al., 2003; Reyna &
Brainerd, 2008).

Concluding comments

The application of QP theory to human judgment and decisions is new, and new
ideas are rightfully questioned and demand more evidence than usual. What strong a prior:
predictions does the QP model make regarding probability judgments? We have already
described many in detail (see Busemeyer et al., 2011), but it is useful to summarize a few of
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the predictions here. One can argue that our account of the conjunction fallacy is somewhat
post hoc, because we do not make an a priori prediction that feminism and bank teller
are incompatible events. However, once we make this assumption, we must predict order
effects, and these effects have in fact been obtained (Stolarz-Fantino et al., 2003, Gavanski
& Roskos-Ewoldsen, 1991). Furthermore, once we make this assumption, then a number of
other predictions must a priori follow (for any dimension N, choice of rotation, and state
vector). First of all, our QP model predicts disjunction errors, p(B|L) < p(F or B|L) <
p(F|L), for the same events. This is because the disjunctive probability equals one minus
the probability of the conjunction (E and F), and the latter is predicted to produce a
conjunction error because of incompatibility. Indeed, it has been found that disjunction
errors are also obtained using the same events that produce conjunction errors (Morier &
Borgida, 1984; Fisk, 2002; Yates & Carlson, 1986). Furthermore, another directly testable
prediction of the QP model concerns conditional probabilities: The QP model must predict
that p(B|F,L) > p(B|L), because the QP model for the conjunction fallacy implies that
p(B|L) < p(F|L) -p(B|F,L) < p(B|F,L). This prediction also has been supported by past
research (Fisk & Pidgeon 1998). The QP model allows both conjuncts to be judged higher
than the conjunction, or the conjunction can be judged higher than one of the conjuncts,
but it does not allow the conjunction to be judged higher than both conjuncts. Empirically,
conjunction errors occur most frequently when the conjunction is judged in between the two
conjuncts (Gavanski & Roskos-Ewoldsen, 1991).

The strongest prediction made to date by our QP model concerns order effects for
binary (e.g., yes, no) judgments about pairs of events. According to the QP model, if two
events are incompatible, we must predict order effects when deciding about the pair of events,
e.g., p(Ay and then Bn) # p(Bn and then Ay), where for example p(Ay and then Bn) is the
probability of saying “yes” to question A and then “no” to question B and p(Bnandthen Ay)
is the probability of saying “no” to question B and then “yes” to question A. But much
more important than that, the QP model must predict a very special pattern of or-
der effects! According to the QP model (just as a reminder—for any dimension N, ro-
tation, and initial state), the pattern of order effects must satisfy an exact, empiri-
cally observable constraint that we call the QQ equality (see Wang & Busemeyer, 2013):
p(Ay and then Bn)+p(An and then By) =p(Bn and then Ay)+p(By and then An). This is
an a priori, precise, quantitative, and parameter free prediction about the pattern of order
effects, and it has been statistically supported across a wide range of 70 national field exper-
iments (containing 651 to 3,006 nationally representative participants per field experiment)
that examined question order effects (Wang et al., 2014).

The goals of QP theory are different from the IC hypothesis. The goal of QP theory is
to provide a coherent theory for any kind of probability judgment, such as conjunctions and
disjunctions of two or more events (Busemeyer et al., 2011), and hypotheses conditioned on
one or more pieces of evidence presented in different orders (Trueblood & Busemeyer, 2010).
In contrast, the IC has a more restrictive goal, which is to identify the primary determinant
of conjunction fallacies for two conjuncts. The main point of this comment is that there is
no inherent inconsistency between QP theory and the importance of inductive confirmation
as a determinant of the conjunction fallacy. Instead, if inductive confirmation is critical,
then this determinant imposes constraints that QP theory must satisfy. The added value
of QP theory is to make predictions for additional factors, such as order effects or training
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with conjunctions, that moderate the conjunction fallacy, and to make predictions for other
probability judgment errors, such as the closely related disjunction fallacy.
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Appendix
The Violin example

The “violin” example, used in Experiment 2 of TCR, is treated in a similar manner
to the “black shoes” example. The judge is asked to consider a person with a violin degree
(e = V). Then three hypotheses are considered: The first is C' representing “this person
is a mountain Climber;” the second is L representing “this person teaches music Lessons;”
and the third is U representing “this person owns an Umbrella.” To determine the IC for
each hypothesis, we need to define a state before the evidence V is presented, and again
after the evidence V is presented. For this example, we define a Climber basis that has
four basis vectors: [U C,UC,UcC, W] , where for example, UC' represents (U and C') both
present, UC represent (U and C), etc. With respect to this climber basis, we use the
coordinate vector g = [.1104,.9938, 0, 0] before the evidence, and we use the coordinate
vector ay = [0.1952,0.9759,0.0976,0] after the evidence. The coordinate vector ay is
obtained by rotating g to a basis for violin, projecting on violin, and then rotating back
to the climber basis. In both states, the second coordinate representing UC has the largest
amplitude; the violin evidence has the effect of diffusing and spreading out the amplitudes
a bit. (Again this is one example, and variations around this example also reproduce the
TCR findings). We define Lesson basis that uses the four basis vectors [L, A, B, C] where the
first coordinate represents the activity of music lessons, and the others represent three other
lesson activities. (We can allow umbrella to be compatible with Lesson too, but as mentioned
in Footnote 5, this requires a higher dimensionality, which we do not need to reproduce the
results.) The unitary operator that rotates from the climber basis to the lesson basis is
defined as U (61 = .4,02 = .2), and this is used to compute the coordinates for the lessons
basis f = U - a. (These rotation parameters provide one example, and many variations,
such as (6p = .2,02 = 0), also reproduce the TCR findings). The projector for “yes” to C' in
the climber basis is M¢ = diag[1,0,1,0]; the projector for “yes” to U in the climber basis
is My = diag[1,1,0,0]; the projector for L in the lesson basis is My = diag|[1,0,0,0].We
summarize the calculations for this example in Table 1. These probabilities are ordinally
consistent with all of the experimental results of Experiment 2 in TCR.
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The American example

The Linda and Violin problems are examples of what is called the M-A paradigm,
where evidence, that is a story, is provided. The next example (prototypical of Experi-
ments 3 and 4 in TCR) uses what is called the A-B paradigm, where no obvious evidence
is provided. Three hypotheses are considered: The first is A representing “is an Ameri-
can;” the second is O representing “is overweight;” and the third is U representing “owns
an umbrella.” For this example, we define an American basis that has four basis vectors:
[UA, UA, UA,W}, and the state vector is assigned coordinates o = [.0995,.9947,.0249, 0].
(This presumably reflects the Italian participants’ background knowledge of the prevalence
of US Americans in Europe). Once again, the largest amplitude is assigned to the second
coordinate representing UA. We define an overweight basis that uses the four basis vec-
tors [O, A, B, C] where the first coordinate represents overweight, and the others represent
other weight categories. The unitary operator that rotates from the American basis to the
overweight basis is defined as U (61 = .1,02 = 0) (and variations around this give similar
results). This is used to compute the coordinates for the overweight basis § = U - a. The
projector for “yes” to A in the American basis is M4 = diag[1,0, 1, 0] ; the projector for “yes”
to U in the American basis is My = diag[l,1,0,0]; the projector for O in the overweight
basis is Mo = diag[1,0,0,0] .We summarize the calculations for this example in Table 1.
These probabilities are again ordinally consistent with all of the experimental results of
Experiments 3and 4 in TCR.

The Russian women example

The last example comes from the first experiment in TCR, which used the M-A
paradigm, but it was different from the Violin example because it used the negation of
one hypothesis as another hypothesis. Initially the judge is asked to consider a woman from
New York, and later the judge is told that this NY women is Russian (e = R). Three
hypotheses are considered: The first is IV representing “this person is a woman from New
York;” the second is I representing “this person is an interpreter;” and the third is I rep-
resenting “this person is not an interpreter.” To determine the IC for each hypothesis, we
need to define a state before the evidence R is presented, and again after the evidence R
is presented. For this example, we define a New York basis that has four basis vectors:
[NX,NX,NX,NX] , where for example NX represents (N and X) and X is some other
feature related to New York. With respect to the New York basis, we use the coordinate
vector ay = [0.8944,0.4472,0,0] when the woman is described as being from New York;
and we used the coordinate vector ag = [—0.1952,0.0976, 0,0.9759] when the woman is de-
scribed as being a Russian. Both of these are obtained by projecting some other initial state
(v, before either New York or Russian is known) onto the subspace for either a New York
women or for a Russian woman, and then expressing this state in the New York basis. We
define an occupation basis that uses the four basis vectors [A, B, I, C] where the third coor-
dinate represents the interpreter occupation, and the others (event I, that is not I) represent
three other occupations that are not interpreters. Note that in this example, the event [ is
compatible (in the technical quantum sense) with the mutually exclusive event I (i.e., they
are both represented using the same occupation basis). The unitary operator that rotates
from the occupation basis to the New York basis is defined as U (6, = .25, 603 = .25), which



QUANTUM CONJUNCTION 14

is used to compute the coordinates for the New York basis from the occupation basis as
follows: B = U - a; the rotation from the New York basis to occupation basis is U”, which is
used to compute the coordinates for the occupation basis from the New York basis as follows:
a = UT . B. The projector for “yes” to N in the New York basis is My = diag|[1,1,0,0];
the projector for “yes” to I in the occupation basis is M; = diag[0,0,1,0]; the projector
for I in the occupation basis is M5 = diag[1,1,0,1]. We summarize the calculations for
this example in Table 1. These probabilities are again ordinally consistent with all of the
experimental results of Experiment 1 in TCR.



