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Abstract. Assessment of software COTS components is an essential part of component-based software 

development. Poorly chosen components may lead to solutions of low quality and that are difficult to 

maintain. The assessment may be based on incomplete knowledge about the COTS component itself and other 

aspects (e.g. vendor’s credentials, etc), which may affect the decision of selecting COTS component(s). We 

argue in favor of assessment methods in which uncertainty is explicitly represented (‘uncertainty explicit’ 

methods) using probability distributions. We provide details of a Bayesian model, which can be used to 

capture the uncertainties in the simultaneous assessment of two attributes, thus, also capturing the 

dependencies that might exist between them. We also provide empirical data from the use of this method for 

the assessment of off-the-shelf database servers which illustrate the advantages of ‘uncertainty explicit’ 

methods over conventional methods of COTS component assessment which assume that at the end of the 

assessment the values of the attributes become known with certainty. 

Keywords: COTS component assessment, reliability and performance assessment, Bayesian inference 

1. Introduction 

The use of commercial-off-the-shelf (COTS) components in software development is ubiquitous. There are 

many benefits to using COTS components stemming from the incentive to cut down on cost and development 

time and to improve quality by using tried and tested components. An essential part of component-based 

software development is the assessment of available COTS components. Various assessment methods have been 

proposed [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. The results of these assessment 

techniques crucially depend on assuming that the values of the assessed attributes will be known with certainty 

at the end of the assessment.  However, since the assessment is carried out with limited resources of time and 

budget the outcome is subject to uncertainty.  
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We propose an assessment method, in which the assessment results are subject to explicitly stated uncertainty 

and discuss how this may impact the selection of COTS software. The method also enables representing the 

dependencies that exist between the uncertainties associated with the values of the COTS component attributes, 

which affect the decision about which of the available COTS components to choose. It also encourages assessing 

the dependent attributes simultaneously, thus identifying the dependencies that may exist between the values of 

the attributes which may affect the choice of component(s). We provide empirical results from a study with off-

the-shelf database servers, which demonstrate how the assessment method can be used in practice. 

The paper is structured as follows: section 2 contains a brief review of related work on COTS component 

assessment and attribute definitions; section 3 contains an overview of the problems that need to be addressed 

during COTS component assessment; in section 4 we describe models of assessment, in which model parameters 

(values of the attributes to be assessed) are not known with certainty and argue in favor of using probability 

distributions as an adequate mechanism to capture this uncertainty; in section 5 we give details of an empirical 

study with off-the-shelf database servers and also some contrived numerical examples, which illustrate the 

advantages of handling uncertainty and dependence between the values of the attributes; section 6 contains a 

discussion of the scalability and applicability of the method proposed; and finally in section 7 we present 

conclusions and possible further work.  

2. Related Work 

2.1 COTS Assessment Methods 

There is a wide variety of COTS component assessment approaches available. All of them start with an initial 

statement of requirements, which defines what is being sought. It has been proposed that the requirements 

initially should not be too stringent, since this would discard potentially appropriate COTS component 

candidates at a very early stage [9], [15]. It has even been suggested [15] that if the requirements are not flexible 

then the COTS-based development may not be appropriate and bespoke development could be more cost-

effective. So initially [15] suggests distinguishing between essential requirements and those that are negotiable. 

The selection criteria are then based on the essential requirements. 

Off-the-shelf-option (OTSO) [2] is a multi-phase approach to COTS component selection. The phases are: the 

search phase, the screening and evaluation phase and the analysis phase. In the first phase COTS components are 

identified. In the screening and evaluation phase the components are further filtered using a set of evaluation 

criteria (established from a number of sources, including the requirements specification, the high level design 

specification etc.). In the analysis phase results of the evaluation are analyzed, which lead to the final selection of 

COTS components for inclusion in the system. Other similar multiphase process approaches for COTS 

component evaluation that have been proposed include CEP (Comparative Evaluation Process Activities) [7], 

CBA Process Decision Framework [8] which in addition to defining a process for COTS component assessment 

also defines two other processes: COTS integration (“gluing”) and COTS configuration (“tailoring”); CAP-

COTS Acquisition Process method [5] and PECA Process [13].  

Procurement-oriented requirements engineering (PORE) [1] is a process in which requirements are defined in 

parallel with COTS component evaluation and selection. [1] propose using prototypes to develop knowledge 
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concerning COTS components and their use within the wider system. Other methods that are centred on the 

requirements to assist with the COTS component selection process are CRE-COTS-Based Requirements 

Engineering Method [6], Storyboard Process [11], Combined Selection of COTS Components [12] and COTS-

DSS [14]. 

CISD (COTS-based Integrated System Development) [4] and CDSEM (Checklist Driven Software Evaluation 

Methodology) [3] are both checklist-based evaluation methodologies. STACE (Socio Technical Approach to 

COTS Evaluation) [10] is a socio-technical approach to evaluation which builds on work of [1] and [2] and 

emphasizes the organizational issues related to COTS selection. 

2.2 Attribute Definition Methods 

Extensive work has been also reported on definition of COTS component assessment attributes. A 

comprehensive list is given in [16]. They group the attributes in two categories depending on how they can be 

measured: Attributes Measurable at Runtime (which contain Accuracy, Security, Recoverability, Time Behavior 

and Resource Behavior) and Attributes Measurable during Component Life-Cycle (Suitability, Interoperability, 

Maturity, Learnability, Understandability, Operability, Changeability, Testability and Replaceability). These 

attributes are further divided into more fine-grained attributes, which are measurable using their proposed 

metrics of: presence, time, level and ratio. This work [16] follows the spirit of the guidelines for attribute 

definitions outlined by the international standardizing organizations ISO [17], and IEEE/ANSI [18] in a broader 

context, not specific to COTS component attributes. COCOTS framework by Abts et al. [19], and Torchiano and 

Jaccheri [20] also provides COTS attribute definitions. 

3. Problems with COTS Component Assessment 

3.1 Motivation 

Any assessment is conducted with limited resources and under various assumptions, which may not hold true in 

real operation. As a result the outcome of the assessment is subject to uncertainty – the assessor may never be 

100% sure that what they concluded during the assessment (both about the values of the attributes as well as the 

choice of a COTS component) will be confirmed when the COTS component is used in operation. This is clearly 

true for some parameters, which can be estimated objectively, e.g. failure rate, performance, etc. For failure rate, 

for instance, even after a very thorough testing one can only identify a range of rates which are more likely than 

others. For instance, Littlewood and Wright have shown [21] that starting with indifference between the values 

of the failure rate (i.e. uniform distribution of the failure rate in the range [0, 1]) and seeing a protection system 

process correctly 4603 demands translates into 99% confidence that this system’s probability of failure on 

demand (pfd) is no worse than 10-3. The same equally applies to attributes assessed subjectively, e.g. using the 

Likert scale [22], widely used in the COTS component assessment. It may be difficult for an assessor to justify 

that a COTS component must be ranked at exactly, say 7 out of 10, according to a chosen scale but he/she may 

be certain that the ‘true’ value of the attribute is in the range [6, 7].  
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The value of expressing the assessment results in the form (value, confidence) has been recognized in some other 

technical areas which dealt with assessment. The best performing software reliability-growth models (RGM) 

which predict the failure rate from the observed failures in the past, for instance, are those in which the model 

parameters are treated as random variables [23]. In these models the ‘true’ values of the attributes being assessed 

are never assumed known with certainty. Instead the attribute is characterized by a probability distribution, from 

which the true value of the attributes will come (i.e. are seen as drawn at random). For each reliability target, 

then, the assessor can tell the probability that the true reliability is lower than the target. Such models 

systematically outperformed the alternative simplistic methods in which the parameters were assumed to be 

known with certainty [24]. If the ‘uncertainty explicit’ models have been best with one specific method of 

assessment – software reliability – it seems natural to try similar ‘uncertainty explicit’ methods for other 

assessments, e.g. evaluation of COTS software and selecting the best out of a set of comparable alternatives. 

This is the focus of this paper.  

There are various methods for representing uncertainty [25]. Bayesian approach to probabilistic modelling is one 

of the best-known ones and used with some success in reliability assessment [24], [21]. It allows one to combine, 

in a mathematically sound way, the prior belief (which may be ‘subjective’) about the values of a parameter or a 

set of parameters to be assessed with the (‘objective’) evidence from seeing the modelled artefact in operation. 

Combining the prior belief and the evidence from the observations in a mathematically correct way leads to a 

posterior belief about the values of the assessed attribute(s).  

How does ‘uncertainty explicit’ assessment differ from the conventional deterministic assessment? With 

deterministic assessment point estimates of the attributes are used. A common approach of comparing the 

alternatives is then to use a weighted sum of the estimates for each of the alternatives. When uncertainty is 

accounted for, this approach is still possible – we can use various characteristics of the posterior distributions 

(mean, median, etc.) of the attributes as estimates and then calculate the weighted sum for each of the COTS 

components included in the assessment before deciding which is the best one. When uncertainty is explicitly 

used in the assessment, however, more refined ways of comparison are possible: from the posterior one can 

express the uncertainty in the value of the comparison criterion, e.g. the weighted sum of the attributes. Since 

the value of the weighted sum is now uncertain we have a range of options. We may give preference to the 

COTS component for which the mean (median) value of the weighted sum is the best (as we would have done 

with point estimates of the attributes). With uncertainty stated explicitly a range of new options exists, which is 

illustrated in Fig. 1.  
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Fig. 1 - The pfd for two different COTS components 

In this figure we illustrate the value of handling uncertainty explicitly even when dealing with a single 

assessment attribute, COTS component reliability. Let us assume that Fig. 1 illustrates the cumulative 

distribution function (c.d.f.) graph for two COTS components with the same average pfd.  If we wanted to 

choose the COTS component that has the highest probability of having a pfd of no worse than 6*10-3 (i.e. the 

value of the x-axis of 0.006) then we would choose COTS component A, whereas the COTS component with the 

highest probability of having a pfd of no worse than 4.10
-3
 is COTS component B. We can also see clearly that 

the distribution of the pfd of COTS component B is much more spread than that of COTS component A (in fact 

the distribution of COTS component B is uniformly spread across all the values from 0 to 10
-2
). Therefore there 

is a much higher uncertainty associated with the values of COTS component B than that of COTS component A. 

Stating uncertainty explicitly offers the assessor a wider range of options in selecting the most appropriate COTS 

component. 

3.2 Dependence among Attributes 

COTS component assessment requires dealing with multiple attributes of the COTS components being 

compared. The selection of a particular COTS component, thus, is a multi-criteria decision which taken under 

uncertain values of the attributes naturally leads to the question about the dependence between the uncertainties 

associated with the individual attributes. Ignoring the possible dependence between the uncertainties in 

attributes’ values represents a particular form of belief: that assessing attribute X one can learn nothing about 

another attribute, Y. For example, performance of a COTS component will hardly tell anything about the quality 

of its documentation and vice versa. It is quite obvious, however, that not all COTS component attributes are like 

that. In many cases while assessing an attribute X the assessor may infer something about the values of another 

set of attributes. For instance, if we devise a prototype in order to assess the functionality of a COTS component 

we will also learn something about the performance (how quickly this COTS component responds to requests) 

and how reliable the COTS component is. A more subtle, but very useful concept, as we will see later, is that the 

uncertainties associated with the assessed attributes may be dependent. Informally, assume that we want to 
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assess the reliability and performance of a COTS component. We may assume that the uncertainties associated 

with these two attributes are independent, in the statistical sense. Under this assumption learning something 

about reliability will tell us nothing about performance and vice versa. Now suppose that we have run a very 

long testing campaign and have repeatedly observed that whenever the response was late it was also incorrect 

and no other incorrect response has been observed. With such evidence of a strong positive correlation between 

the failures (incorrect responses) and the responses being late, we may accept that any change of our belief about 

the rate of failure should also be translated into a change in our belief about the rate of late responses. The 

assessment models surveyed invariably assume that the values of the attributes are independent and do not allow 

for dependencies between their uncertain values to be captured adequately. 

In summary, with the assessment method that we propose in this paper we aim to handle both the uncertainties 

in the values of the attributes and the dependence that exists between the values of the different attributes. The 

existing assessment methods we surveyed do not deal explicitly with either of these two uncertainties.  

4. Assessment of COTS Components: a Bayesian Approach 

In this section we briefly summarize how the Bayesian approach to assessment is normally applied to assessment 

of a single attribute. Assume that the attribute of interest is the component’s probability of failure on demand 

(pfd). If the system is treated as a black box, i.e. we can only distinguish between COTS component’s failures or 

successes, the Bayesian assessment proceeds as follows. Let us denote the system pfd as p, with prior 

distribution (probability density function, pdf) )(•pf , which characterises the assessor’s knowledge about the 

COTS component pfd prior to observing the COTS component in operation. Assume further that the COTS 

component is subjected to n demands, independently drawn from a ‘realistic’ operational environment (profile)1, 

and r failures are observed. The posterior distribution, ),|( nrxf p , of p after the observations will be: 

)()|,(),|( xfxrnLnrxf pp ∝ ,        (1) 

where )|,( xrnL  is the likelihood of observing r failures in n demands if the pfd were exactly x, which in this 

case of independent demands is given by the binomial distribution,
rnr

xx
r

n
xrnL

−−







= )1()|,( . For any 

prior and any observation (r, n) the posterior can be calculated2 for all the COTS components included in the 

assessment. Even if no failure is observed (i.e. r = 0), the posterior can be calculated. Other measures of interest 

can also be derived from this posterior, e.g. the probability that the COTS component will survive the next 5000 

                                                           

1 An operational profile [26] can be defined as a statistically accurate characterization of how the component will be used in 

its ‘true’ environment. 

2 The posterior can be calculated either by using a conjugate prior distribution [27], in which case the posterior distribution is 

guaranteed to be in the same family as that of the prior for a given likelihood function (e.g. Beta distribution prior, with 

Binomial Likelihood function, gives us a Beta distributed posterior) or it can be calculated through numerical methods and 

approximations. In our case, since the conjugate family has limitations [28] we have used numerical methods to calculate 

the posterior.  
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randomly chosen demands. This probability can be calculated for each of the COTS components included in the 

assessment as follows:  

( ) ( )∫
∞

−
0

5000
,|1 dpnrpfp p . 

Then the best COTS component will be the one, for which the integral above gets a maximum value. 

4.1. A Model for Assessment of 2 Non-Independent Attributes 

Typically, COTS component assessment is a multi-criteria decision with dozens of attributes usually assessed 

and taken into account (as detailed in [2], [1], [5], [8]). The Bayesian assessment can be applied to multiple 

attributes, too. For simplicity we first demonstrate the approach with two attributes and then discuss (in section 

5) the implications of scaling it up to many attributes. A similar model to the one we describe here has been used 

in the past in assessing reliability of various systems built with components [28], [29]. 

Let us assume that two non-functional attributes must be assessed, such as the COTS component’s pfd and 

performance, the latter assessed in the form of whether the response is received on time or not, i.e. the 

probability of a late response on demand, pld. Using a binary score – on time vs. late – is an adequate approach 

when the COTS component is planned for integration in a larger system. In these circumstances using an 

absolute scale, e.g. how long it takes a COTS component to respond to a demand, may be unnecessary: it will be 

sufficient to know whether the response is received with an acceptable delay as dictated by the wider system. In 

terms of comparison of several COTS components using the binary scale (on time/late) seems also adequate. 

Any COTS component, which responds with an acceptable delay, is sufficiently good from the point of view of 

the system’s integrator.  

Here we define a model to help with the comparison of COTS components assessed by subjecting them to a 

series of independently selected demands. Both, the COTS component’s pfd and pld, are used in the comparison 

and different comparison criteria are discussed. 

On each demand the response received from the COTS components is evaluated from two different viewpoints: 

correct/incorrect and on time/late. Clearly 4 combinations exist, which can be observed on a randomly chosen 

demand, as shown in Table 1. 

Table 1 – The outcomes, their frequencies and probabilities for a random demand. 

 

Event 
Correct Response 

(Reliability) 

Response On-Time 

(Performance) 

Number of observations in 

n demands 
Probability 

α No Yes r1 10p  

β Yes No r 2 01p  

χ No No r 3 11p  

δ Yes Yes r 4 00p  

 

The four probabilities given in the last column sum to 1. So if the first three probabilities are 0.2, 0.4 and 0.3, 

respectively, then the last one 00p  = 1 - (0.2 + 0.4 + 0.3) = 0.1. This constraint remains even if we treat the 

probabilities in Table 1 as random variables: their sum will always be 1. Thus, the joint distribution of any three 
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of these parameters, e.g. ),,(
111001 ,, •••pppf , gives an exhaustive description of the COTS component’s 

behaviour. In statistical terms, the model of the COTS component with two binary attributes has three degrees of 

freedom. 

The marginal probabilities of getting an incorrect response on a random demand, let’s denote it pI, and of getting 

the response late, pL, respectively, can be expressed as:  

1110 pppI +=  and 1101 pppL += . 

p11 represents the probability of receiving late an incorrect response. Hence, the notation pIL ≡ p11, 

1110 pppI +=  and 1101 pppL += will capture better the intuitive meaning of the event it is assigned to. 

Instead of using ),,(
110110 ,, •••pppf  another distribution, which can be derived from it through a change of 

variables [30], can be used. In this section we use ),,(,, •••
ILLI pppf  which can be factorised as: 

),|(),(),,( ,,, LIpppppp ppfff
ILLIILLI

•••=•••          (2) 

For the prior joint distribution ),(, ••
LI ppf above, we assume throughout this paper that the pI and pL are 

independently distributed3. We capture the possible dependencies between the two failures processes 

(characterized by pI  and pL, respectively) by )(,| •
LIIL pppf . Hence the full joint prior distribution is given by: 

),|()()(),,(,, LIpppppp ppffff
ILLIILLI

•••=•••          (3) 

For a given observation (r1, r2, and r3 in N demands) the posterior joint distribution can be calculated as: 

∫∫∫

=

ILLI

ILLI

ILLI

ILLI

ppp

ILLIppp

ILLIppp

ppp

dxdydzppprrrNLzyxf

ppprrrNLzyxf

rrrNzyxf

,,

321,,

321,,

321,,

),,|,,,(),,(

),,|,,,(),,(

),,,|,,(

    (4) 

where  

321321 )1()()(
)!(!!!

!

),,|,,,(

321321

321

rrrN
LIIL

r
IL

r
ILL

r
ILI

ILLI

pppppppp
rrrNrrr

N

ppprrrNL

−−−−−+−−
−−−

=

      (5) 

is the multinomial likelihood of the observation (r1, r2, r3 , N). 

4.2. Combination of Uncertainties in the Values of Attributes 

For comparison of the COTS components we will define the following criterion: 

Probability of an inadequate response, PSer, by the COTS component: of getting either an incorrect or late 

response. Clearly, PSer = PI + PL – PIL. Its posterior distribution, ),,,|( 321 rrrNf
Serp • , can be derived from  

                                                           

3 The plausibility of making this independence assumption is explained in Appendix A. 
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the joint posterior, ),,,|,,( 321,, rrrNf
ILLI ppp ••• , by first transforming it, to for example 

),,,|,,( 321,, rrrNf
SerLI ppp ••• , and then integrating out the nuisance parameters PI and PL.  

An often used selection method [31] in the literature is the weighted sum of the values of the attributes. The 

weighted sum of the two attributes in our study can be calculated as follows: PS = kPI + (1-k)PL, in which the 

constant k is defined by the assessor in the range 0-1. High values of k correspond to cases when incorrect results 

are highly undesirable while late results may be tolerable. On the other hand, low values of k correspond to cases 

when incorrect results may be tolerated by the system while late responses may have serious consequences. In 

order to derive the marginal distribution of PS first the joint distribution ),,,|,,( 321,, rrrNf
ILLI ppp ••• is 

transformed to ),,,|,,( 321,, rrrNf
SLI ppp •••  and then the nuisance parameters PI and PL are integrated out, 

as above for PSer. However we will not be using this method of selection since the new variable PS does not have 

an obvious intuitive meaning. The difficulty is compounded in our case since the uncertainty is stated explicitly. 

It is impossible to say what a confidence of say 99% associated with a particular value of PS tells us about the 

COTS component being assessed. 

4.3. Partitioning the Demand Space 

In some areas of software engineering, especially in testing, the usefulness of partitioning the demand space has 

been recognised [32], [33], [26]. The demand space partitions typically represent different types of demands, 

which may have different likelihoods of occurring in a realistic environment. Realistic testing, thus, would 

require generating mixes of demands, which take into account the likelihood of the types of demands. 

In our context, operating in a partitioned demand space may imply that the uncertainty associated with the 

attributes of interest may differ among the partitions, e.g. as a result of different number of observations being 

made for the different partitions. 

If the demand space is partitioned into M partitions {S1, S2, … SM}, with a probabilistic measure { P(S1),…, 

P(SM)}
 4,  then for each of these the assessment will be performed as described above, e.g. with two attributes the 

description provided in section 4.1 will apply. As a result M conditional distributions will be associated with 

each COTS component, e.g. using reliability and performance these can be denoted as )|,,(,, ippp Sf
ILLI

••• , 

from which the conditional distribution )|( ip Sf
Ser

•  will be expressed. This distribution characterises the 

probability of failure (incorrect or late response), iSer SP | , of the particular COTS component in the specific 

partition. Finally, in order to compare the competing COTS components the unconditional distribution 

)(•
Serpf  should be derived for the particular profile defined over the set of partitions, which represents the 

targeted operational environment.  

                                                           

4 The meaning of these random variables is that a demand chosen at random with probability P(Si) will be drawn from Si.   
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Let us assume the profile of the targeted environment is known with certainty5. The marginal probability of 

failure of a COTS component, according to the formula of full probability is: 

( )∑
=

×=
M

i

iiSerSer SPSPP
1

|          (6) 

The distribution of this random variable, SerP , depends on the joint distribution, 

( )••,...,)|(),...,|( 1 MSerSer SPSPf , i.e. of the conditional probabilities of failure in sub-domains. In some setups it 

may be plausible to assume that the conditional probabilities of failure (in the partitions that is) are independently 

distributed, i.e.: 

( ) ( ) ( )∏
=

••=••
M

i

SPSPSPSP MSerSerMSerSer
fff

1

||)|(),...,|( ...,...,
11

.     (7) 

Such an assumption represents the assessor’s belief that learning something about the probability of failure, 

iSer SP | , of a particular COTS component in partition i will not change their belief about the probability of 

failure, jSer SP | , of the same COTS component in another partition. The assumption is consistent with 

applying inferences to the individual partitions, i.e. conditional on the demands coming from a particular 

partition.  

Under (7) the unconditional probability of COTS component failure (6) can be expressed as a convolution of the 

distributions of the random variables ( ) ( )iiSerw SPSPiP ×= | , i.e.: 

( )iPP w
w
Ser ⊗=            (8) 

The selection of the best COTS component, out of the available alternatives, will then be based on the marginal 

distributions, )(•w
Serp

f , associated with the available COTS components. 

5. Numerical Examples: a Study with Off-The-Shelf Database Servers 

We have reported recently results of studies on dependability and performance of database servers [34], [35], 

[36], [37]. The focus of these earlier studies was in measuring the amount of “diversity”, in both correctness and 

response time, which exists between different servers, i.e. certain servers might give an incorrect and/or late 

response in one input but the others might not. The motivation behind this work was to get preliminary 

measurements on the improvements in reliability and performance that can be had from using more than one 

component in parallel in a multi-channel diverse configuration.  

In this paper we will use the data collected in those studies to demonstrate our approach to COTS component 

selection. SQL servers are a very complex category of off-the-shelf components, with many reported faults in 

                                                           

5 This assumption is needed for the comparison only. We do not require here that we know the ‘real’ operational 

environment, in which the system together with the chosen COTS component will be deployed. Taking into account the 

uncertainty about the profile is possible at the expense of making the calculations more complicated, which is beyond the 

scope of this paper. 
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each release. In total six off-the shelf SQL servers from four different vendors were used. Four of the servers are 

open-source, namely PostgreSQL 7.0, PostgreSQL 7.2, Interbase 6.0 and Firebird 1.06. The other two servers are 

commercial closed development servers, anonymised here due to the restrictive ‘End User License Agreements’. 

We will refer to these components as CS1 (Commercial Server 1) and CS2 as they are from different vendors. 

An ideal selection of an SQL server based on the results of statistical testing of the COTS components may be 

problematic in practice. We will highlight two circumstances in which these difficulties can occur:   

- Assume that we are interested in choosing between several SQL servers, based on their reliability and 

performance. The ideal situation for choosing the most appropriate SQL server based on measurements after 

deploying the COTS components is clearly unrealistic since we would like to select the best server before the 

application is developed. 

- Assume that the system integrator (e.g. a software house) would like to make a strategic choice of a SQL 

server for use in the foreseeable future. In this scenario the application(s), which may be developed in the 

future may be even unknown at the time of making the selection.  

Given these difficulties we can use alternative options: 

- Use well-known benchmark applications. In the context of SQL servers this might be the TPC-C benchmark 

for on-line transaction processing [38]. In this case, the performance of the components can be measured 

directly on the target platform, but there might be problems observing failures. This is because it would be 

reasonable to expect that an SQL server would correctly process the statements defined in the TPC-C 

benchmark application. Thus, in this case the selection of the SQL server would be significantly influenced 

by the performance attribute. Even if failures are observed, such a measurement of the reliability of the 

COTS components may be very expensive; the likely candidates to choose from will be reliable components. 

Thus the amount of testing to observe a few failures may be prohibitively high [39]. We illustrate the 

assessment method with data collected from experiments with an implementation of the TPC-C client 

benchmark. For the TPC-C experiments we used all six aforementioned SQL servers. 

- Use stressful environments (in terms of the reliability attribute) for comparing the components, i.e. 

environments which increase the likelihood of failures occurring, even if we do not know how likely these 

are to occur in operation. The set of bugs of a particular COTS component (in our case SQL server) defines 

one such stressful environment for a server. The union of the bugs reported for all the compared COTS 

components will form a demand space, in which there will be a partition stressing each of the components. 

We have collected known bug reports for four of the SQL servers in our studies, namely PostgreSQL 7.0, 

Interbase 6.0, CS1 and CS2 and used them as a sample from a ‘stressful’ environment, in which to compare 

the COTS components. 

Detailed results for each of these studies are given in the next two sub-sections. We did not use partitioning of 

the demand space approach in the study with the TPC-C benchmark application (even though the TPC-C 

transactions types could form basis for such partitioning). This is because we did not have any reason to expect 

that the servers will perform differently (in terms of timeliness and correctness) for each transaction type. We 

however did use partitioning of the demand space in the study with the bug reports of the servers, since we had 

compelling reasons to expect that the servers will perform differently (this will be explained in section 5.2).  

                                                           

6 Firebird is the open-source descendant of Interbase. The later releases of Interbase are issued as closed-development by 

Borland. 
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5.1 Study with TPC-C Benchmark Application 

We first describe the results obtained using the TPC-C benchmark application as a basis of selecting the best 

SQL server. In the empirical study we used our own implementation of TPC-C. The benchmark defines five 

transaction types (New-Order, Payment, Order-Status, Delivery and Stock-Level) and sets the probability of 

execution for each, i.e. the particular transaction mix (profile) is defined. The specified performance measure is 

the number of New-Order transactions completed per minute. However, our measurements were more detailed - 

we recorded the transaction response times instead. The benchmark specifies an upper bound on the 90
th
 

percentile values for each transaction type. It requires that the average response time of each transaction type is 

less than or equal to the respective 90
th
 percentile value. The values are as follows: 

- New-Order - 5 seconds 

- Payment - 5 seconds 

- Delivery – 80 seconds 

- Order-Status – 5 seconds 

- Stock-Level – 20 seconds 

The test harness consisted of two machines:  

- A server machine, on which one of the six database servers was run. 

- A client machine, which executed a JAVA implementation of the TPC-C standard. 

Each experiment comprised the same sequence of 1000 transactions. We ran two types of experiments: 

- single client - a TPC-C compliant client modifies the database by executing the specified transaction mix. 

- multiple clients - a TPC-C compliant client modifies the database and additional 10 clients concurrently 

execute the read-only transactions (Order-Status and Stock-Level). 

Multiple clients experiment enabled us to increase the load on the servers and measure the effect of the increased 

load on their performance. 

A timeout value, specific to each transaction type, was used to distinguish between late and timely responses. 

We defined two sets of timeouts7:  

- The 90th percentile values specified by TPC-C (TPC-C timeout),  

- One fifth of the 90
th
 percentile values (short timeout). 

We defined four scenarios, varying the number of clients and timeout values respectively: 

- Scenario 1 - single client / TPC-C timeouts  

- Scenario 2 - single client / short timeouts  

- Scenario 3 - multiple clients / TPC-C timeouts  

- Scenario 4 - multiple clients / short timeouts  

The SQL servers were compared for each of the scenarios.   

                                                           

7 The choice of these was made after a personal communication of one of the authors with a TPC-C affiliate and auditor who 

confirmed that the values were conservative for a wide range of on-line transaction processing applications. 
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5.1.1 Prior Distributions 

The prior, ),,(,, •••
ILLI pppf , was constructed under the assumption that PI and PL are independently 

distributed random variables, i.e. )()(),(, ••=••
LILI pppp fff . We made this assumption since we did not 

have any objective evidence to believe otherwise. In case there are reasons (objective or subjective) then the 

assumption of independence may be dropped. In this case the particular form of ),(, ••
LI ppf should be defined 

explicitly. Additionally the conditional distributions ),|(,| LIPPp PPf
LIIL

• were defined for every pair of 

values of PI and PL, in the range [0, min(PI, PL)] since the probability of incorrect and late responses cannot be 

greater than the probability of either of the two individually. In passing we note that the choice of the prior is not 

critical with the benchmark application since an arbitrarily large number of demands can be generated, i.e. ‘the 

data will speak for itself’. 

We anticipated observing mainly late responses while the incorrect result failures were expected to be very rare. 

We have assumed ‘ignorance prior’ (Uniform distribution) for performance in the range ]1,0[∈LP . For 

incorrect result failures we have also assumed ignorance but using an upper bound of 10-2, likely to be very 

conservative in the context of TPC-C, i.e. we used the range ]10,0[ 2∈IP . We assumed ignorance priors for 

both PI and PL since we did not have any preference regarding their values. In this study we used the same 

distribution for all the servers since for the scenarios tested we did not have any reason to prefer one server over 

the others. There might, however, be cases – some discussed later in section 6.4 - whereby the assessor may have 

different prior beliefs about the competing COTS components.  

A summary of the distributions used and the range in which they are defined is given in Table 2. 

Table 2 - The Prior distributions (identical for all six servers and all four scenarios). 

Prior Distribution Range Distribution Type 

Reliability )(•
Ip

f  0 – 0.01 Uniform 

Performance )(•
Lp

f  0 – 1 Uniform 

Conditional distribution: ),|(,| LIppp PPf
LIIL

•  0 – min(PI,PL) Uniform 

5.1.2 Observations 

The observations from the TPC-C experiments are given in Table 3. The number of demands for all servers is 

1000. Five out of six servers exhibit late result failures only. Incorrect result failures are observed only for CS2. 

In addition, whenever a result was incorrect on CS2 it was late, too. The incorrect results observed were due to 

the specific concurrency control mechanism used by CS2 [34]. The locks on resources, e.g. database rows, were 

not released properly when the lock holding transactions were completed. To resolve the problem we had to 

install timeout watchdogs and abort transactions when the timeout expired. Each aborted transaction was 

repeated as many times as necessary to eventually commit successfully. We decided to use transaction repetition 

count as the criterion of an incorrect response on CS2. In particular, we defined a threshold of 5 as the value, 

beyond which the transaction would be considered to have failed. 

We used transaction timeout values and transaction repetition count to classify each demand on each server in 

the categories r1 to r4 (defined in section 4.1).  
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Table 3 - The observations of the six database servers for the four scenarios. The number of demands (n) is 1000 for each 

server. We did not observe any incorrect-only failures, i.e. r1=0 for all servers. 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 
COTS 

r1 r2 r3 r1 r2 r3 r1 r2 r3 r1 r2 r3 

PG 7.0 0 1 0 0 30 0 0 0 0 0 644 0 

PG 7.2 0 6 0 0 33 0 0 3 0 0 489 0 

IB 6.0 0 0 0 0 24 0 0 1 0 0 434 0 

FB 1.0 0 0 0 0 1 0 0 0 0 0 439 0 

CS1 0 0 0 0 33 0 0 19 0 0 303 0 

CS2 0 0 0 0 4 0 0 0 1 0 329 1 

5.1.3 Posteriors 

The percentiles derived from the posterior distribution for the 4 scenarios are given in Table 48. One can see that 

the ordering between the servers changes as the number of clients and/or the timeout values vary (to improve the 

readability of the table we have explicitly shown the ranking order of the servers in each scenario). 

Under Scenario 1 (the least demanding scenario) four servers (IB 6.0, FB 1.0, CS1 and CS2) produce identical 

results since they completed without any failure (i.e. on time and correctly) the 1000 transactions. We are 

indifferent in the choice among them. The two versions of PostgreSQL exhibit late responses and they are 

ranked lowest.  

When we decrease the timeout value (Scenario 2) the ranking changes: now there are late responses with all the 

servers. The two worst servers are CS1 and again PostgreSQL 7.2. Interestingly, Firebird 1.0, an open-source 

server, is ranked the best.  

In Scenario 3 the percentile values are close again as in the first scenario, though the earlier version of 

PostgreSQL, PG 7.0, is ranked the best, alongside Firebird 1.0 while CS1 is the worst performing server. 

Firebird 1.0 is consistently among the best servers in the first 3 scenarios. An interesting observation is the 50
th
 

percentile value of the posteriors CS2 and IB 6.0. Even though the total number of failures for these two servers 

were the same (1 each, see Table 3), the nature of the failure was different: the result from CS2 was both 

incorrect and late whereas from IB 6.0 it was only late. Exploring this dependence we can still see a difference in 

the 50
th
 percentile values of these two servers (even though the difference is marginal and on the chosen 

accuracy of expressing the percentile values is not observed in the 99th percentile). We will further scrutinize the 

interplay between the failures of the individual components and the correlation between their failures with 

contrived examples in section 5.4.   

The ranking changes again in the most demanding scenario (Scenario 4). The best server is now CS1. 

 

 

 

 

                                                           

8 As we assumed the same priors for all the servers the differences of the posteriors will be solely due to the observations. 
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Table 4 – Percentiles (abbreviated P-tile) for the distribution of the system quality PSer = PI + PL – PIL classified per scenario. 

To improve the readability we have also provided the ranking order for each of the servers based on the percentiles values. 

The prior distribution is the same for all servers across all scenarios. 

Scenario 1 Scenario 2  Scenario 3  Scenario 4  
P-tile COTS Prior 

Posterior Rank Posterior Rank Posterior Rank Posterior Rank 

PG 7.0 0.0021 5 0.0310 4 0.0012 1 0.6436 6 

PG 7.2 0.0071 6 0.0340 5 0.0041 5 0.4888 5 

IB 6.0 0.0012 1 0.0250 3 0.0021 4 0.4340 3 

FB 1.0 0.0012 1 0.0021 1 0.0012 1 0.4392 4 

CS1 0.0012 1 0.0340 5 0.0200 6 0.3032 1 

0.5 

CS2 

0.502 

0.0012 1 0.0051 2 0.0020 3 0.3300 2 

PG 7.0 0.0076 5 0.0456 4 0.0060 1 0.6780 6 

PG 7.2 0.0152 6 0.0492 5 0.0108 5 0.5256 5 

IB 6.0 0.0060 1 0.0384 3 0.0076 3 0.4704 3 

FB 1.0 0.0060 1 0.0076 1 0.0060 1 0.4756 4 

CS1 0.0060 1 0.0492 5 0.0324 6 0.3376 1 

0.99 

CS2 

0.992 

0.0060 1 0.0124 2 0.0076 3 0.3652 2 

5.2 Study with the Known Bugs of the Servers 

Now we compare the servers using the methodology described in section 4.3. We have collected known bug 

reports for four SQL servers. We will use the union of the bugs reported for each of these SQL servers. Each of 

these bug reports will constitute a ‘demand’ to the server. These demands form a partition of the demand space 

for each server9. In contrast to the TPC-C study where partitioning of the demand space was not used, in the 

study with the bug reports we apply inferences to the partitions. The reason for doing so was the very different 

prior beliefs about the behaviour of servers in the different partitions as will be discussed in section 5.2.1. The 

logs of the known bugs are treated as a sample (without replacement10) from the corresponding partition 

(representing the server, for which the bug has been reported). We label the partitions nameServerS . Partition 

XS  is called an ‘own’ partition for server X and a ‘foreign’ partition for any other server Y≠X.  

                                                           

9 We have observed no bug reported for two or more servers, thus the logs of the known bugs indeed formed partitions of the 

union of the bugs. Even if we had observed bugs reported from more than one server we could construct a partition of the 

intersection of the bugs reported for several servers by putting them in their own partition. Thus, a server may have more 

than one own partition in the demand space and the description provided here will apply.  

10 Strictly, there might be a difference between sampling with and without replacement. Our model is based on sampling 

without replacement while the inference procedure described in section 4.1 implies sampling with replacement. This is a 

simplification, which in many cases is acceptable (e.g. sampling from a large population of units, none of which dominates 

the sampling process, which seems a plausible assumption in our case of SQL servers being very complex products and 

likely to contain many unknown bugs). 
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5.2.1 Prior Distributions 

The prior distributions )|,,(,, ippp Sf
ILLI

•••
 
used in this study are explained next. The prior 

distribution, )|,,(,, ippp Sf
ILLI

••• , was constructed under similar assumptions to those of the TPC-C study: that  

PI and PL are independently distributed random variables; in the general case of incorrect and late responses 

being non-independent events, the conditional distributions, ),,|(,| LIiPPp PPSf
LIIL

• , are specified for every pair 

of values of PI and PL. 

The distributions were assumed to be identical for each of the four servers in both their ‘own’ and ‘foreign’ 

partitions. Again, this assumption was made because we did not have objective evidence to believe otherwise. 

We discuss other options in section 6.4. A summary of the distributions used and their respective parameters 

including the range of each distribution are given in Table 5, and we will discuss these choices in the rest of this 

sub-section.  

Table 5 – The Prior distributions (identical for all four severs). 

 Proportion Range Distribution 

)|( ownp Sf
I

•  
0.72 – 1  Uniform 

Reliability 

)|( foreignp Sf
I

•  0 – 1 Uniform 

)|( ownp Sf
L

•  
0 – 1 Uniform 

Performance 

)|( foreignp Sf
L

•  
0 – 1  Uniform 

Conditional distribution: ),,|(,| LIppp PPSf
LIIL

•  
0 – min(PI,PL) 

Uniform 

 

Prior distributions for Incorrect Results )|( ip Sf
I

•  

For ‘own’ partitions the prior distribution was defined as Uniform in the range [L, 1], where L < 1 accounts for 

the chance that some of the reported bugs might be Heisenbugs11, i.e. we expect most of the bugs that have been 

reported for a particular server to cause failures when they are run on that server (hence the probability of 

observing an incorrect results failure is very close to 1) but, due to Heisenbugs, not always so. As a source for L 

we used the study by Chandra and Chen [41]. These authors studied the fault reports for three off-the-shelf 

components: MySQL database server, GNOME desktop environment and the Apache web-server and reported 

that 5%, 7% and 14%, respectively, of the reported bugs were Heisenbugs. Given the variation between the 

components we cautiously interpreted these findings by setting L = 1-(2*0.14), that is twice the highest value of 

Heisenbugs reported, thus the prior is expected to be within the range [0.72, 1]. Notice that here the prior 

distribution for incorrect results is being defined at a range close to 1 (i.e. high unreliability). This is because of 

the unusual profile of the demands: since we are using known bug reports as demands we expect most of the 

bugs to cause failures when we run them on the server for which they were reported. 

For ‘foreign’ partitions, however, the prior distributions were defined as uniform in the range [0, 1]. This is due 

to the absence of any comparative study to guide our expectation about the likely value. In passing we note that 

                                                           

11 Gray defines two types of bugs [40]: “Bohrbugs” for bugs that appear to be deterministic (they manifest themselves each 

time the bug script is executed); and “Heisenbugs” for those that are difficult to reproduce as they only cause failures under 

special conditions (e.g., created by the internal state affected by the other applications etc.) 
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theoretical work such as [42], [43] suggest that diverse software versions will tend to fail coincidentally on 

‘difficult’ demands. Since all the bugs are ‘difficult’ – they are known to be problematic at least for one of the 

servers – we may consider them genuinely difficult, hence assume as plausible that the other servers too, are 

likely to fail. On the other hand, empirical studies such as [44], [45], have shown that significant gains can be 

had via design diversity – hence low chances that a particular server will fail on bugs reported for other server 

are also plausible. In summary, we are indifferent between the values of the probability that a server will fail 

from a ‘foreign’ bug.  

Prior Distributions for Performance  )|( ip Sf
L

•  

We have not found a public domain source, which would allow us to define a prior distribution for performance 

failures (in the context we have defined). This is also because the number of late results that would be observed 

would be conditional on how the timeout threshold is set. The only remaining source is to look at the data (either 

our own or of various vendors) from the experiments using the TPC-C [38] benchmark. However it is not clear 

how reasonable a prior based on these results would be due to the differences in the profile that will exist 

between the TPC-C client application and the bug scripts. Therefore we have decided to define the prior 

distribution for all proportions as uniformly distributed in the range 0 to 1, i.e. be ‘indifferent’ between the 

possible chances of the servers exceeding the set timeout.  

Prior Distributions for Incorrect and Late Results  ),,|(,| LIiPPp PPSf
LIIL

•  

All conditional prior distributions of the probability of a result being at the same time incorrect and late were 

defined in the range [0, min(PI,PL)] (since the probability of incorrect and late responses cannot be greater than 

the probability of either of the two individually). This is again due to the rather unique profile, under which we 

apply the inference and the lack of comparable studies that would enable us to define different priors than 

assuming ‘indifference’. 

Priors for Probabilities of a Bug Being Selected From the Partitions 

For the comparison of the servers we use a distribution defined on the set of partitions, which does not favour 

any of the servers, i.e. we assumed that probability of each partition is 0.25 in the study with 4 servers12.  

5.2.3 Observations 

The observations using the known bugs of four off-the-shelf servers are given in Table 6. We can see that the 

number of bugs collected for each server was different, which indicated that the empirical evidence differs 

between the partitions. The reasons for this was merely differences in the reporting practices operated by the 

vendors of the servers, e.g. unavailability in the public domain of fully reproducible bug scripts for the 

commercial servers (especially CS1). Therefore, the sizes of the samples from the partitions on each server are 

different. Additionally, these servers are not functionally identical: they offer different degrees of compliance 

with the SQL standard(s) and even proprietary extension to SQL. Bugs affecting one of these extensions, 

therefore, cannot exist in a server that lacks the extension. In other words, such bug scripts will provide empirical 

evidence for the server they were reported for but not for the other servers. We called these “dialect-specific” 

                                                           

12 We could have used the number of known bugs for each of the partition to construct a profile consistent with the 

observations. This is not acceptable for two reasons: i) it will favour poor bug reporting practices, and ii) we would have 

used the bugs twice – once in the inference procedure and another time for the profile, which is theoretically unsound. 
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bugs. Due to this, not all the bugs reported for a server can be run on the other servers. Therefore the number of 

‘foreign’ bug reports varies between the servers. The interested reader will find an extensive discussion of the 

study with the bugs in [37]. 

Table 6 – The observations for the 4 off-the-shelf servers on the bug reports of the different partitions. In the partition 
column we have stated for which server these bugs have been reported.   

COTS Partition 
Number of 

demands n 
r1 r2 r3 

0.7PGS  57 41 0 11 

0.6IBS  28 1 0 0 

1CSS  4 1 0 0 

PG 7.0 

2CSS  18 6 0 0 

0.7PGS  24 0 0 0 

0.6IBS  55 37 3 7 

1CSS  4 0 0 0 
IB 6.0 

2CSS  12 1 0 0 

0.7PGS  30 0 0 0 

0.6IBS  31 0 0 0 

1CSS  18 10 1 3 
CS1 

2CSS  12 0 0 0 

0.7PGS  33 2 0 0 

0.6IBS  35 2 0 0 

1CSS  4 0 0 0 
CS2 

2CSS  51 28 6 5 

5.2.4 The Posterior Results 

The 50th and 99th percentiles of the marginal distribution, )(•w
Serp

f 13, associated with each server is shown in 

Table 7. Since the prior distributions are identical for each of the components, then the ordering of the 

components in the posteriors will be determined by the observations. The best server, across all the percentiles is 

CS1. This is not surprising since CS1 did not fail for any of the foreign bugs. The second best server is CS2, 

although IB 6.0 is very close, both at the 50% and the 99% level of confidence. This is somewhat surprising at 

first given that this server failed more on the foreign bugs than IB6.0. However, the total number of foreign bugs 

that could be run on CS2 (72) is much higher than IB6.0 (40). Additionally the number of Heisenbugs for CS2 is 

also much higher (23.5%) than IB6.0 (14.5%), which leads to the CS2 being better in the posteriors.  

Table 7 - The table shows the percentiles of the system quality )(•w
Serp

f for each server. 

Percentiles 0.5 0.99 

COTS PG7.0 IB6.0 CS1 CS2 PG7.0 IB6.0 CS1 CS2 

Priors  0.77 0.77 0.77 0.77 0.94 0.94 0.94 0.94 

Posterior 0.42 0.32 0.24 0.3 0.55 0.45 0.32 0.42 

                                                           

13 We omitted the detailed results related to the individual partitions due to a lack of space. 



Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach      19 

5.3. Discussion of the Results for the Two Setups 

We have seen that under the more ‘stressful’ profiles (i.e. Scenario 4 in the TPC-C study and the Bugs study) the 

best COTS component is CS1. The fact that we have come to the same conclusion using rather different testing 

methods and different profiles would give us an extra assurance that CS1 is indeed the best component for 

applications with more stringent reliability and performance requirements which operate at greater transaction 

load and level of concurrency. However if the concurrency is low, then even with more rigid performance 

requirements (Scenario 2) Firebird 1.0 server, which is open-source and freely available, comes out as the best 

server. 

The two studies are also in agreement with respect to the worst server – these are the PostgreSQL components.  

We could also use the outcome of the studies as a validation of the proposed method. CS1, which came out best, 

is widely accepted by the database community to be the best SQL server and has by far the largest share in the 

market of SQL servers. This gives some confidence that both the data that we used is sufficiently informative to 

allow for meaningful and accurate discrimination between the competing components and the method itself is 

trustworthy to provide rigorous ground for accurate COTS component selection. 

5.4. Further, Contrived Examples 

In the empirical study with the SQL servers we could not fully illustrate the interplay between the dependence 

and the uncertainty in the values of the attributes due to the empirical results often being strikingly different for 

each server and also because the prior distributions that we started with were the same for each server. In this 

section we provide some further numerical examples, which illustrate the usefulness of handling uncertainty and 

dependence between the attribute values explicitly. We comment on the cases where the choice of the best 

COTS component would differ with conventional assessment methods which rely on point estimates of the 

attribute values and make assumptions of independence between the values of the attributes. We also discuss the 

effect of the priors on the selection, including different priors for each of the competing components. The choice 

of prior distributions and the observations serve illustrative purposes only. The prior, ),,(,, •••
ILLI pppf , was 

constructed under the assumption that PI and PL are both Beta independently distributed random variables, 

),,( baBeta • , defined in the interval [0, 0.01]14, i.e. )()(),(, ••=••
LILI pppp fff . The conditional 

distributions, ),|(,| LIppp PPf
LIIL

• , for every pair of values of PI and PL are also assumed to be Beta 

distributions, ),,( baBeta • . Clearly they are defined in the range [0, min(PI, PL)]. Note that we do not provide 

any justification for the choice of the prior distributions used here, and neither for the interval on which the 

distribution is defined; the particular choice of the type of the prior is dictated by some convenience offered by 

Beta distribution in the examples given below. The assessor can choose any prior distribution and interval that 

best represents his/her prior beliefs. 

                                                           

14 In all numerical calculations we used the function BETADIST (x, alfa, beta, lowerbound, upperbound) implemented in 

many standard libraries, see for instance [46]. The last two parameters, lowerbound, upperbound ∈ [0, 1], define the 

domain (i.e. the range of x) of the distribution. 
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5.4.1 Same Priors 

In the first example we consider 3 different COTS components, referred to as C1, C2 and C3 respectively for 

which the prior information does not give any reasons to prefer one to another, i.e. we are indifferent between 

C1, C2 and C3. The prior distributions, therefore, for all three COTS components are identical. We assumed 

Beta distributions as described above, with parameters given as follows: 

- Beta (2, 10) defined on [0, 0.01] for pfd associated with incorrect results )(•
Ip

f ;  

- Beta (2, 10) defined on [0, 0.01] for pld associated with late results )(•
Lp

f ;  

- Beta (3, 3) for the conditional distribution ),|(,| LIppp PPf
LIIL

• .  

This completes the definition of the tri-variate distribution, ),,(,, •••
ILLI pppf .   

The assumed observations for these three COTS components are given in Table 8.  

For Observation 1 the total number of incorrect or late results are the same for C2 and C3: 5 each. But the failure 

correlations differ in the two components: for C2 these failures happen on 5 demands (i.e. each of these 5 

demands gives both an incorrect and a late response), whereas for C3 they happen on 10 demands (the responses 

are either incorrect or late). For Observation 2 both the total number of failures and the failure correlation are 

different in the three COTS components.  

Table 8 - Observations from testing the COTS components. All observations are from test campaigns of 5000 demands. The 

observations differ by the number of incorrect (r1+ r3) and late (r2+ r3) responses and the number of incorrect & late (r3) 
responses.  

Observation ID Number of demands, n COTS r1+r3 r2+r3 r3 

C1 0 0 0 

C2 5 5 5 Observation 1 5000 

C3 5 5 0 

C1 20 10 10 

C2 13 13 10 Observation 2 5000 

C3 10 10 0 

Table 9 shows the results using the percentiles of the prior/posterior distributions of the probability of an 

inadequate response PSer. The posterior distribution for Observation 1 reveals that C1 is clearly the best 

component, since testing revealed no failures for this component. The interesting results are for C2 and C3. Even 

though the total number of failures observed for C2 and C3 is the same we can still distinguish between them 

since the types of failures observed in both cases differ. Positive correlation between the two types of failures is 

observed for C2 whereas the correlation observed between the types of failure for C3 is negative. As a result, the 

posterior distribution of C2 after testing with Observation 1 is better than that of C3 for all percentiles. Using 

conventional methods of assessment, where the attributes are assessed independently, this distinction would 

have not been possible since the marginal distributions for the two attributes are the same in both C2 and C3 

leading to identical results for these two components. We commented on a similar observation for IB 6.0 and 

CS2 servers in section 5.1.3. 

The posterior after the Observation 2 is also interesting. The total number of failures observed in C3 is the lowest 

(20 in total) in comparison with C2 (26) and C3 (30). However the correlation between the two types of failures 

is very different. In C3 there is a maximum negative correlation between the two types of failure (the observed 

failures are either incorrect or late responses but not both). For C2 we see 10 incorrect results which are also late. 

And for C1 we see that all late results are also incorrect. Thus, the observations indicate different degrees of 
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correlation between the two types of failure, which as a result, translates into quite different posteriors for the 

three COTS components. We would choose C2 as the best COTS component despite the total number of failures 

(26) observed during testing for this component being higher than the total for C3 (20). This example clearly 

indicates that the ‘uncertainty explicit’ assessment method proposed in this paper and conventional assessment 

methods15 would have concluded differently regarding which of C2 and C3 should be chosen. The reason for this 

difference is the correlation between the two types of failure, which we take into account while the conventional 

methods, which are based on separate assessment of the attributes, would ignore. 

Table 9 - The table shows the percentiles of the chosen parameters of system quality. 

Percentiles 0.5 0.99 

COTS C1 C2 C3 C1 C2 C3 

System Quality PSer = PI + PL – PIL 
Priors  0.0025 0.0025 0.0025 0.0061 0.0061 0.0061 

Observation 1 0.0005 0.0011 0.002 0.0015 0.0024 0.0037 

Observation 2 0.0033 0.0027 0.0036 0.0051 0.0044 0.0056 

5.4.2 Different Priors, Same Observations 

In the second example we will consider 2 different COTS components, COTS 1 and COTS 2 referred to as C1, 

and C2. The assumed testing results for C1 and C2 are identical. The prior distributions, however, for the two 

COTS components are now different. We will define Beta distributions again but with different parameters for 

each COTS component, as given in Table 10. The ranges on which the marginal distributions are defined remain 

the same as in section 5.4.1 

Table 10 - The parameters (a, b) for the Beta prior distributions defined for each COTS components. 

COTS 
Reliability  

)(•
Ip

f  

Performance  

)(•
Lp

f  

Conditional distribution: 

),|(,| LIppp PPf
LIIL

•  

C1 (5,5) (5,5) (3,3) 

C2 (15,14) (15,14) (9,9) 

 

A high value for parameter a of the Beta distribution means that the distribution is shifted to the right – in our 

context it represents a prior belief that the number of failures will be high, whereas the b parameter shifts the 

distribution to the left (i.e. a prior belief that the number of failures will be low). The higher the values are, the 

smaller the uncertainty. We can see for example that C1 and C2 are going to have very similar mean values (the 

mean of the Beta distribution being a / (a + b)) but the prior distribution for C2 is being expressed with much 

greater certainty. Therefore the prior distribution of C2 will be much less ‘spread’ from that of C1 as is 

illustrated in Fig. 2.   

                                                           

15 The conventional methods not exploring the dependence in the values of the attributes would conclude that C3 is better 

than C2. 
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Fig. 2 - The prior distribution for the probability of an inadequate response (PSer) for C1 and C2. We can see that the prior 

distribution for C1 is more ‘spread’ than that of C2 which reflects the assessor’s higher uncertainty in the prior beliefs for the 

values of C1. 

We do not make any claims that the priors used in the examples should be used in practical assessment. They 

serve illustrative purposes only and yet, have been chosen from a reasonable range. For example, the mean of PI 

for C1 is 5*10
-3
, which is a value from a typical range for many software components. 

One set of observations were used for the calculations with the number of trials, N = 5000 as shown in Table 11. 

Table 11 - Observation 3 from testing the COTS components. 

Observation ID Number of tests, N COTS r1+r3 r2+r3 r3 

Observation 3 5000 All 4 4 1 

 

Table 12 shows the results using the percentiles of the prior/posterior distributions of the probability of an 

inadequate response PSer. The structure of the table is similar to that of Table 9. 

Interesting points with reference to these posterior values are: 

- At the 50
th
 percentile, if the selection is based on the prior values then C1 is the best component. However at 

the 99th percentile16 then the ordering changes: C2 is now the preferred choice over the two. For those 

assessors who prefer to minimize the risk of making ‘wrong’ decisions with high confidence (i.e. 90%+), C2 

is the better choice. This type of distinction would have not been possible in the conventional methods of 

COTS component assessment, which use point values rather than distributions. 

- The posterior values of C2 have shifted significantly in comparison with the priors but not as much as those 

of C1, even though the testing results for these two components are the same. This is due to the prior 

distributions: for C1 the prior distribution was highly spread, signifying that the uncertainty was high prior to 

testing; the opposite is true for C2. Therefore the posterior distribution of C1 is influenced by the testing 

results much more than that of C2. 

Table 12 - The table shows the percentiles of the chosen parameters of system quality. 

Percentiles 0.5 0.99 

COTS C1 C2 C1 C2 

System Quality PSer = PI + PL – PIL 
Priors 0.0078 0.0079 0.0122 0.0106 

Observation 3 0.0028 0.0046 0.0048 0.0065 

                                                           

16 The same ordering was observed for all percentiles higher than 90th. 

C1 

C2 
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 6 Discussion of Applicability of the Proposed Assessment Method 

6.1 Many Assessment Attributes 

We have illustrated in the previous sections how the assessment can be done for the reliability and performance 

attributes, which are usually the most important attributes for software COTS components compliant with a 

known specification (e.g. SQL servers, J2EE Application servers, Business Process Execution Engines [47] etc.). 

For such software components (products) we consider repeating the measurements described in section 5 are 

feasible. We illustrated that, even for assessments in which only two attributes are considered, taking account of 

the dependence that exists between these attributes can lead to a different decision on which COTS component to 

choose compared with the methods that do not account for this dependence. 

It is a common practice that COTS components are assessed in terms of more than 2 attributes, usually many 

more. Among attributes that are suitable for quantitative measurement are: 

- “Recoverability” (which again can be characterised in terms of correctness of the recovery and the timeliness 

of the recovery) [48]. 

- “Usability” (which can also be characterised in terms of the correctness with which a user performs an action 

with a given system, and timeliness of their actions). This kind of objective characterisation of usability may 

be especially important in socio-technical applications, especially those which are safety-critical, such as Air 

Traffic Control, in which the controllers’ accuracy and timeliness of their actions are important.  

The obvious question, therefore, is whether the proposed ‘uncertainty explicit’ assessment ‘scales up’ to many 

attributes. Formally, the question is how the method applies if we have to compare COTS components, each of 

which is represented by a multivariate distribution ( )np aaaf ,...,, 21 . The assessment will deliver posterior 

distributions ( )assessmentaaaf np |,...,, 21 , which will be used in the comparison. A new variable should be 

defined as a function of the variates of the distribution {a1, a2, …, an}, e.g. a weighted sum of all the attributes. 

The uncertainty associated with this aggregate variable is easily derived from the joint 

posterior ( )assessmentaaaf np |,...,, 21 . Even though mathematically possible, Bayesian inference with 

multivariate distributions is difficult. The difficulty has two aspects: 

- Specifying a multivariate prior distribution becomes very difficult because many non-intuitive dependencies 

between the attributes must be defined and justified. 

- Manipulating a multivariate distribution is non-trivial even using the most advanced math/statistical tools. 

Calculating the posterior distribution is impracticable with more than 3 variates and without simplifying 

assumptions about the dependencies between them. 

To partially overcome these difficulties a divide-and-conquer approach can be employed. First the attributes can 

be grouped into smaller groups so that there are dependencies within the groups, which the assessment can 

capture, but the groups are assumed independent. In other words, knowing the values of the attributes in one 

group does not change the assessor’s knowledge (belief) about the values of the attributes included in the other 

group. Assume that our initial multivariate distribution can be represented as two independent groups of 

attributes: 

- ( ) =nppp aaaf
n

,...,, 21,..., 21
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( ) ( )nsspppsppp aaafaaaf
nssss

,...,,,...,, 21,...,21,..., 2121 +++++
×  

- the likelihood of observing the COTS component in operation can be expressed as: 

( )( )=nppp aaafnobservatioL
n

,...,,| 21..., 21
( )( )×sppp aaafnobservatioL

s
,...,,| 21...,1 21

 ( )( )nssppp aaafnobservatioL
nsss

,...,,| 21,...,2 21 +++++
 

In this case, it trivially follows that: 

( ) =assessmentaaaf nppp n
|,...,, 21,..., 21

 

( )×assessmentaaaf sppp s
|,...,, 21,..., 21

( )assessmentaaaf nSsppp nsss
|,...,, 21,..., 21 +++++

 

We have so far defined three groups of attributes with which assessment can be performed 

(Reliability/Performance, Recoverability and Usability). Other groups of attributes may also exist (even though 

our survey of COTS attribute definition papers (e.g. [16], [20]) found very few attributes that lend themselves to 

objective assessment).  We should note, however, that there are dependencies even amongst the groups identified 

(for example, we may observe that incorrect results and incorrect recovery actions are highly correlated). 

Assuming that these belong to independent groups will prevent us from learning about these dependences. 

Despite this potential deficiency, however, there is clearly an improvement over the existing methods, in which 

every single attribute is treated independently. 

6.2 Decisions on How to Perform the Assessment 

We outlined the problems with assessment of a large number of attributes due to the complex set of 

dependencies that may exist between the different attributes. The higher the number of attributes to be assessed 

and the higher the number of independence assumptions that are made the more difficult it becomes to place a 

high degree of confidence in the results obtained from the assessment. The limitations we have outlined in 

section 6.1, however, are not specific to our assessment method; in fact they are more serious for the 

conventional methods in which the individual attributes are assessed separately. We illustrated with numerical 

examples in section 5.4 that even when the assessment is done using two attributes, ignoring the dependence 

between the values of the attributes may lead to wrong decisions: a sub-optimal component may wrongfully be 

chosen as the best one. If this could be observed with only two attributes, then it is bound to be much more 

pronounced with more than two attributes, where many more dependencies may exist between the values of the 

attributes.   

Doing the assessment with ‘independent groups’ of attributes also has its problems. It can only be applied if the 

assessor can justify that assuming a set of independent pairs is plausible. Despite this problem, however, using 

small independent groups is still an improvement compared with the extreme assumption used implicitly in the 

existing assessment methods surveyed, that all of the attributes are independent.  

It is worth pointing out that many of the attributes, such as ‘has the required functions’, various forms of 

compliance, e.g. ‘complies with certain standards’, “backward compatibility”, etc. [16], do not require any 

uncertainty attached to their values. Assessment with respect to such attributes normally leads to a reduction of 

the number of the COTS components (which satisfy all these ‘binary’ attributes), for which the more thorough 

assessment with respect to the remaining ‘non-binary’ attributes needs to be done [49]. 
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6.3 The Types of COTS Components for Which the Assessment Method Can be Applied 

The method of assessment proposed in this paper would be applicable to any family of COTS components. The 

setup described in section 4 and illustrated in section 5 is particularly relevant for COTS components with 

stringent reliability and performance requirements. In section 5 we provided empirical results using off-the-shelf 

database servers. There is a plethora of off-the-shelf database servers, both open source and commercial. 

Deciding which one to choose among the many choices available overwhelmingly depends on the reliability of 

servers and their performance.   

Java Virtual Machines (JVMs), various Application Servers, Web Servers and Business Process Execution 

Engines [47] are also examples of COTS components where reliability and performance requirements are 

usually the deciding attributes for selection. Fault and failure reports, which can be used as observations, do exist 

for these products and so do performance benchmarks (e.g. ab benchmarking tool for web servers [50]). 

Therefore, similar measurements to what we did for database servers are also possible with these other families 

of COTS components. In many cases for these components one may not need to deal with more than 2 attributes, 

which makes our 2-attribute model proposed in section 4 immediately applicable without any further 

simplifications. 

6.4 Other Ways of Eliciting the Prior Distributions 

The prior definition in Bayesian assessment is crucial. In our studies we have assumed that prior distributions for 

each component are the same. This was due to the unavailability of other known ‘objective’ evidence that we 

could use to define more reasonable priors. Anecdotal evidence about the servers does exist, but is difficult to 

translate these subjective beliefs into priors in the form required by our method. By assuming that the prior 

distributions were the same for each server, the decision on which server is chosen is dictated by the 

observations only. As a result the decision of the types of distributions for the random variables in our study 

becomes less important.  

However there are other ways of deriving more reasonable priors. We could, for example, utilize evidence from 

earlier versions of the servers and then do multiple steps of inference, i.e. if we want to perform the assessment 

with later versions of the servers in our study (e.g. with versions of PostgreSQL after release 7.2 or Firebird after 

release 1.0) we can use the posteriors derived here as priors for the later versions, collect the new evidence for 

the later versions and then use the model to derive the posteriors for each. This approach has also been reported 

elsewhere [21]. 

7. Conclusion 

To handle the inherent uncertainty in the COTS component assessment we propose the use of “uncertainty 

explicit” methods. As a Bayesian approach to representing uncertainty has been successfully applied in other 

contexts of assessment we have defined a Bayesian model that can be used for assessment of COTS components 

with respect to two related attributes. This approach complements the conventional selection procedures with 

more powerful calculus, which can take into account the uncertainty explicitly.  
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We have conducted an empirical study with off-the-shelf database servers which also illustrated the use of the 

method. The contribution of this paper is in several aspects: 

- We have demonstrated in the context of the COTS component assessment how to apply the Bayesian 

methods which have had some popularity in reliability assessment of both software and hardware.  

- We have described the use of the model in selecting the best off-the-shelf database server from a sample of 

different servers, using two sources of data:  

- Experiments using an implementation of TPC-C benchmark for database severs. 

- Known faults reported for four different servers. 

- We recommend that the ‘uncertainty explicit’ assessment methods be considered at least as a non-expensive 

warranty against badly sub-optimal decisions possible with the conventional COTS component selection 

methods (we provided contrived numerical examples which show examples of sub-optimal selections of 

COTS components if uncertainty or dependence in the values of the attributes are ignored). 

- We have also demonstrated how our model can be extended and used with a partitioned demand space which 

allows utilization in the inference of all the evidence available from the different partitions. 

An interesting observation from the study with SQL servers is that the results of the inference with the more 

stressful setups (Scenario 4 of the TPC-C study and the bugs study) both lead to CS1 being preferred as the best 

server and PG servers being the worst. This may give the assessor further assurance of preferring CS1 for an 

application with more stringent reliability, performance and concurrency requirements given that it performed 

best under two very different but ‘stressful’ profiles. Interestingly, CS1 is considered by the DB community as a 

leader among the SQL servers vendors, which may be seen as validation of the method’s usefulness for making a 

correct choice among several similar COTS components despite the scarcity of the data that we could use. 

There are several well-known difficulties of using Bayesian assessment - it does not scale up well due to: 

- The difficulty with specifying a multivariate prior distribution when the number of attributes to be assessed 

increases, unless independence is assumed among the attributes. Defining the prior is crucial. It may be 

difficult for practitioners, not comfortable with non-trivial math, to express their individual beliefs as 

probability distributions.  

- The difficulty with manipulating a multivariate distribution, which becomes impracticable with more than 3 

variates if no simplifying assumptions are made.  

Future work that is desirable includes: 

- Methods are needed which would allow for effective assessment with a large number of related attributes. 

Currently the ‘uncertainty explicit’ assessment only works with a limited number of related attributes (or 

with independent groups of attributes in which the number of attributes in the groups is small). 

- Further development of the theoretical framework is needed for cases of groups of more than 2 dependent 

attributes. Conceptually, the multivariate inference is no different than the 1- and 2-variate inferences. Its 

practical use, however, is currently problematic. 
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