

City, University of London Institutional Repository

Citation: Gashi, I., Popov, P. T. & Stankovic, V. (2009). Uncertainty explicit assessment of

off-the-shelf software: A Bayesian approach. Information and Software Technology, 51(2),
pp. 497-511. doi: 10.1016/j.infsof.2008.06.003

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/514/

Link to published version: https://doi.org/10.1016/j.infsof.2008.06.003

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Uncertainty Explicit Assessment of Off-The-Shelf Software: A
Bayesian Approach

Ilir Gashi, Peter Popov, Vladimir Stankovic

Centre for Software Reliability,

City University,

Northampton Square

London EC1V 0HB

United Kingdom

Tel: 020 7040 0273, 020 7040 8963, 020 7040 0273,

Fax: 020 7040 8585

http://www.csr.city.ac.uk

{I.Gashi, V.Stankovic}@city.ac.uk,

 {ptp}@csr.city.ac.uk

Abstract. Assessment of software COTS components is an essential part of component-based software

development. Poorly chosen components may lead to solutions of low quality and that are difficult to

maintain. The assessment may be based on incomplete knowledge about the COTS component itself and other

aspects (e.g. vendor’s credentials, etc), which may affect the decision of selecting COTS component(s). We

argue in favor of assessment methods in which uncertainty is explicitly represented (‘uncertainty explicit’

methods) using probability distributions. We provide details of a Bayesian model, which can be used to

capture the uncertainties in the simultaneous assessment of two attributes, thus, also capturing the

dependencies that might exist between them. We also provide empirical data from the use of this method for

the assessment of off-the-shelf database servers which illustrate the advantages of ‘uncertainty explicit’

methods over conventional methods of COTS component assessment which assume that at the end of the

assessment the values of the attributes become known with certainty.

Keywords: COTS component assessment, reliability and performance assessment, Bayesian inference

1. Introduction

The use of commercial-off-the-shelf (COTS) components in software development is ubiquitous. There are

many benefits to using COTS components stemming from the incentive to cut down on cost and development

time and to improve quality by using tried and tested components. An essential part of component-based

software development is the assessment of available COTS components. Various assessment methods have been

proposed [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. The results of these assessment

techniques crucially depend on assuming that the values of the assessed attributes will be known with certainty

at the end of the assessment. However, since the assessment is carried out with limited resources of time and

budget the outcome is subject to uncertainty.

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 2

We propose an assessment method, in which the assessment results are subject to explicitly stated uncertainty

and discuss how this may impact the selection of COTS software. The method also enables representing the

dependencies that exist between the uncertainties associated with the values of the COTS component attributes,

which affect the decision about which of the available COTS components to choose. It also encourages assessing

the dependent attributes simultaneously, thus identifying the dependencies that may exist between the values of

the attributes which may affect the choice of component(s). We provide empirical results from a study with off-

the-shelf database servers, which demonstrate how the assessment method can be used in practice.

The paper is structured as follows: section 2 contains a brief review of related work on COTS component

assessment and attribute definitions; section 3 contains an overview of the problems that need to be addressed

during COTS component assessment; in section 4 we describe models of assessment, in which model parameters

(values of the attributes to be assessed) are not known with certainty and argue in favor of using probability

distributions as an adequate mechanism to capture this uncertainty; in section 5 we give details of an empirical

study with off-the-shelf database servers and also some contrived numerical examples, which illustrate the

advantages of handling uncertainty and dependence between the values of the attributes; section 6 contains a

discussion of the scalability and applicability of the method proposed; and finally in section 7 we present

conclusions and possible further work.

2. Related Work

2.1 COTS Assessment Methods

There is a wide variety of COTS component assessment approaches available. All of them start with an initial

statement of requirements, which defines what is being sought. It has been proposed that the requirements

initially should not be too stringent, since this would discard potentially appropriate COTS component

candidates at a very early stage [9], [15]. It has even been suggested [15] that if the requirements are not flexible

then the COTS-based development may not be appropriate and bespoke development could be more cost-

effective. So initially [15] suggests distinguishing between essential requirements and those that are negotiable.

The selection criteria are then based on the essential requirements.

Off-the-shelf-option (OTSO) [2] is a multi-phase approach to COTS component selection. The phases are: the

search phase, the screening and evaluation phase and the analysis phase. In the first phase COTS components are

identified. In the screening and evaluation phase the components are further filtered using a set of evaluation

criteria (established from a number of sources, including the requirements specification, the high level design

specification etc.). In the analysis phase results of the evaluation are analyzed, which lead to the final selection of

COTS components for inclusion in the system. Other similar multiphase process approaches for COTS

component evaluation that have been proposed include CEP (Comparative Evaluation Process Activities) [7],

CBA Process Decision Framework [8] which in addition to defining a process for COTS component assessment

also defines two other processes: COTS integration (“gluing”) and COTS configuration (“tailoring”); CAP-

COTS Acquisition Process method [5] and PECA Process [13].

Procurement-oriented requirements engineering (PORE) [1] is a process in which requirements are defined in

parallel with COTS component evaluation and selection. [1] propose using prototypes to develop knowledge

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 3

concerning COTS components and their use within the wider system. Other methods that are centred on the

requirements to assist with the COTS component selection process are CRE-COTS-Based Requirements

Engineering Method [6], Storyboard Process [11], Combined Selection of COTS Components [12] and COTS-

DSS [14].

CISD (COTS-based Integrated System Development) [4] and CDSEM (Checklist Driven Software Evaluation

Methodology) [3] are both checklist-based evaluation methodologies. STACE (Socio Technical Approach to

COTS Evaluation) [10] is a socio-technical approach to evaluation which builds on work of [1] and [2] and

emphasizes the organizational issues related to COTS selection.

2.2 Attribute Definition Methods

Extensive work has been also reported on definition of COTS component assessment attributes. A

comprehensive list is given in [16]. They group the attributes in two categories depending on how they can be

measured: Attributes Measurable at Runtime (which contain Accuracy, Security, Recoverability, Time Behavior

and Resource Behavior) and Attributes Measurable during Component Life-Cycle (Suitability, Interoperability,

Maturity, Learnability, Understandability, Operability, Changeability, Testability and Replaceability). These

attributes are further divided into more fine-grained attributes, which are measurable using their proposed

metrics of: presence, time, level and ratio. This work [16] follows the spirit of the guidelines for attribute

definitions outlined by the international standardizing organizations ISO [17], and IEEE/ANSI [18] in a broader

context, not specific to COTS component attributes. COCOTS framework by Abts et al. [19], and Torchiano and

Jaccheri [20] also provides COTS attribute definitions.

3. Problems with COTS Component Assessment

3.1 Motivation

Any assessment is conducted with limited resources and under various assumptions, which may not hold true in

real operation. As a result the outcome of the assessment is subject to uncertainty – the assessor may never be

100% sure that what they concluded during the assessment (both about the values of the attributes as well as the

choice of a COTS component) will be confirmed when the COTS component is used in operation. This is clearly

true for some parameters, which can be estimated objectively, e.g. failure rate, performance, etc. For failure rate,

for instance, even after a very thorough testing one can only identify a range of rates which are more likely than

others. For instance, Littlewood and Wright have shown [21] that starting with indifference between the values

of the failure rate (i.e. uniform distribution of the failure rate in the range [0, 1]) and seeing a protection system

process correctly 4603 demands translates into 99% confidence that this system’s probability of failure on

demand (pfd) is no worse than 10-3. The same equally applies to attributes assessed subjectively, e.g. using the

Likert scale [22], widely used in the COTS component assessment. It may be difficult for an assessor to justify

that a COTS component must be ranked at exactly, say 7 out of 10, according to a chosen scale but he/she may

be certain that the ‘true’ value of the attribute is in the range [6, 7].

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 4

The value of expressing the assessment results in the form (value, confidence) has been recognized in some other

technical areas which dealt with assessment. The best performing software reliability-growth models (RGM)

which predict the failure rate from the observed failures in the past, for instance, are those in which the model

parameters are treated as random variables [23]. In these models the ‘true’ values of the attributes being assessed

are never assumed known with certainty. Instead the attribute is characterized by a probability distribution, from

which the true value of the attributes will come (i.e. are seen as drawn at random). For each reliability target,

then, the assessor can tell the probability that the true reliability is lower than the target. Such models

systematically outperformed the alternative simplistic methods in which the parameters were assumed to be

known with certainty [24]. If the ‘uncertainty explicit’ models have been best with one specific method of

assessment – software reliability – it seems natural to try similar ‘uncertainty explicit’ methods for other

assessments, e.g. evaluation of COTS software and selecting the best out of a set of comparable alternatives.

This is the focus of this paper.

There are various methods for representing uncertainty [25]. Bayesian approach to probabilistic modelling is one

of the best-known ones and used with some success in reliability assessment [24], [21]. It allows one to combine,

in a mathematically sound way, the prior belief (which may be ‘subjective’) about the values of a parameter or a

set of parameters to be assessed with the (‘objective’) evidence from seeing the modelled artefact in operation.

Combining the prior belief and the evidence from the observations in a mathematically correct way leads to a

posterior belief about the values of the assessed attribute(s).

How does ‘uncertainty explicit’ assessment differ from the conventional deterministic assessment? With

deterministic assessment point estimates of the attributes are used. A common approach of comparing the

alternatives is then to use a weighted sum of the estimates for each of the alternatives. When uncertainty is

accounted for, this approach is still possible – we can use various characteristics of the posterior distributions

(mean, median, etc.) of the attributes as estimates and then calculate the weighted sum for each of the COTS

components included in the assessment before deciding which is the best one. When uncertainty is explicitly

used in the assessment, however, more refined ways of comparison are possible: from the posterior one can

express the uncertainty in the value of the comparison criterion, e.g. the weighted sum of the attributes. Since

the value of the weighted sum is now uncertain we have a range of options. We may give preference to the

COTS component for which the mean (median) value of the weighted sum is the best (as we would have done

with point estimates of the attributes). With uncertainty stated explicitly a range of new options exists, which is

illustrated in Fig. 1.

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 5

Fig. 1 - The pfd for two different COTS components

In this figure we illustrate the value of handling uncertainty explicitly even when dealing with a single

assessment attribute, COTS component reliability. Let us assume that Fig. 1 illustrates the cumulative

distribution function (c.d.f.) graph for two COTS components with the same average pfd. If we wanted to

choose the COTS component that has the highest probability of having a pfd of no worse than 6*10-3 (i.e. the

value of the x-axis of 0.006) then we would choose COTS component A, whereas the COTS component with the

highest probability of having a pfd of no worse than 4.10
-3
 is COTS component B. We can also see clearly that

the distribution of the pfd of COTS component B is much more spread than that of COTS component A (in fact

the distribution of COTS component B is uniformly spread across all the values from 0 to 10
-2
). Therefore there

is a much higher uncertainty associated with the values of COTS component B than that of COTS component A.

Stating uncertainty explicitly offers the assessor a wider range of options in selecting the most appropriate COTS

component.

3.2 Dependence among Attributes

COTS component assessment requires dealing with multiple attributes of the COTS components being

compared. The selection of a particular COTS component, thus, is a multi-criteria decision which taken under

uncertain values of the attributes naturally leads to the question about the dependence between the uncertainties

associated with the individual attributes. Ignoring the possible dependence between the uncertainties in

attributes’ values represents a particular form of belief: that assessing attribute X one can learn nothing about

another attribute, Y. For example, performance of a COTS component will hardly tell anything about the quality

of its documentation and vice versa. It is quite obvious, however, that not all COTS component attributes are like

that. In many cases while assessing an attribute X the assessor may infer something about the values of another

set of attributes. For instance, if we devise a prototype in order to assess the functionality of a COTS component

we will also learn something about the performance (how quickly this COTS component responds to requests)

and how reliable the COTS component is. A more subtle, but very useful concept, as we will see later, is that the

uncertainties associated with the assessed attributes may be dependent. Informally, assume that we want to

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 6

assess the reliability and performance of a COTS component. We may assume that the uncertainties associated

with these two attributes are independent, in the statistical sense. Under this assumption learning something

about reliability will tell us nothing about performance and vice versa. Now suppose that we have run a very

long testing campaign and have repeatedly observed that whenever the response was late it was also incorrect

and no other incorrect response has been observed. With such evidence of a strong positive correlation between

the failures (incorrect responses) and the responses being late, we may accept that any change of our belief about

the rate of failure should also be translated into a change in our belief about the rate of late responses. The

assessment models surveyed invariably assume that the values of the attributes are independent and do not allow

for dependencies between their uncertain values to be captured adequately.

In summary, with the assessment method that we propose in this paper we aim to handle both the uncertainties

in the values of the attributes and the dependence that exists between the values of the different attributes. The

existing assessment methods we surveyed do not deal explicitly with either of these two uncertainties.

4. Assessment of COTS Components: a Bayesian Approach

In this section we briefly summarize how the Bayesian approach to assessment is normally applied to assessment

of a single attribute. Assume that the attribute of interest is the component’s probability of failure on demand

(pfd). If the system is treated as a black box, i.e. we can only distinguish between COTS component’s failures or

successes, the Bayesian assessment proceeds as follows. Let us denote the system pfd as p, with prior

distribution (probability density function, pdf))(•pf , which characterises the assessor’s knowledge about the

COTS component pfd prior to observing the COTS component in operation. Assume further that the COTS

component is subjected to n demands, independently drawn from a ‘realistic’ operational environment (profile)1,

and r failures are observed. The posterior distribution,),|(nrxf p , of p after the observations will be:

)()|,(),|(xfxrnLnrxf pp ∝ , (1)

where)|,(xrnL is the likelihood of observing r failures in n demands if the pfd were exactly x, which in this

case of independent demands is given by the binomial distribution,
rnr

xx
r

n
xrnL

−−







=)1()|,(. For any

prior and any observation (r, n) the posterior can be calculated2 for all the COTS components included in the

assessment. Even if no failure is observed (i.e. r = 0), the posterior can be calculated. Other measures of interest

can also be derived from this posterior, e.g. the probability that the COTS component will survive the next 5000

1 An operational profile [26] can be defined as a statistically accurate characterization of how the component will be used in

its ‘true’ environment.

2 The posterior can be calculated either by using a conjugate prior distribution [27], in which case the posterior distribution is

guaranteed to be in the same family as that of the prior for a given likelihood function (e.g. Beta distribution prior, with

Binomial Likelihood function, gives us a Beta distributed posterior) or it can be calculated through numerical methods and

approximations. In our case, since the conjugate family has limitations [28] we have used numerical methods to calculate

the posterior.

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 7

randomly chosen demands. This probability can be calculated for each of the COTS components included in the

assessment as follows:

() ()∫
∞

−
0

5000
,|1 dpnrpfp p .

Then the best COTS component will be the one, for which the integral above gets a maximum value.

4.1. A Model for Assessment of 2 Non-Independent Attributes

Typically, COTS component assessment is a multi-criteria decision with dozens of attributes usually assessed

and taken into account (as detailed in [2], [1], [5], [8]). The Bayesian assessment can be applied to multiple

attributes, too. For simplicity we first demonstrate the approach with two attributes and then discuss (in section

5) the implications of scaling it up to many attributes. A similar model to the one we describe here has been used

in the past in assessing reliability of various systems built with components [28], [29].

Let us assume that two non-functional attributes must be assessed, such as the COTS component’s pfd and

performance, the latter assessed in the form of whether the response is received on time or not, i.e. the

probability of a late response on demand, pld. Using a binary score – on time vs. late – is an adequate approach

when the COTS component is planned for integration in a larger system. In these circumstances using an

absolute scale, e.g. how long it takes a COTS component to respond to a demand, may be unnecessary: it will be

sufficient to know whether the response is received with an acceptable delay as dictated by the wider system. In

terms of comparison of several COTS components using the binary scale (on time/late) seems also adequate.

Any COTS component, which responds with an acceptable delay, is sufficiently good from the point of view of

the system’s integrator.

Here we define a model to help with the comparison of COTS components assessed by subjecting them to a

series of independently selected demands. Both, the COTS component’s pfd and pld, are used in the comparison

and different comparison criteria are discussed.

On each demand the response received from the COTS components is evaluated from two different viewpoints:

correct/incorrect and on time/late. Clearly 4 combinations exist, which can be observed on a randomly chosen

demand, as shown in Table 1.

Table 1 – The outcomes, their frequencies and probabilities for a random demand.

Event
Correct Response

(Reliability)

Response On-Time

(Performance)

Number of observations in

n demands
Probability

α No Yes r1 10p

β Yes No r 2 01p

χ No No r 3 11p

δ Yes Yes r 4 00p

The four probabilities given in the last column sum to 1. So if the first three probabilities are 0.2, 0.4 and 0.3,

respectively, then the last one 00p = 1 - (0.2 + 0.4 + 0.3) = 0.1. This constraint remains even if we treat the

probabilities in Table 1 as random variables: their sum will always be 1. Thus, the joint distribution of any three

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 8

of these parameters, e.g.),,(
111001 ,, •••pppf , gives an exhaustive description of the COTS component’s

behaviour. In statistical terms, the model of the COTS component with two binary attributes has three degrees of

freedom.

The marginal probabilities of getting an incorrect response on a random demand, let’s denote it pI, and of getting

the response late, pL, respectively, can be expressed as:

1110 pppI += and 1101 pppL += .

p11 represents the probability of receiving late an incorrect response. Hence, the notation pIL ≡ p11,

1110 pppI += and 1101 pppL += will capture better the intuitive meaning of the event it is assigned to.

Instead of using),,(
110110 ,, •••pppf another distribution, which can be derived from it through a change of

variables [30], can be used. In this section we use),,(,, •••
ILLI pppf which can be factorised as:

),|(),(),,(,,, LIpppppp ppfff
ILLIILLI

•••=••• (2)

For the prior joint distribution),(, ••
LI ppf above, we assume throughout this paper that the pI and pL are

independently distributed3. We capture the possible dependencies between the two failures processes

(characterized by pI and pL, respectively) by)(,| •
LIIL pppf . Hence the full joint prior distribution is given by:

),|()()(),,(,, LIpppppp ppffff
ILLIILLI

•••=••• (3)

For a given observation (r1, r2, and r3 in N demands) the posterior joint distribution can be calculated as:

∫∫∫

=

ILLI

ILLI

ILLI

ILLI

ppp

ILLIppp

ILLIppp

ppp

dxdydzppprrrNLzyxf

ppprrrNLzyxf

rrrNzyxf

,,

321,,

321,,

321,,

),,|,,,(),,(

),,|,,,(),,(

),,,|,,(

 (4)

where

321321)1()()(
)!(!!!

!

),,|,,,(

321321

321

rrrN
LIIL

r
IL

r
ILL

r
ILI

ILLI

pppppppp
rrrNrrr

N

ppprrrNL

−−−−−+−−
−−−

=

 (5)

is the multinomial likelihood of the observation (r1, r2, r3 , N).

4.2. Combination of Uncertainties in the Values of Attributes

For comparison of the COTS components we will define the following criterion:

Probability of an inadequate response, PSer, by the COTS component: of getting either an incorrect or late

response. Clearly, PSer = PI + PL – PIL. Its posterior distribution,),,,|(321 rrrNf
Serp • , can be derived from

3 The plausibility of making this independence assumption is explained in Appendix A.

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 9

the joint posterior,),,,|,,(321,, rrrNf
ILLI ppp ••• , by first transforming it, to for example

),,,|,,(321,, rrrNf
SerLI ppp ••• , and then integrating out the nuisance parameters PI and PL.

An often used selection method [31] in the literature is the weighted sum of the values of the attributes. The

weighted sum of the two attributes in our study can be calculated as follows: PS = kPI + (1-k)PL, in which the

constant k is defined by the assessor in the range 0-1. High values of k correspond to cases when incorrect results

are highly undesirable while late results may be tolerable. On the other hand, low values of k correspond to cases

when incorrect results may be tolerated by the system while late responses may have serious consequences. In

order to derive the marginal distribution of PS first the joint distribution),,,|,,(321,, rrrNf
ILLI ppp ••• is

transformed to),,,|,,(321,, rrrNf
SLI ppp ••• and then the nuisance parameters PI and PL are integrated out,

as above for PSer. However we will not be using this method of selection since the new variable PS does not have

an obvious intuitive meaning. The difficulty is compounded in our case since the uncertainty is stated explicitly.

It is impossible to say what a confidence of say 99% associated with a particular value of PS tells us about the

COTS component being assessed.

4.3. Partitioning the Demand Space

In some areas of software engineering, especially in testing, the usefulness of partitioning the demand space has

been recognised [32], [33], [26]. The demand space partitions typically represent different types of demands,

which may have different likelihoods of occurring in a realistic environment. Realistic testing, thus, would

require generating mixes of demands, which take into account the likelihood of the types of demands.

In our context, operating in a partitioned demand space may imply that the uncertainty associated with the

attributes of interest may differ among the partitions, e.g. as a result of different number of observations being

made for the different partitions.

If the demand space is partitioned into M partitions {S1, S2, … SM}, with a probabilistic measure { P(S1),…,

P(SM)}
 4, then for each of these the assessment will be performed as described above, e.g. with two attributes the

description provided in section 4.1 will apply. As a result M conditional distributions will be associated with

each COTS component, e.g. using reliability and performance these can be denoted as)|,,(,, ippp Sf
ILLI

••• ,

from which the conditional distribution)|(ip Sf
Ser

• will be expressed. This distribution characterises the

probability of failure (incorrect or late response), iSer SP | , of the particular COTS component in the specific

partition. Finally, in order to compare the competing COTS components the unconditional distribution

)(•
Serpf should be derived for the particular profile defined over the set of partitions, which represents the

targeted operational environment.

4 The meaning of these random variables is that a demand chosen at random with probability P(Si) will be drawn from Si.

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 10

Let us assume the profile of the targeted environment is known with certainty5. The marginal probability of

failure of a COTS component, according to the formula of full probability is:

()∑
=

×=
M

i

iiSerSer SPSPP
1

| (6)

The distribution of this random variable, SerP , depends on the joint distribution,

()••,...,)|(),...,|(1 MSerSer SPSPf , i.e. of the conditional probabilities of failure in sub-domains. In some setups it

may be plausible to assume that the conditional probabilities of failure (in the partitions that is) are independently

distributed, i.e.:

() () ()∏
=

••=••
M

i

SPSPSPSP MSerSerMSerSer
fff

1

||)|(),...,|(...,...,
11

. (7)

Such an assumption represents the assessor’s belief that learning something about the probability of failure,

iSer SP | , of a particular COTS component in partition i will not change their belief about the probability of

failure, jSer SP | , of the same COTS component in another partition. The assumption is consistent with

applying inferences to the individual partitions, i.e. conditional on the demands coming from a particular

partition.

Under (7) the unconditional probability of COTS component failure (6) can be expressed as a convolution of the

distributions of the random variables () ()iiSerw SPSPiP ×= | , i.e.:

()iPP w
w
Ser ⊗= (8)

The selection of the best COTS component, out of the available alternatives, will then be based on the marginal

distributions,)(•w
Serp

f , associated with the available COTS components.

5. Numerical Examples: a Study with Off-The-Shelf Database Servers

We have reported recently results of studies on dependability and performance of database servers [34], [35],

[36], [37]. The focus of these earlier studies was in measuring the amount of “diversity”, in both correctness and

response time, which exists between different servers, i.e. certain servers might give an incorrect and/or late

response in one input but the others might not. The motivation behind this work was to get preliminary

measurements on the improvements in reliability and performance that can be had from using more than one

component in parallel in a multi-channel diverse configuration.

In this paper we will use the data collected in those studies to demonstrate our approach to COTS component

selection. SQL servers are a very complex category of off-the-shelf components, with many reported faults in

5 This assumption is needed for the comparison only. We do not require here that we know the ‘real’ operational

environment, in which the system together with the chosen COTS component will be deployed. Taking into account the

uncertainty about the profile is possible at the expense of making the calculations more complicated, which is beyond the

scope of this paper.

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 11

each release. In total six off-the shelf SQL servers from four different vendors were used. Four of the servers are

open-source, namely PostgreSQL 7.0, PostgreSQL 7.2, Interbase 6.0 and Firebird 1.06. The other two servers are

commercial closed development servers, anonymised here due to the restrictive ‘End User License Agreements’.

We will refer to these components as CS1 (Commercial Server 1) and CS2 as they are from different vendors.

An ideal selection of an SQL server based on the results of statistical testing of the COTS components may be

problematic in practice. We will highlight two circumstances in which these difficulties can occur:

- Assume that we are interested in choosing between several SQL servers, based on their reliability and

performance. The ideal situation for choosing the most appropriate SQL server based on measurements after

deploying the COTS components is clearly unrealistic since we would like to select the best server before the

application is developed.

- Assume that the system integrator (e.g. a software house) would like to make a strategic choice of a SQL

server for use in the foreseeable future. In this scenario the application(s), which may be developed in the

future may be even unknown at the time of making the selection.

Given these difficulties we can use alternative options:

- Use well-known benchmark applications. In the context of SQL servers this might be the TPC-C benchmark

for on-line transaction processing [38]. In this case, the performance of the components can be measured

directly on the target platform, but there might be problems observing failures. This is because it would be

reasonable to expect that an SQL server would correctly process the statements defined in the TPC-C

benchmark application. Thus, in this case the selection of the SQL server would be significantly influenced

by the performance attribute. Even if failures are observed, such a measurement of the reliability of the

COTS components may be very expensive; the likely candidates to choose from will be reliable components.

Thus the amount of testing to observe a few failures may be prohibitively high [39]. We illustrate the

assessment method with data collected from experiments with an implementation of the TPC-C client

benchmark. For the TPC-C experiments we used all six aforementioned SQL servers.

- Use stressful environments (in terms of the reliability attribute) for comparing the components, i.e.

environments which increase the likelihood of failures occurring, even if we do not know how likely these

are to occur in operation. The set of bugs of a particular COTS component (in our case SQL server) defines

one such stressful environment for a server. The union of the bugs reported for all the compared COTS

components will form a demand space, in which there will be a partition stressing each of the components.

We have collected known bug reports for four of the SQL servers in our studies, namely PostgreSQL 7.0,

Interbase 6.0, CS1 and CS2 and used them as a sample from a ‘stressful’ environment, in which to compare

the COTS components.

Detailed results for each of these studies are given in the next two sub-sections. We did not use partitioning of

the demand space approach in the study with the TPC-C benchmark application (even though the TPC-C

transactions types could form basis for such partitioning). This is because we did not have any reason to expect

that the servers will perform differently (in terms of timeliness and correctness) for each transaction type. We

however did use partitioning of the demand space in the study with the bug reports of the servers, since we had

compelling reasons to expect that the servers will perform differently (this will be explained in section 5.2).

6 Firebird is the open-source descendant of Interbase. The later releases of Interbase are issued as closed-development by

Borland.

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 12

5.1 Study with TPC-C Benchmark Application

We first describe the results obtained using the TPC-C benchmark application as a basis of selecting the best

SQL server. In the empirical study we used our own implementation of TPC-C. The benchmark defines five

transaction types (New-Order, Payment, Order-Status, Delivery and Stock-Level) and sets the probability of

execution for each, i.e. the particular transaction mix (profile) is defined. The specified performance measure is

the number of New-Order transactions completed per minute. However, our measurements were more detailed -

we recorded the transaction response times instead. The benchmark specifies an upper bound on the 90
th

percentile values for each transaction type. It requires that the average response time of each transaction type is

less than or equal to the respective 90
th
 percentile value. The values are as follows:

- New-Order - 5 seconds

- Payment - 5 seconds

- Delivery – 80 seconds

- Order-Status – 5 seconds

- Stock-Level – 20 seconds

The test harness consisted of two machines:

- A server machine, on which one of the six database servers was run.

- A client machine, which executed a JAVA implementation of the TPC-C standard.

Each experiment comprised the same sequence of 1000 transactions. We ran two types of experiments:

- single client - a TPC-C compliant client modifies the database by executing the specified transaction mix.

- multiple clients - a TPC-C compliant client modifies the database and additional 10 clients concurrently

execute the read-only transactions (Order-Status and Stock-Level).

Multiple clients experiment enabled us to increase the load on the servers and measure the effect of the increased

load on their performance.

A timeout value, specific to each transaction type, was used to distinguish between late and timely responses.

We defined two sets of timeouts7:

- The 90th percentile values specified by TPC-C (TPC-C timeout),

- One fifth of the 90
th
 percentile values (short timeout).

We defined four scenarios, varying the number of clients and timeout values respectively:

- Scenario 1 - single client / TPC-C timeouts

- Scenario 2 - single client / short timeouts

- Scenario 3 - multiple clients / TPC-C timeouts

- Scenario 4 - multiple clients / short timeouts

The SQL servers were compared for each of the scenarios.

7 The choice of these was made after a personal communication of one of the authors with a TPC-C affiliate and auditor who

confirmed that the values were conservative for a wide range of on-line transaction processing applications.

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 13

5.1.1 Prior Distributions

The prior,),,(,, •••
ILLI pppf , was constructed under the assumption that PI and PL are independently

distributed random variables, i.e.)()(),(, ••=••
LILI pppp fff . We made this assumption since we did not

have any objective evidence to believe otherwise. In case there are reasons (objective or subjective) then the

assumption of independence may be dropped. In this case the particular form of),(, ••
LI ppf should be defined

explicitly. Additionally the conditional distributions),|(,| LIPPp PPf
LIIL

• were defined for every pair of

values of PI and PL, in the range [0, min(PI, PL)] since the probability of incorrect and late responses cannot be

greater than the probability of either of the two individually. In passing we note that the choice of the prior is not

critical with the benchmark application since an arbitrarily large number of demands can be generated, i.e. ‘the

data will speak for itself’.

We anticipated observing mainly late responses while the incorrect result failures were expected to be very rare.

We have assumed ‘ignorance prior’ (Uniform distribution) for performance in the range]1,0[∈LP . For

incorrect result failures we have also assumed ignorance but using an upper bound of 10-2, likely to be very

conservative in the context of TPC-C, i.e. we used the range]10,0[2∈IP . We assumed ignorance priors for

both PI and PL since we did not have any preference regarding their values. In this study we used the same

distribution for all the servers since for the scenarios tested we did not have any reason to prefer one server over

the others. There might, however, be cases – some discussed later in section 6.4 - whereby the assessor may have

different prior beliefs about the competing COTS components.

A summary of the distributions used and the range in which they are defined is given in Table 2.

Table 2 - The Prior distributions (identical for all six servers and all four scenarios).

Prior Distribution Range Distribution Type

Reliability)(•
Ip

f 0 – 0.01 Uniform

Performance)(•
Lp

f 0 – 1 Uniform

Conditional distribution:),|(,| LIppp PPf
LIIL

• 0 – min(PI,PL) Uniform

5.1.2 Observations

The observations from the TPC-C experiments are given in Table 3. The number of demands for all servers is

1000. Five out of six servers exhibit late result failures only. Incorrect result failures are observed only for CS2.

In addition, whenever a result was incorrect on CS2 it was late, too. The incorrect results observed were due to

the specific concurrency control mechanism used by CS2 [34]. The locks on resources, e.g. database rows, were

not released properly when the lock holding transactions were completed. To resolve the problem we had to

install timeout watchdogs and abort transactions when the timeout expired. Each aborted transaction was

repeated as many times as necessary to eventually commit successfully. We decided to use transaction repetition

count as the criterion of an incorrect response on CS2. In particular, we defined a threshold of 5 as the value,

beyond which the transaction would be considered to have failed.

We used transaction timeout values and transaction repetition count to classify each demand on each server in

the categories r1 to r4 (defined in section 4.1).

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 14

Table 3 - The observations of the six database servers for the four scenarios. The number of demands (n) is 1000 for each

server. We did not observe any incorrect-only failures, i.e. r1=0 for all servers.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
COTS

r1 r2 r3 r1 r2 r3 r1 r2 r3 r1 r2 r3

PG 7.0 0 1 0 0 30 0 0 0 0 0 644 0

PG 7.2 0 6 0 0 33 0 0 3 0 0 489 0

IB 6.0 0 0 0 0 24 0 0 1 0 0 434 0

FB 1.0 0 0 0 0 1 0 0 0 0 0 439 0

CS1 0 0 0 0 33 0 0 19 0 0 303 0

CS2 0 0 0 0 4 0 0 0 1 0 329 1

5.1.3 Posteriors

The percentiles derived from the posterior distribution for the 4 scenarios are given in Table 48. One can see that

the ordering between the servers changes as the number of clients and/or the timeout values vary (to improve the

readability of the table we have explicitly shown the ranking order of the servers in each scenario).

Under Scenario 1 (the least demanding scenario) four servers (IB 6.0, FB 1.0, CS1 and CS2) produce identical

results since they completed without any failure (i.e. on time and correctly) the 1000 transactions. We are

indifferent in the choice among them. The two versions of PostgreSQL exhibit late responses and they are

ranked lowest.

When we decrease the timeout value (Scenario 2) the ranking changes: now there are late responses with all the

servers. The two worst servers are CS1 and again PostgreSQL 7.2. Interestingly, Firebird 1.0, an open-source

server, is ranked the best.

In Scenario 3 the percentile values are close again as in the first scenario, though the earlier version of

PostgreSQL, PG 7.0, is ranked the best, alongside Firebird 1.0 while CS1 is the worst performing server.

Firebird 1.0 is consistently among the best servers in the first 3 scenarios. An interesting observation is the 50
th

percentile value of the posteriors CS2 and IB 6.0. Even though the total number of failures for these two servers

were the same (1 each, see Table 3), the nature of the failure was different: the result from CS2 was both

incorrect and late whereas from IB 6.0 it was only late. Exploring this dependence we can still see a difference in

the 50
th
 percentile values of these two servers (even though the difference is marginal and on the chosen

accuracy of expressing the percentile values is not observed in the 99th percentile). We will further scrutinize the

interplay between the failures of the individual components and the correlation between their failures with

contrived examples in section 5.4.

The ranking changes again in the most demanding scenario (Scenario 4). The best server is now CS1.

8 As we assumed the same priors for all the servers the differences of the posteriors will be solely due to the observations.

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 15

Table 4 – Percentiles (abbreviated P-tile) for the distribution of the system quality PSer = PI + PL – PIL classified per scenario.

To improve the readability we have also provided the ranking order for each of the servers based on the percentiles values.

The prior distribution is the same for all servers across all scenarios.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
P-tile COTS Prior

Posterior Rank Posterior Rank Posterior Rank Posterior Rank

PG 7.0 0.0021 5 0.0310 4 0.0012 1 0.6436 6

PG 7.2 0.0071 6 0.0340 5 0.0041 5 0.4888 5

IB 6.0 0.0012 1 0.0250 3 0.0021 4 0.4340 3

FB 1.0 0.0012 1 0.0021 1 0.0012 1 0.4392 4

CS1 0.0012 1 0.0340 5 0.0200 6 0.3032 1

0.5

CS2

0.502

0.0012 1 0.0051 2 0.0020 3 0.3300 2

PG 7.0 0.0076 5 0.0456 4 0.0060 1 0.6780 6

PG 7.2 0.0152 6 0.0492 5 0.0108 5 0.5256 5

IB 6.0 0.0060 1 0.0384 3 0.0076 3 0.4704 3

FB 1.0 0.0060 1 0.0076 1 0.0060 1 0.4756 4

CS1 0.0060 1 0.0492 5 0.0324 6 0.3376 1

0.99

CS2

0.992

0.0060 1 0.0124 2 0.0076 3 0.3652 2

5.2 Study with the Known Bugs of the Servers

Now we compare the servers using the methodology described in section 4.3. We have collected known bug

reports for four SQL servers. We will use the union of the bugs reported for each of these SQL servers. Each of

these bug reports will constitute a ‘demand’ to the server. These demands form a partition of the demand space

for each server9. In contrast to the TPC-C study where partitioning of the demand space was not used, in the

study with the bug reports we apply inferences to the partitions. The reason for doing so was the very different

prior beliefs about the behaviour of servers in the different partitions as will be discussed in section 5.2.1. The

logs of the known bugs are treated as a sample (without replacement10) from the corresponding partition

(representing the server, for which the bug has been reported). We label the partitions nameServerS . Partition

XS is called an ‘own’ partition for server X and a ‘foreign’ partition for any other server Y≠X.

9 We have observed no bug reported for two or more servers, thus the logs of the known bugs indeed formed partitions of the

union of the bugs. Even if we had observed bugs reported from more than one server we could construct a partition of the

intersection of the bugs reported for several servers by putting them in their own partition. Thus, a server may have more

than one own partition in the demand space and the description provided here will apply.

10 Strictly, there might be a difference between sampling with and without replacement. Our model is based on sampling

without replacement while the inference procedure described in section 4.1 implies sampling with replacement. This is a

simplification, which in many cases is acceptable (e.g. sampling from a large population of units, none of which dominates

the sampling process, which seems a plausible assumption in our case of SQL servers being very complex products and

likely to contain many unknown bugs).

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 16

5.2.1 Prior Distributions

The prior distributions)|,,(,, ippp Sf
ILLI

•••

used in this study are explained next. The prior

distribution,)|,,(,, ippp Sf
ILLI

••• , was constructed under similar assumptions to those of the TPC-C study: that

PI and PL are independently distributed random variables; in the general case of incorrect and late responses

being non-independent events, the conditional distributions,),,|(,| LIiPPp PPSf
LIIL

• , are specified for every pair

of values of PI and PL.

The distributions were assumed to be identical for each of the four servers in both their ‘own’ and ‘foreign’

partitions. Again, this assumption was made because we did not have objective evidence to believe otherwise.

We discuss other options in section 6.4. A summary of the distributions used and their respective parameters

including the range of each distribution are given in Table 5, and we will discuss these choices in the rest of this

sub-section.

Table 5 – The Prior distributions (identical for all four severs).

 Proportion Range Distribution

)|(ownp Sf
I

•
0.72 – 1 Uniform

Reliability

)|(foreignp Sf
I

• 0 – 1 Uniform

)|(ownp Sf
L

•
0 – 1 Uniform

Performance

)|(foreignp Sf
L

•
0 – 1 Uniform

Conditional distribution:),,|(,| LIppp PPSf
LIIL

•
0 – min(PI,PL)

Uniform

Prior distributions for Incorrect Results)|(ip Sf
I

•

For ‘own’ partitions the prior distribution was defined as Uniform in the range [L, 1], where L < 1 accounts for

the chance that some of the reported bugs might be Heisenbugs11, i.e. we expect most of the bugs that have been

reported for a particular server to cause failures when they are run on that server (hence the probability of

observing an incorrect results failure is very close to 1) but, due to Heisenbugs, not always so. As a source for L

we used the study by Chandra and Chen [41]. These authors studied the fault reports for three off-the-shelf

components: MySQL database server, GNOME desktop environment and the Apache web-server and reported

that 5%, 7% and 14%, respectively, of the reported bugs were Heisenbugs. Given the variation between the

components we cautiously interpreted these findings by setting L = 1-(2*0.14), that is twice the highest value of

Heisenbugs reported, thus the prior is expected to be within the range [0.72, 1]. Notice that here the prior

distribution for incorrect results is being defined at a range close to 1 (i.e. high unreliability). This is because of

the unusual profile of the demands: since we are using known bug reports as demands we expect most of the

bugs to cause failures when we run them on the server for which they were reported.

For ‘foreign’ partitions, however, the prior distributions were defined as uniform in the range [0, 1]. This is due

to the absence of any comparative study to guide our expectation about the likely value. In passing we note that

11 Gray defines two types of bugs [40]: “Bohrbugs” for bugs that appear to be deterministic (they manifest themselves each

time the bug script is executed); and “Heisenbugs” for those that are difficult to reproduce as they only cause failures under

special conditions (e.g., created by the internal state affected by the other applications etc.)

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 17

theoretical work such as [42], [43] suggest that diverse software versions will tend to fail coincidentally on

‘difficult’ demands. Since all the bugs are ‘difficult’ – they are known to be problematic at least for one of the

servers – we may consider them genuinely difficult, hence assume as plausible that the other servers too, are

likely to fail. On the other hand, empirical studies such as [44], [45], have shown that significant gains can be

had via design diversity – hence low chances that a particular server will fail on bugs reported for other server

are also plausible. In summary, we are indifferent between the values of the probability that a server will fail

from a ‘foreign’ bug.

Prior Distributions for Performance)|(ip Sf
L

•

We have not found a public domain source, which would allow us to define a prior distribution for performance

failures (in the context we have defined). This is also because the number of late results that would be observed

would be conditional on how the timeout threshold is set. The only remaining source is to look at the data (either

our own or of various vendors) from the experiments using the TPC-C [38] benchmark. However it is not clear

how reasonable a prior based on these results would be due to the differences in the profile that will exist

between the TPC-C client application and the bug scripts. Therefore we have decided to define the prior

distribution for all proportions as uniformly distributed in the range 0 to 1, i.e. be ‘indifferent’ between the

possible chances of the servers exceeding the set timeout.

Prior Distributions for Incorrect and Late Results),,|(,| LIiPPp PPSf
LIIL

•

All conditional prior distributions of the probability of a result being at the same time incorrect and late were

defined in the range [0, min(PI,PL)] (since the probability of incorrect and late responses cannot be greater than

the probability of either of the two individually). This is again due to the rather unique profile, under which we

apply the inference and the lack of comparable studies that would enable us to define different priors than

assuming ‘indifference’.

Priors for Probabilities of a Bug Being Selected From the Partitions

For the comparison of the servers we use a distribution defined on the set of partitions, which does not favour

any of the servers, i.e. we assumed that probability of each partition is 0.25 in the study with 4 servers12.

5.2.3 Observations

The observations using the known bugs of four off-the-shelf servers are given in Table 6. We can see that the

number of bugs collected for each server was different, which indicated that the empirical evidence differs

between the partitions. The reasons for this was merely differences in the reporting practices operated by the

vendors of the servers, e.g. unavailability in the public domain of fully reproducible bug scripts for the

commercial servers (especially CS1). Therefore, the sizes of the samples from the partitions on each server are

different. Additionally, these servers are not functionally identical: they offer different degrees of compliance

with the SQL standard(s) and even proprietary extension to SQL. Bugs affecting one of these extensions,

therefore, cannot exist in a server that lacks the extension. In other words, such bug scripts will provide empirical

evidence for the server they were reported for but not for the other servers. We called these “dialect-specific”

12 We could have used the number of known bugs for each of the partition to construct a profile consistent with the

observations. This is not acceptable for two reasons: i) it will favour poor bug reporting practices, and ii) we would have

used the bugs twice – once in the inference procedure and another time for the profile, which is theoretically unsound.

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 18

bugs. Due to this, not all the bugs reported for a server can be run on the other servers. Therefore the number of

‘foreign’ bug reports varies between the servers. The interested reader will find an extensive discussion of the

study with the bugs in [37].

Table 6 – The observations for the 4 off-the-shelf servers on the bug reports of the different partitions. In the partition
column we have stated for which server these bugs have been reported.

COTS Partition
Number of

demands n
r1 r2 r3

0.7PGS 57 41 0 11

0.6IBS 28 1 0 0

1CSS 4 1 0 0

PG 7.0

2CSS 18 6 0 0

0.7PGS 24 0 0 0

0.6IBS 55 37 3 7

1CSS 4 0 0 0
IB 6.0

2CSS 12 1 0 0

0.7PGS 30 0 0 0

0.6IBS 31 0 0 0

1CSS 18 10 1 3
CS1

2CSS 12 0 0 0

0.7PGS 33 2 0 0

0.6IBS 35 2 0 0

1CSS 4 0 0 0
CS2

2CSS 51 28 6 5

5.2.4 The Posterior Results

The 50th and 99th percentiles of the marginal distribution,)(•w
Serp

f 13, associated with each server is shown in

Table 7. Since the prior distributions are identical for each of the components, then the ordering of the

components in the posteriors will be determined by the observations. The best server, across all the percentiles is

CS1. This is not surprising since CS1 did not fail for any of the foreign bugs. The second best server is CS2,

although IB 6.0 is very close, both at the 50% and the 99% level of confidence. This is somewhat surprising at

first given that this server failed more on the foreign bugs than IB6.0. However, the total number of foreign bugs

that could be run on CS2 (72) is much higher than IB6.0 (40). Additionally the number of Heisenbugs for CS2 is

also much higher (23.5%) than IB6.0 (14.5%), which leads to the CS2 being better in the posteriors.

Table 7 - The table shows the percentiles of the system quality)(•w
Serp

f for each server.

Percentiles 0.5 0.99

COTS PG7.0 IB6.0 CS1 CS2 PG7.0 IB6.0 CS1 CS2

Priors 0.77 0.77 0.77 0.77 0.94 0.94 0.94 0.94

Posterior 0.42 0.32 0.24 0.3 0.55 0.45 0.32 0.42

13 We omitted the detailed results related to the individual partitions due to a lack of space.

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 19

5.3. Discussion of the Results for the Two Setups

We have seen that under the more ‘stressful’ profiles (i.e. Scenario 4 in the TPC-C study and the Bugs study) the

best COTS component is CS1. The fact that we have come to the same conclusion using rather different testing

methods and different profiles would give us an extra assurance that CS1 is indeed the best component for

applications with more stringent reliability and performance requirements which operate at greater transaction

load and level of concurrency. However if the concurrency is low, then even with more rigid performance

requirements (Scenario 2) Firebird 1.0 server, which is open-source and freely available, comes out as the best

server.

The two studies are also in agreement with respect to the worst server – these are the PostgreSQL components.

We could also use the outcome of the studies as a validation of the proposed method. CS1, which came out best,

is widely accepted by the database community to be the best SQL server and has by far the largest share in the

market of SQL servers. This gives some confidence that both the data that we used is sufficiently informative to

allow for meaningful and accurate discrimination between the competing components and the method itself is

trustworthy to provide rigorous ground for accurate COTS component selection.

5.4. Further, Contrived Examples

In the empirical study with the SQL servers we could not fully illustrate the interplay between the dependence

and the uncertainty in the values of the attributes due to the empirical results often being strikingly different for

each server and also because the prior distributions that we started with were the same for each server. In this

section we provide some further numerical examples, which illustrate the usefulness of handling uncertainty and

dependence between the attribute values explicitly. We comment on the cases where the choice of the best

COTS component would differ with conventional assessment methods which rely on point estimates of the

attribute values and make assumptions of independence between the values of the attributes. We also discuss the

effect of the priors on the selection, including different priors for each of the competing components. The choice

of prior distributions and the observations serve illustrative purposes only. The prior,),,(,, •••
ILLI pppf , was

constructed under the assumption that PI and PL are both Beta independently distributed random variables,

),,(baBeta • , defined in the interval [0, 0.01]14, i.e.)()(),(, ••=••
LILI pppp fff . The conditional

distributions,),|(,| LIppp PPf
LIIL

• , for every pair of values of PI and PL are also assumed to be Beta

distributions,),,(baBeta • . Clearly they are defined in the range [0, min(PI, PL)]. Note that we do not provide

any justification for the choice of the prior distributions used here, and neither for the interval on which the

distribution is defined; the particular choice of the type of the prior is dictated by some convenience offered by

Beta distribution in the examples given below. The assessor can choose any prior distribution and interval that

best represents his/her prior beliefs.

14 In all numerical calculations we used the function BETADIST (x, alfa, beta, lowerbound, upperbound) implemented in

many standard libraries, see for instance [46]. The last two parameters, lowerbound, upperbound ∈ [0, 1], define the

domain (i.e. the range of x) of the distribution.

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 20

5.4.1 Same Priors

In the first example we consider 3 different COTS components, referred to as C1, C2 and C3 respectively for

which the prior information does not give any reasons to prefer one to another, i.e. we are indifferent between

C1, C2 and C3. The prior distributions, therefore, for all three COTS components are identical. We assumed

Beta distributions as described above, with parameters given as follows:

- Beta (2, 10) defined on [0, 0.01] for pfd associated with incorrect results)(•
Ip

f ;

- Beta (2, 10) defined on [0, 0.01] for pld associated with late results)(•
Lp

f ;

- Beta (3, 3) for the conditional distribution),|(,| LIppp PPf
LIIL

• .

This completes the definition of the tri-variate distribution,),,(,, •••
ILLI pppf .

The assumed observations for these three COTS components are given in Table 8.

For Observation 1 the total number of incorrect or late results are the same for C2 and C3: 5 each. But the failure

correlations differ in the two components: for C2 these failures happen on 5 demands (i.e. each of these 5

demands gives both an incorrect and a late response), whereas for C3 they happen on 10 demands (the responses

are either incorrect or late). For Observation 2 both the total number of failures and the failure correlation are

different in the three COTS components.

Table 8 - Observations from testing the COTS components. All observations are from test campaigns of 5000 demands. The

observations differ by the number of incorrect (r1+ r3) and late (r2+ r3) responses and the number of incorrect & late (r3)
responses.

Observation ID Number of demands, n COTS r1+r3 r2+r3 r3

C1 0 0 0

C2 5 5 5 Observation 1 5000

C3 5 5 0

C1 20 10 10

C2 13 13 10 Observation 2 5000

C3 10 10 0

Table 9 shows the results using the percentiles of the prior/posterior distributions of the probability of an

inadequate response PSer. The posterior distribution for Observation 1 reveals that C1 is clearly the best

component, since testing revealed no failures for this component. The interesting results are for C2 and C3. Even

though the total number of failures observed for C2 and C3 is the same we can still distinguish between them

since the types of failures observed in both cases differ. Positive correlation between the two types of failures is

observed for C2 whereas the correlation observed between the types of failure for C3 is negative. As a result, the

posterior distribution of C2 after testing with Observation 1 is better than that of C3 for all percentiles. Using

conventional methods of assessment, where the attributes are assessed independently, this distinction would

have not been possible since the marginal distributions for the two attributes are the same in both C2 and C3

leading to identical results for these two components. We commented on a similar observation for IB 6.0 and

CS2 servers in section 5.1.3.

The posterior after the Observation 2 is also interesting. The total number of failures observed in C3 is the lowest

(20 in total) in comparison with C2 (26) and C3 (30). However the correlation between the two types of failures

is very different. In C3 there is a maximum negative correlation between the two types of failure (the observed

failures are either incorrect or late responses but not both). For C2 we see 10 incorrect results which are also late.

And for C1 we see that all late results are also incorrect. Thus, the observations indicate different degrees of

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 21

correlation between the two types of failure, which as a result, translates into quite different posteriors for the

three COTS components. We would choose C2 as the best COTS component despite the total number of failures

(26) observed during testing for this component being higher than the total for C3 (20). This example clearly

indicates that the ‘uncertainty explicit’ assessment method proposed in this paper and conventional assessment

methods15 would have concluded differently regarding which of C2 and C3 should be chosen. The reason for this

difference is the correlation between the two types of failure, which we take into account while the conventional

methods, which are based on separate assessment of the attributes, would ignore.

Table 9 - The table shows the percentiles of the chosen parameters of system quality.

Percentiles 0.5 0.99

COTS C1 C2 C3 C1 C2 C3

System Quality PSer = PI + PL – PIL
Priors 0.0025 0.0025 0.0025 0.0061 0.0061 0.0061

Observation 1 0.0005 0.0011 0.002 0.0015 0.0024 0.0037

Observation 2 0.0033 0.0027 0.0036 0.0051 0.0044 0.0056

5.4.2 Different Priors, Same Observations

In the second example we will consider 2 different COTS components, COTS 1 and COTS 2 referred to as C1,

and C2. The assumed testing results for C1 and C2 are identical. The prior distributions, however, for the two

COTS components are now different. We will define Beta distributions again but with different parameters for

each COTS component, as given in Table 10. The ranges on which the marginal distributions are defined remain

the same as in section 5.4.1

Table 10 - The parameters (a, b) for the Beta prior distributions defined for each COTS components.

COTS
Reliability

)(•
Ip

f

Performance

)(•
Lp

f

Conditional distribution:

),|(,| LIppp PPf
LIIL

•

C1 (5,5) (5,5) (3,3)

C2 (15,14) (15,14) (9,9)

A high value for parameter a of the Beta distribution means that the distribution is shifted to the right – in our

context it represents a prior belief that the number of failures will be high, whereas the b parameter shifts the

distribution to the left (i.e. a prior belief that the number of failures will be low). The higher the values are, the

smaller the uncertainty. We can see for example that C1 and C2 are going to have very similar mean values (the

mean of the Beta distribution being a / (a + b)) but the prior distribution for C2 is being expressed with much

greater certainty. Therefore the prior distribution of C2 will be much less ‘spread’ from that of C1 as is

illustrated in Fig. 2.

15 The conventional methods not exploring the dependence in the values of the attributes would conclude that C3 is better

than C2.

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Pser

c
.d
.f
.

COTS 2

COTS 4

Fig. 2 - The prior distribution for the probability of an inadequate response (PSer) for C1 and C2. We can see that the prior

distribution for C1 is more ‘spread’ than that of C2 which reflects the assessor’s higher uncertainty in the prior beliefs for the

values of C1.

We do not make any claims that the priors used in the examples should be used in practical assessment. They

serve illustrative purposes only and yet, have been chosen from a reasonable range. For example, the mean of PI

for C1 is 5*10
-3
, which is a value from a typical range for many software components.

One set of observations were used for the calculations with the number of trials, N = 5000 as shown in Table 11.

Table 11 - Observation 3 from testing the COTS components.

Observation ID Number of tests, N COTS r1+r3 r2+r3 r3

Observation 3 5000 All 4 4 1

Table 12 shows the results using the percentiles of the prior/posterior distributions of the probability of an

inadequate response PSer. The structure of the table is similar to that of Table 9.

Interesting points with reference to these posterior values are:

- At the 50
th
 percentile, if the selection is based on the prior values then C1 is the best component. However at

the 99th percentile16 then the ordering changes: C2 is now the preferred choice over the two. For those

assessors who prefer to minimize the risk of making ‘wrong’ decisions with high confidence (i.e. 90%+), C2

is the better choice. This type of distinction would have not been possible in the conventional methods of

COTS component assessment, which use point values rather than distributions.

- The posterior values of C2 have shifted significantly in comparison with the priors but not as much as those

of C1, even though the testing results for these two components are the same. This is due to the prior

distributions: for C1 the prior distribution was highly spread, signifying that the uncertainty was high prior to

testing; the opposite is true for C2. Therefore the posterior distribution of C1 is influenced by the testing

results much more than that of C2.

Table 12 - The table shows the percentiles of the chosen parameters of system quality.

Percentiles 0.5 0.99

COTS C1 C2 C1 C2

System Quality PSer = PI + PL – PIL
Priors 0.0078 0.0079 0.0122 0.0106

Observation 3 0.0028 0.0046 0.0048 0.0065

16 The same ordering was observed for all percentiles higher than 90th.

C1

C2

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 23

 6 Discussion of Applicability of the Proposed Assessment Method

6.1 Many Assessment Attributes

We have illustrated in the previous sections how the assessment can be done for the reliability and performance

attributes, which are usually the most important attributes for software COTS components compliant with a

known specification (e.g. SQL servers, J2EE Application servers, Business Process Execution Engines [47] etc.).

For such software components (products) we consider repeating the measurements described in section 5 are

feasible. We illustrated that, even for assessments in which only two attributes are considered, taking account of

the dependence that exists between these attributes can lead to a different decision on which COTS component to

choose compared with the methods that do not account for this dependence.

It is a common practice that COTS components are assessed in terms of more than 2 attributes, usually many

more. Among attributes that are suitable for quantitative measurement are:

- “Recoverability” (which again can be characterised in terms of correctness of the recovery and the timeliness

of the recovery) [48].

- “Usability” (which can also be characterised in terms of the correctness with which a user performs an action

with a given system, and timeliness of their actions). This kind of objective characterisation of usability may

be especially important in socio-technical applications, especially those which are safety-critical, such as Air

Traffic Control, in which the controllers’ accuracy and timeliness of their actions are important.

The obvious question, therefore, is whether the proposed ‘uncertainty explicit’ assessment ‘scales up’ to many

attributes. Formally, the question is how the method applies if we have to compare COTS components, each of

which is represented by a multivariate distribution ()np aaaf ,...,, 21 . The assessment will deliver posterior

distributions ()assessmentaaaf np |,...,, 21 , which will be used in the comparison. A new variable should be

defined as a function of the variates of the distribution {a1, a2, …, an}, e.g. a weighted sum of all the attributes.

The uncertainty associated with this aggregate variable is easily derived from the joint

posterior ()assessmentaaaf np |,...,, 21 . Even though mathematically possible, Bayesian inference with

multivariate distributions is difficult. The difficulty has two aspects:

- Specifying a multivariate prior distribution becomes very difficult because many non-intuitive dependencies

between the attributes must be defined and justified.

- Manipulating a multivariate distribution is non-trivial even using the most advanced math/statistical tools.

Calculating the posterior distribution is impracticable with more than 3 variates and without simplifying

assumptions about the dependencies between them.

To partially overcome these difficulties a divide-and-conquer approach can be employed. First the attributes can

be grouped into smaller groups so that there are dependencies within the groups, which the assessment can

capture, but the groups are assumed independent. In other words, knowing the values of the attributes in one

group does not change the assessor’s knowledge (belief) about the values of the attributes included in the other

group. Assume that our initial multivariate distribution can be represented as two independent groups of

attributes:

- () =nppp aaaf
n

,...,, 21,..., 21

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 24

() ()nsspppsppp aaafaaaf
nssss

,...,,,...,, 21,...,21,..., 2121 +++++
×

- the likelihood of observing the COTS component in operation can be expressed as:

()()=nppp aaafnobservatioL
n

,...,,| 21..., 21
()()×sppp aaafnobservatioL

s
,...,,| 21...,1 21

 ()()nssppp aaafnobservatioL
nsss

,...,,| 21,...,2 21 +++++

In this case, it trivially follows that:

() =assessmentaaaf nppp n
|,...,, 21,..., 21

()×assessmentaaaf sppp s
|,...,, 21,..., 21

()assessmentaaaf nSsppp nsss
|,...,, 21,..., 21 +++++

We have so far defined three groups of attributes with which assessment can be performed

(Reliability/Performance, Recoverability and Usability). Other groups of attributes may also exist (even though

our survey of COTS attribute definition papers (e.g. [16], [20]) found very few attributes that lend themselves to

objective assessment). We should note, however, that there are dependencies even amongst the groups identified

(for example, we may observe that incorrect results and incorrect recovery actions are highly correlated).

Assuming that these belong to independent groups will prevent us from learning about these dependences.

Despite this potential deficiency, however, there is clearly an improvement over the existing methods, in which

every single attribute is treated independently.

6.2 Decisions on How to Perform the Assessment

We outlined the problems with assessment of a large number of attributes due to the complex set of

dependencies that may exist between the different attributes. The higher the number of attributes to be assessed

and the higher the number of independence assumptions that are made the more difficult it becomes to place a

high degree of confidence in the results obtained from the assessment. The limitations we have outlined in

section 6.1, however, are not specific to our assessment method; in fact they are more serious for the

conventional methods in which the individual attributes are assessed separately. We illustrated with numerical

examples in section 5.4 that even when the assessment is done using two attributes, ignoring the dependence

between the values of the attributes may lead to wrong decisions: a sub-optimal component may wrongfully be

chosen as the best one. If this could be observed with only two attributes, then it is bound to be much more

pronounced with more than two attributes, where many more dependencies may exist between the values of the

attributes.

Doing the assessment with ‘independent groups’ of attributes also has its problems. It can only be applied if the

assessor can justify that assuming a set of independent pairs is plausible. Despite this problem, however, using

small independent groups is still an improvement compared with the extreme assumption used implicitly in the

existing assessment methods surveyed, that all of the attributes are independent.

It is worth pointing out that many of the attributes, such as ‘has the required functions’, various forms of

compliance, e.g. ‘complies with certain standards’, “backward compatibility”, etc. [16], do not require any

uncertainty attached to their values. Assessment with respect to such attributes normally leads to a reduction of

the number of the COTS components (which satisfy all these ‘binary’ attributes), for which the more thorough

assessment with respect to the remaining ‘non-binary’ attributes needs to be done [49].

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 25

6.3 The Types of COTS Components for Which the Assessment Method Can be Applied

The method of assessment proposed in this paper would be applicable to any family of COTS components. The

setup described in section 4 and illustrated in section 5 is particularly relevant for COTS components with

stringent reliability and performance requirements. In section 5 we provided empirical results using off-the-shelf

database servers. There is a plethora of off-the-shelf database servers, both open source and commercial.

Deciding which one to choose among the many choices available overwhelmingly depends on the reliability of

servers and their performance.

Java Virtual Machines (JVMs), various Application Servers, Web Servers and Business Process Execution

Engines [47] are also examples of COTS components where reliability and performance requirements are

usually the deciding attributes for selection. Fault and failure reports, which can be used as observations, do exist

for these products and so do performance benchmarks (e.g. ab benchmarking tool for web servers [50]).

Therefore, similar measurements to what we did for database servers are also possible with these other families

of COTS components. In many cases for these components one may not need to deal with more than 2 attributes,

which makes our 2-attribute model proposed in section 4 immediately applicable without any further

simplifications.

6.4 Other Ways of Eliciting the Prior Distributions

The prior definition in Bayesian assessment is crucial. In our studies we have assumed that prior distributions for

each component are the same. This was due to the unavailability of other known ‘objective’ evidence that we

could use to define more reasonable priors. Anecdotal evidence about the servers does exist, but is difficult to

translate these subjective beliefs into priors in the form required by our method. By assuming that the prior

distributions were the same for each server, the decision on which server is chosen is dictated by the

observations only. As a result the decision of the types of distributions for the random variables in our study

becomes less important.

However there are other ways of deriving more reasonable priors. We could, for example, utilize evidence from

earlier versions of the servers and then do multiple steps of inference, i.e. if we want to perform the assessment

with later versions of the servers in our study (e.g. with versions of PostgreSQL after release 7.2 or Firebird after

release 1.0) we can use the posteriors derived here as priors for the later versions, collect the new evidence for

the later versions and then use the model to derive the posteriors for each. This approach has also been reported

elsewhere [21].

7. Conclusion

To handle the inherent uncertainty in the COTS component assessment we propose the use of “uncertainty

explicit” methods. As a Bayesian approach to representing uncertainty has been successfully applied in other

contexts of assessment we have defined a Bayesian model that can be used for assessment of COTS components

with respect to two related attributes. This approach complements the conventional selection procedures with

more powerful calculus, which can take into account the uncertainty explicitly.

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 26

We have conducted an empirical study with off-the-shelf database servers which also illustrated the use of the

method. The contribution of this paper is in several aspects:

- We have demonstrated in the context of the COTS component assessment how to apply the Bayesian

methods which have had some popularity in reliability assessment of both software and hardware.

- We have described the use of the model in selecting the best off-the-shelf database server from a sample of

different servers, using two sources of data:

- Experiments using an implementation of TPC-C benchmark for database severs.

- Known faults reported for four different servers.

- We recommend that the ‘uncertainty explicit’ assessment methods be considered at least as a non-expensive

warranty against badly sub-optimal decisions possible with the conventional COTS component selection

methods (we provided contrived numerical examples which show examples of sub-optimal selections of

COTS components if uncertainty or dependence in the values of the attributes are ignored).

- We have also demonstrated how our model can be extended and used with a partitioned demand space which

allows utilization in the inference of all the evidence available from the different partitions.

An interesting observation from the study with SQL servers is that the results of the inference with the more

stressful setups (Scenario 4 of the TPC-C study and the bugs study) both lead to CS1 being preferred as the best

server and PG servers being the worst. This may give the assessor further assurance of preferring CS1 for an

application with more stringent reliability, performance and concurrency requirements given that it performed

best under two very different but ‘stressful’ profiles. Interestingly, CS1 is considered by the DB community as a

leader among the SQL servers vendors, which may be seen as validation of the method’s usefulness for making a

correct choice among several similar COTS components despite the scarcity of the data that we could use.

There are several well-known difficulties of using Bayesian assessment - it does not scale up well due to:

- The difficulty with specifying a multivariate prior distribution when the number of attributes to be assessed

increases, unless independence is assumed among the attributes. Defining the prior is crucial. It may be

difficult for practitioners, not comfortable with non-trivial math, to express their individual beliefs as

probability distributions.

- The difficulty with manipulating a multivariate distribution, which becomes impracticable with more than 3

variates if no simplifying assumptions are made.

Future work that is desirable includes:

- Methods are needed which would allow for effective assessment with a large number of related attributes.

Currently the ‘uncertainty explicit’ assessment only works with a limited number of related attributes (or

with independent groups of attributes in which the number of attributes in the groups is small).

- Further development of the theoretical framework is needed for cases of groups of more than 2 dependent

attributes. Conceptually, the multivariate inference is no different than the 1- and 2-variate inferences. Its

practical use, however, is currently problematic.

Acknowledgement

This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) under the

Interdisciplinary Research Collaboration in Dependability of Computer-Based Systems (DIRC) project. We

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 27

would also like to thank Dr Andrey Povyakalo, Professor Bev Littlewood and the anonymous reviewers for their

comments on an earlier version of this paper.

References

1. Ncube, C. and N. Maiden. PORE:Procurement Oriented Requirements Engineering Method for the

Component-Based Systems Engineering Development Paradigm. in International Workshop on

Component-Based Software Engineering. 1999.

2. Kontio, J., et al. A COTS Selection Method and Experiences of Its Use. in Twentieth Annual Software

Engineering Workshop,NASA Goddard Space Flight Center. 1995. Greenbelt, Maryland.

3. Jeanrenaud, J. and P. Romanazzi. Software Product Evaluation: A Methodological Approach. in

Software Quality Management II: Building Software into Quality. 1994.

4. Tran, V. and D.-B. Liu. A Risk Mitigating Model for the Development of Reliable and Maintainable

Large-Scale Commercial-Off-The-Shelf Integrated Software Systems. in Proceedings of the 1997

Annual Reliability and Maintainability Symposium (RAMS). 1997.

5. Ochs, M., et al. A Method for Efficient Measurement-based COTS Assessment and Selection -Method

Description and Evaluation Results. in Proceedings of the 7th International Symposium on Software

Metrics. 2001. London, England: IEEE Computer Society.

6. Alves, C. and J. Castro. CRE: A Systematic Method for COTS Components Selection. in XV Brazilian

Symposium on Software Engineering (SBES). 2001. Rio de Janeiro, Brazil.

7. Phillips, B.C. and S.M. Polen, Add Decision Analysis to Your COTS Selection Process, in CroosTalk -

The Journal of Defence Software Engineering. 2002.

8. Boehm, B., et al. Composable Process Elements for Developing COTS-Based Applications. in

Proceedings 2003 International Symposium on Empirical Software Engineering. ISESE'2003. 2003:

ACM-IEEE.

9. Dean, J., An Evaluation Method for COTS Software Products. 2000.

10. Kunda, D. and L. Brooks. Applying Social-Technical Approach for COTS Selection. in Proceedings of

the 4th UKAIS Conference. 1999. University of York, England.

11. Gregor, S., J. Hutson, and C. Oresky. Storyboard Process to Assist in Requirements Verification and

Adaptation to Capabilities Inherent in COTS. in ICCBSS 2002. 2002. Florida, USA: Springer-Verlag.

12. Burgués, X., et al. Combined Selection of COTS Components. in ICCBSS 2002. 2002. Florida, USA:

Springer-Verlag.

13. Comella-Dorda, S., et al. A Process for COTS Software Product Evaluation. in ICCBSS 2002. 2002.

Florida, USA: Springer-Verlag.

14. Ruhe, G. Intelligent Support for Selection of COTS Products. in Web, Web-Services, and Database

Systems. 2003: Springer.

15. Lewis, P., et al. Lessons Learned in Developing Commercial Off-The-Shelf (COTS) Intensive Software

Systems. 2000; Available from:

http://www.cebase.org/www/researchActivities/COTS/LessonsLearned.pdf.

16. Bertoa, M.F. and A. Vallecillo. Quality Attributes for COTS Components. in Proc. of the 6th ECOOP

Workshop on Quantitative Approaches in Object-Oriented Software Engineering (QAOOSE 2002).

2002. Málaga, Spain.

17. ISO/IEC-9126-1:2001, Information technology – Product Quality – Part1: Quality Model. 2001,

International Standard ISO/IEC 9126, International Standard Organization, June, 2001.

18. IEEE/ANSI, Recommended Practice for Software Requirements Specifications, International Standard

830-1993. 1993, IEEE.

19. Abts, C., B. Boehm, and E.B. Clark. COCOTS: A software COTS-Based System (CBS) Cost Model. in

Proceedings 12th Annual Conference on European Software Control and Metrics (ESCOM). 2001.

London, UK.

20. Torchiano, M. and L. Jaccheri. Assessment of Reusable COTS Attributes. in 2nd Int. Conference on

COTS Based Software Systems (ICCBSS 2003). 2003. Ottawa, Canada: Springer-Verlag.

21. Littlewood, B. and D. Wright, Some conservative stopping rules for the operational testing of safety-

critical software. IEEE Transactions on Software Engineering, 1997. 23(11): p. 673-683.

22. Likert, R., A Technique for the Measurement of Attitudes. 1932, New York: McGraw-Hill.

23. Brocklehurst, S., et al., Recalibrating software reliability models. IEEE Transactions on Software

Engineering, 1990. SE-16(4): p. 458-470.

Uncertainty Explicit Assessment of Off-The-Shelf Software: A Bayesian Approach 28

24. Lyu, M.R., ed. Handbook of Software Reliability Engineering. 1996, IEEE Computer Society Press and

McGraw-Hill.

25. Wright, D. and K.-Y. Cai, Representing Uncertainty for Safety Critical Systems, PDCS2 Tech. Rep.

135. Center for Software Reliability, City University, London,. 1994, SHIP Project.

26. Musa, J.D., Operational Profiles in Software-Reliability Engineering. IEEE Software, 1993. March: p.

14-32.

27. Johnson, N.L. and S. Kotz, Distributions in Statistics: Continuous Multivariate Distributions. Wiley

Series in Probability and Mathematical Statistics, ed. R.A. Bradley, Hunter, J. S., Kendall, D. G.,

Watson, G. S. Vol. 4. 1972: John Wiley and Sons, INc. 333.

28. Littlewood, B., P. Popov, and L. Strigini. Assessment of the Reliability of Fault-Tolerant Software: a

Bayesian Approach. in Proc. 19th International Conference on Computer Safety, Reliability and

Security, SAFECOMP'2000. 2000. Rotterdam, the Netherlands: Springer.

29. Popov, P. Reliability Assessment of Legacy Safety-Critical Upgraded with Off-the-Shelf Components. in

SAFECOMP-2002. 2002. Catania, Italy: Springer.

30. Kaplan, W., Advanced Calculus. 3rd ed. 1984, Reading, MA: Addison-Wesley.

31. Port, D. and S. Chen. Assessing COTS assessment:How much is enough? in ICCBSS'04, Inetrnational

Conference on COTS Based Software Systems. 2004. Redondo Beach, California: Springer-Verlag.

32. Jeng, B. and E.J. Weyuker, Analyzing partition testing strategies. IEEE Transactions on Software

Engineering, 1991. 17(7): p. 703-711.

33. Hamlet, D. and R. Taylor, Partition testing does not inspire confidence. IEEE Transactions on Software

Engineering, 1990. 16(12): p. 1402-1411.

34. Gashi, I., Popov, P., Strigini, L. Fault diversity among off-the-shelf SQL database servers. in DSN'04

International Conference on Dependable Systems and Networks. 2004. Florence, Italy: IEEE Computer

Society Press.

35. Gashi, I., Popov, P., Stankovic, V., Strigini, L., On Designing Dependable Services with Diverse Off-

The-Shelf SQL Servers, in Architecting Dependable Systems II, C.G.a.A.R. R. de Lemos, Editor. 2004,

Springer-Verlag. p. 191-214.

36. Stankovic, V. and P. Popov. Improving DBMS Performance through Diverse Redundancy. in 25th

IEEE Symp. on Reliable Distributed Systems (SRDS'06). 2006. Leeds, UK: IEEE Computer Society, .

37. Gashi, I., P. Popov, and L. Strigini, Fault tolerance via diversity for off-the-shelf products: a study with

SQL database servers. IEEE Transactions on Dependable and Secure Computing, 2007. 4(4): p. 280-

294.

38. TPC, TPC-C, An On-Line Transaction Processing Benchmark, v. 5.2. 2004.

39. Adams, E.N., Optimizing Preventive Service of Software Products. IBM Journal of Research and

Development, 1984. 28(1): p. 2-14.

40. Gray, J. Why do computers stop and what can be done about it? in 6th International Conference on

Reliability and Distributed Databases. 1987.

41. Chandra, S. and P.M. Chen. Whither Generic Recovery from Application Faults? A Fault Study using

Open-Source Software. in DSN 2000, International Conference on Dependable Systems and Networks.

2000. NY, USA: IEEE Computer Society Press.

42. Littlewood, B. and D.R. Miller, Conceptual Modelling of Coincident Failures in Multi-Version

Software. IEEE Transactions on Software Engineering, 1989. SE-15(12): p. 1596-1614.

43. Eckhardt, D.E. and L.D. Lee, A theoretical basis for the analysis of multiversion software subject to

coincident errors. IEEE Transactions on Software Engineering, 1985. SE-11(12): p. 1511-1517.

44. Knight, J.C. and N.G. Leveson, An Experimental Evaluation of the Assumption of Independence in

Multi-Version Programming. IEEE Transactions on Software Engineering, 1986. SE-12(1): p. 96-109.

45. Eckhardt, D.E., et al., An experimental evaluation of software redundancy as a strategy for improving

reliability. IEEE Transactions on Software Engineering, 1991. 17(7): p. 692-702.

46. GNOME. BetaDist. 2008; Available from: [http://www.gnome.org/projects/gnumeric/doc/gnumeric-

BETADIST.shtml].

47. Andrews, T., F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith, S.

Thatte, and I. Trickovic., Business Process Execution Language for Web Services version 1.1. 2003,

BEA, IBM, Microsoft, SAP, Siebel, Systems.

48. Patterson, D., et al. Recovery Oriented Computing (ROC): Motivation, Definition, Techniques, and

Case Studies. 2002; Available from: http://roc.cs.berkeley.edu/papers/ROC_TR02-1175.pdf.

49. Ncube, C. and N. Maiden, Acquiring COTS Software Selection Requirements. IEEE Software, 1998.

15(2): p. 46-56.

50. Apache-Software-Foundation. ab - Apache HTTP server benchmarking tool. 2008; Available from:

http://httpd.apache.org/docs/2.0/programs/ab.html.

