

City, University of London Institutional Repository

Citation: Palacios, M., García-Fanjul, J., Tuya, J. & Spanoudakis, G. (2015). Automatic

test case generation for WS-Agreements using combinatorial testing. Computer Standards
and Interfaces, 38, pp. 84-100. doi: 10.1016/j.csi.2014.10.003

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/5147/

Link to published version: https://doi.org/10.1016/j.csi.2014.10.003

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

1

Automatic test case generation for WS-Agreements using

combinatorial testing

Marcos Palacios
a *

, José García-Fanjul
a
, Javier Tuya

a
, George Spanoudakis

b

a
 Department of Computer Science, University of Oviedo

{palaciosmarcos, jgfanjul, tuya}@ uniovi.es

b
 School of Informatics, City University London

G.E.Spanoudakis@ city.ac.uk

* Corresponding Author (Marcos Palacios)

Email address: palaciosmarcos@uniovi.es

Postal address: Department of Computer Science (1.S.25). Campus Universitario de

Gijón. 33204. Gijón. Asturias. Spain.

Tel: +34 985 182 153. Fax: +34 985 181 986

Abstract

In the scope of the applications developed under the service-based paradigm, Service
Level Agreements (SLAs) are a standard mechanism used to flexibly specify the Quality
of Service (QoS) that must be delivered. These agreements contain the conditions
negotiated between the service provider and consumers as well as the potential penalties
derived from the violation of such conditions. In this context, it is important to assure
that the service based application (SBA) behaves as expected in order to avoid potential
consequences like penalties or dissatisfaction between the stakeholders that have
negotiated and signed the SLA. In this article we address the testing of SLAs specified
using the WS-Agreement standard by means of applying testing techniques such as the
Classification Tree Method and Combinatorial Testing to generate test cases. From the
content of the individual terms of the SLA, we identify situations that need to be tested.
We also obtain a set of constraints based on the SLA specification and the behaviour of
the SBA in order to guarantee the testability of the test cases. Furthermore, we define
three different coverage strategies with the aim at grading the intensity of the tests.
Finally, we have developed a tool named SLACT (SLA Combinatorial Testing) in order
to automate the process and we have applied the whole approach to an eHealth case
study.

Keywords: Software Testing, Service Based Applications, Service Level Agreements,

WS-Agreement, Classification Tree Method, Combinatorial Testing.

1. Introduction

Service Oriented Architecture (SOA) has become a solid paradigm to develop
interoperable, flexible and highly dynamic service based applications (SBAs) by means
of integrating available services over the web. The main features of these services
include loose coupling between them, coarse grained service interfaces, dynamic service
discovery and binding, self-containment of services, service interoperability and protocol
independence [1]. SBAs are implemented using different Internet-based standards [2]
such as the Simple Object Access Protocol (SOAP) [3] for transmitting data, the Web
Service Description Language (WSDL) [4] for defining services or the Business Process
Executable Language for Web Services (BPEL4WS) [5] for orchestrating services.

In SBAs, it is necessary for the stakeholders involved to specify the conditions related
to the provision and consumption of the services. These conditions are usually specified

2

in a contract or technical document, called Service Level Agreement (SLA), which is a
standard mechanism that allows determining and regulating the trading between the
service providers and the consumers. In the scope of SBAs, the WS-Agreement standard
[6] is a language used to specify the conditions negotiated and agreed by these
stakeholders. WS-Agreement supports the representation of information regarding the
functional features of services, non-functional requirements related to the Quality of
Service (QoS) level that should be achieved by the service provision, penalties derived
from the violation of the terms and any other relevant information related to the
agreement. It is therefore of utmost importance for both providers and consumers to
develop suitable actions that allow avoiding or minimizing the consequences derived
from SLA violations.

The management of SLAs [7] is an integral part of the applications developed under
the rules of a standard SOA Governance framework [8] and has received considerable
attention both in industry and academia (see, for example, the SLA@SOI FP7 European
Project [9]). Many large companies, including Amazon, Microsoft, Google, AT&T and
HP, that provide XaaS (Everything as a Service) use SLAs as a mechanism for
specifying the functionalities and QoS levels that they are capable of providing in their
XaaS offerings [10][11][12][13][14].

The management of SLAs involves different tasks including SLA negotiation [15], re-
negotiation [16][17], specification [18][19], evaluation [20], testing [21], and monitoring
[22]. Among these tasks, the testing of the SLAs has been identified as a challenge
[23][24][25]. The testing of the SLAs involves designing and executing tests in the SBA
by means of considering the specification of the SLA as the test basis. This requires that
the specification of the SLAs needs to be somehow formalized in order to automate as
much as possible the process of obtaining the tests.

Currently, there are different approaches that aim at detecting, forecasting or
preventing SLA violations using testing techniques. Most of these works are reactive and
use monitoring to observe the behaviour of the SBA at runtime in order to detect
potential deviations from the guaranteed conditions specified in the SLA [22][40]. These
approaches are useful in detecting problems in SBAs but they present an important
drawback: problems are detected after their occurrence and, therefore, consequences
derived from such problems cannot be avoided. On the other hand, different proactive
approaches have been proposed to predict or anticipate the detection of problems
associated to the violation of the SLA [21][36].

Considering the characteristics of both approaches, in a previous work we presented a
conceptual method to test SLA-aware service based applications. In that work, our aim
was to combine the advantages of both proactive and reactive approaches [26]. Later, we
addressed the identification of situations to be tested from the information contained in
the individual SLA terms [27]. These situations may be used to guide the design of an
appropriate test suite that exercises such situations and also to derive a monitoring plan
allowing checking the compliance of the SLA at runtime.

In this article, and as a further step, we define a method to generate test cases from an
SLA specified in WS-Agreement standard language by integrating testing techniques
that have been used broadly in the industry and standardized in ISO/IEC/IEEE 29119
[28]. We also provide a tool that automates the whole process. The main contributions of
this article are the following:

1) We define how standard techniques for testing, namely the Classification Tree

Method and Combinatorial Testing can be applied in the context of SLAs in

order to obtain a set of test cases that are suitable for testing an SBA in which

the conditions that need to be satisfied are specified in a single SLA.

2) We define how to automatically obtain specific constraints from the

specification of the SLA and the behaviour of the SBA in order to avoid the

generation of non-feasible test cases.

3

3) We define three different coverage strategies with the aim at grading the

thoroughness of the resulting test suite.

4) We implement a tool called SLACT that automatically generates the test cases,

making use of an existing testing tool [29].

5) We apply the approach to an eHealth scenario that was proposed by the EU F7

project PLASTIC [30] and has been previously used by other authors to test

SLAs [31][32][33][34].

These contributions aim at taking into account some particular challenges that arise
from the testing of service-based systems [23]. In our case, we have to deal with the
controllability of the services and the infrastructure so, to mitigate this limitation, the
services will be under our control and, consequently, the set of generated test cases will
be executed in a controlled environment.

The rest of this article is structured as follows. Section 2 outlines related work.
Section 3 provides a background about the two cornerstones of this research: Software
Testing standards and WS-Agreement. It also summarizes the four-valued logic used to
evaluate SLA Guarantee Terms, which was previously developed by the authors [27] and
is again used in this article. Section 4 discusses the generation of test cases and the level
of automation provided by SLACT. Section 5 presents the results derived from the
application of our approach to the eHealth case study. Section 6 highlights the main
limitations of this approach. Finally, Section 7 provides some concluding remarks and
outlines plans for future work.

2. Related Work

In the scope of service-based applications, considerable effort has been spent in
detecting SLA violations using different testing approaches. Typically, related strands of
work may be categorized in two main groups: (i) the set of works which are aimed at
anticipating problems and/or prevent them before such problems lead to undesired
consequences for the stakeholders who have signed the agreement; and (ii) the set of
works that are aimed at detecting SLA violations at runtime when the Software Under
Test (SUT) is already deployed in the operational environment.

Few approaches have focused on the identification of tests from the specification of
the SLAs in order to anticipate problems. Di Penta et al. [21] perform black-box and
white-box testing by means of using Genetic Algorithms with the aim of detecting SLA
violations in atomic and composite services. This approach generates combinations of
inputs, as we do in our contribution, and bindings of the constituent services that may
cause violations of the SLA. Palacios et al. [35] identify test requirements from the
conditions included in an SLA specified in WS-Agreement using a well known testing
technique, called Category Partition Method. Once such test requirements have been
identified, they are combined in order to derive the test cases. Such combinations of the
identified test requirements are not addressed in that work whereas in our contribution
we apply combinatorial testing techniques in order to derive the test cases from the test
requirements. Palacios et at. [36] also provides a coverage based criterion in order to test
SLA-aware service-based application. In that work they focus on the logical
relationships between the guarantee terms of a SLA specified in WS-Agreement whereas
in this article we are focusing on the content of the individual guarantee terms.
Furthermore, Bertolino et al. [31] have proposed the PUPPET framework, which allows
generating stubs from the WS-Agreement, WSDL and BPEL specification of the
services to test SLA-aware service compositions. This work is related to our work.
However, instead of specifying the tests for the SBA as we do, they provide the
necessary infrastructure to deploy and execute such tests. Thus, both works may be
mutually complemented. Kotsokalis et al. [37] have proposed to use Binary Decision
Diagrams in order to model the content of SLAs for testing purposes. However they do

4

not focus on a specific standard language as we do although they attempt to obtain the
diagrams from this language (WS-Agreement). In their approach, they use two different
values to evaluate the terms of the SLA. In our work, we show that four different values
are necessary to consider all the potential situations derived from the evaluation of SLA
Guarantee Terms. Finally, Muller et al. [38][39] propose to detect and explain conflicts
within the specification of WS-Agreements by means of applying techniques based on
Constraints Satisfaction Problems. This work focuses on checking whether the
specification of the SLA guarantee terms is consistent so the detected problems are
related to the SLA and not the services. In our work we focus on the detection of
problems in the SUT by means of taking the specification of the SLA as the test basis.

Regarding the second group, several works have addressed the testing of SLAs using
monitoring approaches in order to detect SLA violations. Mahbub and Spanoudakis [22]
focus on WS-Agreement to propose modelling and monitoring the conditions contained
in the SLA using an Event Calculus (EC) based approach. Raimondi et al. [40] proposed
a system that automatically monitors SLAs, translating timeliness constraints into timed
automata, which is used to verify traces of services executions. Comuzzi et al. [41]
tackles the testing of SLA-aware SBA by monitoring the conditions specified in the
SLA. This work was developed in the scope of the SLA@SOI European Project [9].
Beyond these works, there are other systems that have been developed to monitor
whether service based applications violate SLAs including, for example, SALMon [42][
43], SLAMonitor [44] HA-SLA [45] and CLAM [46].

Between these two groups, there is a set of works that make use of information
gathered from monitoring techniques in order to prevent SLA violations. For example,
Leitner et al. [47] propose a framework that allows monitoring and predicting SLA
violations before they have occurred using machine learning techniques and they have
also addressed the prevention of SLA violations using self-adaption [48]. Ivanovic et al.
[49] propose a constraint-based approach to monitor and analyze the QoS metrics
included in the SLA for the purpose of anticipating the detection of potential SLA
violations. Schmieders et al. [50] combined monitoring and prediction techniques in
order to prevent SLA violations. Finally, Lorenzoli and Spanoudakis [51] presented a
framework (EVEREST+) which supports the monitoring and prediction of potential
violations of the QoS metrics specified in an SLA.

3. Background

In this section we present the basic concepts about the two cornerstones of our
research. On the one hand, we introduce some important standard definitions which are
broadly used in the field of software testing. On the other hand, we focus on the structure
of WS-Agreement standard language and how it is been used within the provisioning of
applications developed under the paradigm of service oriented architectures. We also
briefly present our previous research which is extended and improved in this article.

3.1 Software testing and standards

Testing can be defined as “an activity in which a system is executed under specified
conditions, the results are observed or recorded, and an evaluation is made of some
aspect of the system”, according to the ISO/IEC 24765 (Software and Systems
Engineering Vocabulary) [52].

The generation of test cases allows designing the conditions under which the SUT
will be executed. This is important for the success of the tests as a good test design will
allow detecting a higher number of faults. According to the IEEE Standard Glossary of
Software Engineering Technology, a test case is “a set of inputs, execution conditions,
and expected results developed for a particular objective” [53]. Thus, executing the
software and comparing the obtained outputs with the expected results allows

5

determining whether the behaviour of the software is correct or not. The approaches that
use the generation and execution of test cases are proactive in the sense that they are able
to anticipate the detection of faults before the problems occur in a production
environment. The generation of test cases tries to maximize the trade-off among different
business criteria such as cost, benefit or risks. In some cases, it may be possible to design
an in-depth and exhaustive test suite even if it involves a high cost in terms of money or
effort. In other cases, however, there might be constraints hindering the definition and
execution of exhaustive tests. When this happens, the tester is forced to select a less
exhaustive testing technique. The generation of test cases is often a very tedious task so it
is desirable to automate it as much of it as it is possible.

Currently, the fragmentation of the different standards is a common problem in this
field. To fill this gap, the ISO/IEC/IEEE 29119 Systems and Software Engineering -
Software Testing standard [28] is being developed with the aim of providing one
definitive reference for software testing that defines vocabulary, processes,
documentation and techniques. This standard comprises four parts: Definitions and
Vocabulary (part 1), Test Process (part 2), Test Documentation (part 3) and Test
Techniques (part 4).

In this article, we describe how two techniques which are used broadly in industry and
academia [54] and are described in Part 4 of ISO/IEC/IEEE 29119, namely the
Classification Tree Method and Combinatorial Testing, can be applied in testing SLAs.

The Classification Tree Method [55] provides a systematic way to hierarchically
partition the inputs of a SUT into classifications and classes via the construction of an
appropriate classification tree. Each classification is a disjoint partition related to the
SUT and each class is a disjoint partition of the values of the corresponding
classifications. From the constructed tree, test coverage items shall be derived by
combining leaf nodes using combinatorial techniques. In this context, a test coverage
item represents an attribute or combination of attributes regarding the SUT that will be
exercised by a test case.

Combinatorial testing techniques [56] are used to generate test cases that achieve
different levels of coverage. The combinations are defined in terms of parameters and the
values that they can take. To align this with the constructed classification tree,
classifications represent parameters and classes represent parameter values. There are
different combinatorial testing techniques such as All combinations, Pair-wise or Each
choice that will be later used in this article.

3.2 WS-Agreement Standard

Over the last decade, different languages have been proposed with the aim to support
and standardize the specification of SLAs (e.g., WSLA [57], WS-Agreement [6], WSLO
[58], SLANG [59][18], WS-Policy [60], the SLA Model [61] and WS-QoS [62]). In our
work, we focus on WS-Agreement because it is a well-accepted standard in the SOA
protocol stack for the management of the SLAs (Figure 1) and has been used in different
approaches regarding the testing of SBAs.

6

Figure 1: Web Service Protocol Stack (adapted from IBM Software Group [63])

WS-Agreement [6] was proposed by the Open Grid Forum working group (OGF). WS-
Agreement is a standard that specifies a protocol for establishing agreements between
two parties and a schema for the definition of SLAs. The specification of domain specific
languages or extensions to express the conditions of the Guarantee Terms is out of the
scope of WS-Agreement. The specification of an SLA in WS-Agreement is composed of
three main parts (Figure 2):

 Name: This part represents an optional name that can be given to the agreement.

 Context: This part describes the involved parties and their role as initiator or
responder. Additionally, it may specify any other information of the agreement
that is not related with the obligations of these parties, such as the “Expiration
Date”.

 Terms: This part expresses the negotiated and agreed obligations of each party.
Obligations are specified using different types of terms:

o Service Description Terms (SDT): describe information about the
functional aspects of the services.

o Service Properties (SP): provide measurable aspects that are used to
express the requirements (guarantees) of the services.

o Guarantee Terms (GT): describe the obligations that must be
satisfied by a specific obligated party

The Guarantee Terms are the most important section of an SLA. A Guarantee Term
contains: an internal element, called Scope, that specifies the list of services and, an
optional substructure of the service that the terms applies to (for example, a particular
method or endpoint); a Qualifying Condition (QC) which is an assertion or precondition
determining whether the term is valid or not; and a Service Level Objective (SLO) that is
the guarantee that must be met. Optionally, a Business Value List (BVL) for such term
may also be specified containing some information as the penalties for not having
satisfied the associated guarantee.

It is worth noting that WS-Agreement allows the logical combination of these terms
by means of elements named Compositors. More specifically, there are three different
compositors: All, OneOrMore and ExactlyOne, which are equivalent to the logical AND,
OR and XOR operators respectively.

HTTP / HTTPS SMTP RMI / IIOP JMSTRANSPORTS

XML SOAP WS-AddressingMESSAGING

XSD WSDL WS-Policy

DESCRIPTION

AND

DISCOVERY

WS-Resource Properties WS-Base Faults

WS-Metadata Exchange

WS-Security

WS-Agreement

QUALITY OF

EXPERIENCE

(QoX)
WS-Reliable Messaging

WS-Transaction

WS-Resource Lifetime

WS-Service Group WS-Notification BPEL4WS
SERVICE

COMPOSITION
WS-CDL

WS-Coordination

UDDI WS-Inspection

WS-Discovery

WS-Notification

SAML

7

Figure 2: WS-Agreement structure

3.3 Evaluation of SLA Guarantee Terms

In previous research [27], we have developed a four-valued logic and defined a
method to identify a set of test values from the information contained in the SLA
Guarantee Terms.

The evaluation is one of the most important tasks within the management of SLAs in
the context of SBAs. It requires analyzing the information gathered from the monitors,
checking the specification of the guarantee terms and their internal elements and, finally,
making a decision about the fulfilment of the conditions contained in such terms.
Typically, the evaluation of an SLA may be depicted with a two-way traffic light
indicator (green / red), which represents whether the agreement has been fulfilled or
violated respectively.

Focusing on WS-Agreement standard language, a Guarantee Term is specified by
means of the internal elements Scope, Qualifying Condition (QC) and Service Level
Objective (SLO). Considering the syntax of a Guarantee Term and the possible forms of
analysis of the collected information from the service executions at runtime, there are
four (as opposed to two) possible evaluation values for a Guarantee term, notably:

 Fulfilled – This value can be used if and only if the methods of the services
specified in the Scope have been executed, the Qualifying Condition has been met
and the Service Level Objective has been satisfied.

 Violated – This value can be used if and only if the methods of the services
specified in the Scope have been executed, the Qualifying Condition has been met
and the Service Level Objective has not been satisfied.

 Not Determined – This value can be used if and only if the methods of the
services specified in the Scope have not been executed and the Qualifying
Condition is met.

 Inapplicable – This value can be used if and only if the Qualifying Condition has
not been satisfied.

The first three evaluation values are explicitly identified in the WS-Agreement

standard as the three potential states in which the SLA can be so, from a testing point of
view, we have added a four value (Inapplicable) in order to represent specific situations
that are also interesting to be tested. In this case and in addition to the typical two
evaluation values (i.e., Fulfilled / Violated), the utilization of Not Determined and
Inapplicable leads to a four-valued logic where they are two similar interpretations of the
treatment of the null value in the three-valued logic, broadly studied in the context of

Name

Context

Guarantee Terms

Terms

WS-Agreement
<wsag>

 <Name> … </Name>

 <Context>

 <AgreementInitiator> … </AgreementInitiator>

 <AgreementResponder> … </AgreementResponder>

 <ServiceProvider> … </ServiceProvider>

 <ExpirationDate> … </ExpirationDate>

 …

 </Context>

 <Terms>

 <All>

 <ServiceDescriptionTerm> … </ServiceDescriptionTerm>

 <ServiceProperties> … </ServiceProperties>

 <GuaranteeTerm>

 <Scope> … </Scope>

 <QualifyingCondition> … </QualifyingCondition>

 <ServiceLevelObjective> … </ServiceLevelObjective>

 </GuaranteeTerm>

 </All>

 </Terms>

</wsag>

SLA

Service Description Terms

Service Properties

A
ll

8

Data Base Management Systems (DBMS) and applied in the scope of software testing
[64][65][66][67].

Hence, a Guarantee Term denoted by t can be evaluated using a function ev, which
can provide four different values as output:

ev(t) = { Fulfilled, Violated, Not Determined, Inapplicable }

At first glance and based on these four evaluation values, we could think that it is
necessary to identify four different situations with the aim of achieving full coverage
while evaluating the Guarantee Term. However, the internal syntactic structure and the
semantics of a guarantee term specified in WS-Agreement standard language require a
more exhaustive test suite to represent the whole set of situations that are interesting to
observe or exercise from a testing point of view.

At this point, it is important to distinguish between the concepts of evaluation values
and test values. An evaluation value is the outcome of the process of making a decision
about the fulfilment of a Guarantee Term. If the behaviour of this mechanism is
grounded in the proposed logic, there will be four possible evaluation values (i.e.,
Fulfilled, Violated, Not Determined and Inapplicable). On the other hand, a test value
(also known as test requirement in our previous work) represents a situation of the SBA
that must be covered (and satisfied) during testing [68]. A test value includes a set of
conditions and steps that need to be checked through the execution of the SUT. And
during this check, useful information gathered from monitors can be used by the
evaluation mechanism in order to make a decision and provide the final evaluation value
for the test value. In Figure 3, we show an example where a test value is identified from
the content of a Guarantee Term specified in WS-Agreement. This test value exercises
the situation where the method (service) specified in the Scope is executed, the
Qualifying Condition is met and the objective is not satisfied.

Thus, according to the above logic the guarantee term is evaluated as Violated.

Figure 3: Relation Test Value – Evaluation Value

Keeping this in mind, a Guarantee Term may be evaluated with four different values
but it is possible to identify, for each term, six test values, as it can be seen in Figure 4.
More specifically, as shown in the figure, the internal elements of a Guarantee Term
include Scope, Qualifying Condition and Service Level Objective. At the top of the
figure we check whether the methods of the services specified in the Scope element have
been invoked or not at the time of evaluating the SLA (the verification of this condition
is performed using satisfied/unsatisfied as outputs). Furthermore, the content of the
Qualifying Condition and the Service Level Objective represent conditions that may also
be evaluated as satisfied/unsatisfied. Thus, we apply the multiple combinations of these
three internal elements of a Guarantee Term. As there are three conditions with two
truth-values for each condition, we would obtain eight different situations to test
regarding the content of the Guarantee Term. However, due to the semantic meaning of

 <GuaranteeTerm

 Name = “GT_Flight_Premium” Obligated = “ServiceProvider”

 <Scope

 serviceName = “TravelAgency” method = “getFlightPrice”

 </Scope>

 <QualifyingCondition>

 clientType = Premium

 </QualifyingCondition>

 <ServiceLevelObjective>

 responseTime <= 180 seconds

 </ServiceLevelObjective>

 </GuaranteeTerm>

Test Value

The method getFlightPrice of the service

TravelAgency is invoked by a Premium

client. The service provides the price to the

client in more than 180 seconds.

Evaluation Value

The Guarantee Term is evaluated as

VIOLATED

9

the internal elements of the term, there is a pair of combinations that do not make sense.
These relate to cases where the methods of the services specified in the Scope have not
been executed so it is useless to check whether the Service Level Objective have been
satisfied or not (right branch of the Figure 4). Hence, we obtain six test values that are
interesting to test from the specification of a Guarantee Term (identified by TV1-TV6).

At the bottom of the figure, we align the relation between the test values and the value
provided by the evaluation mechanism when exercising such test value.

Scope

Qualifying

Condition
Qualifying

Condition

SLOSLO

Fulfilled InapplicableViolated
Not

Determined
Inapplicable Inapplicable

Satisfied

Unsatisfied

TV1 TV2 TV3 TV4 TV5 TV6

Fulfilled Violated Not

Determined
Inapplicable

Evaluation Values

Test Values

Figure 4: Identification of test values from individual Guarantee Terms

4. Test Method

An SLA specified in WS-Agreement has a hierarchical structure that logically
combines the Guarantee Terms through the use of the specific elements named
compositors (All, OneOrMore and ExactlyOne). Then, it is necessary to define how these
terms are analyzed in order to identify the situations that need to be tested. In this
section, we describe the method that allows deriving the test cases by means of
elaborating the classification tree, specifying the constraints that guide the derivation of
the test coverage items avoiding the generation of non feasible test cases and, finally, the
tool that automates the whole process.

4.1 Construction of the Classification Tree

The first step of the method involves the construction of a suitable model to
hierarchically represent the relevant information of the SLA specification in WS-
Agreement, using the Classification Tree Method (CTM). This tree will later be used to
derive the test coverage items and generate the test cases. To do so, we have to identify
the classifications and classes that will formulate the tree.

The simplest approach could be to parse the structure of the SLA and construct a
classification for each of the elements of the SLA. In this case the Service Level
Objectives of the Guarantee Terms would represent the classifications at the lowest level
whereas the evaluation of such SLOs would represent the classes of the tree. However,
we need to ensure that the resulting tree represents all the test situations that may arise
during the evaluation of the Guarantee Terms. Hence, we use the compositors of WS-
Agreement to construct the first levels of the hierarchy in the tree and we raise the level

10

of abstraction of the most internal elements of the SLA. In particular, we take the
structure of each Guarantee Term as a whole (including its Scope, Qualifying Condition
and Service Level Objective) and we construct a classification for each of the SLA
Guarantee Terms. Each of these classifications (Guarantee Terms) has six potential test
values as we described in Section 3.3. Hence the leaves of the tree that represent the
classes of each classification are constructed by representing the six test values for each
Guarantee Term. With this approach, both the classifications and the classes fulfil the
restriction of being disjoint partitions with respect to the SLA. Note that both
classifications and classes represent different levels of detail of the situations to be tested.
The lowest level (class) represents each situation that arises from each of the test values
that have to be covered by the test cases.

It is worth mention that in order to be consistent with the notation of the testing
techniques described in the ISO/IEC/IEEE 29119, in the rest of the article we will use
the concept of class (CL) when we refer to the different situations that arise from the
evaluation of a Guarantee Term.

At this stage, we have to deal with an important issue regarding the construction of
the classes of the tree. Depending on the internal syntax and semantics of the Guarantee
Terms of WS-Agreement, we have to consider two particular cases where not all the six
classes are identified. These two cases are described next.

Case 1 (C1): Guarantee Terms without Qualifying Condition

The first particular case (C1) arises when the Guarantee Term has no Qualifying
Condition associated. The Qualifying Condition determines whether a term is valid and it
must be considered during the evaluation process or not. In this case and given that there
is no Qualifying Condition the term is always valid so only three classes (CL1, CL2 and
CL5) are identified. Thus in the classification that represents such Guarantee Terms, only
three classes are constructed in the tree (see Figure 5). The specification of the classes
CL1 and CL2 in this tree represent that the methods of the services are invoked and the
Service Level Objective is satisfied or unsatisfied, respectively. Class CL5 represents
that the methods of the services have not been executed.

Scope

QC Qualifying

Condition

SLOSLO

Fulfilled InapplicableViolated
Not

Determined
Inapplicable Inapplicable

Satisfied

Unsatisfied

CL1 CL2 CL3 CL4 CL5 CL6

Fulfilled Violated Not

Determined
Inapplicable

Evaluation Values

Classes

<GuaranteeTerm

 Name = “GT_BookCar” Obligated = “ServiceProvider”

 <Scope

 serviceName = “TravelAgency” method = “bookCar”

 </Scope>

 <ServiceLevelObjective>

 responseTime < 50

 </ServiceLevelObjective>

</GuaranteeTerm>

WSAG

Figure 5: Application of Case 1 (C1)

Case 2 (C2): Qualifying Condition is an assertion over service attributes

WS-Agreement states in its specification that the Qualifying Condition is an assertion
over service attributes and/or external factors. In the former case, for example, this
condition may make reference to an input parameter or condition of the service while in

11

the latter it can represent a specific state of the SUT. The second particular case (C2)
arises when the Qualifying Condition of the Guarantee Term is an assertion over the
service attributes. This case occurs because the semantics of the Qualifying Condition
also affect the identification of the classes. In this case, it is impossible to check the
fulfilment of the QC if the methods of the services have not been executed so the
combinations performed in classes CL5 and CL6 do not make sense. In such case,
classes CL5 and CL6 are joined in only one class representing that the methods of the
services have not been executed (Figure 6). This means that we would construct five
classes for the classification that represents such Guarantee Term instead of the six that
are constructed in the general case.

Scope

QC QC

SLOSLO

Fulfilled InapplicableViolated
Not

Determined
Inapplicable Inapplicable

Satisfied

Unsatisfied

CL1 CL2 CL3 CL4 CL5 CL6

Fulfilled Violated Not

Determined
Inapplicable

Evaluation Values

Classes

<GuaranteeTerm

 Name = “clientPremium” Obligated = “ServiceProvider”

 <Scope

 serviceName = “TravelAgency” method = “getPrice”

 </Scope>

 <QualifyingCondition>

 clientType = Premium

 </QualifyingCondition>

 <ServiceLevelObjective>

 responseTime < 10

 </ServiceLevelObjective>

</GuaranteeTerm>

WSAG

Not

Determined

CL5

Figure 6: Application of Case 2 (C2)

After considering the application of both cases when constructing the classification
tree, we finally obtain a tree that contains one classification for each Guarantee Term
specified in the SLA and each classification can have 6, 3 or 5 classes depending on the
particular cases applied. In Figure 7 we show an example of a tree constructed from the
analysis of a WSAG-compliant agreement with three Guarantee Terms where no
particular cases are applied to the first one, the particular case C1 is applied to the
Guarantee Term GT2 and the particular case C2 is applied to the Guarantee Term GT3.
The leaves that represent the classes are depicted with different colours depending on the
evaluation value of the Guarantee Term when such class is exercised (green for Fulfilled,
red for Violated, yellow for Inapplicable and grey for Not Determined).

Figure 7: Example of a Classification Tree from an SLA

CL1 CL2 CL3 CL5

WSAG

(All)

GT1 GT2 GT3

CL4 CL6 CL1 CL2 CL5 CL1 CL2 CL3 CL5CL4

12

4.2 Generation of test cases with combinatorial testing techniques

Once we have constructed the classification tree, we can make a decision about the
parts of the tree that represent the most critical situations and need to be covered with a
higher intensity. To do this, we apply standard combinatorial testing techniques in order
to derive the test coverage items and generate the test cases.

When deriving the test coverage items, not all the combinations of classes will be
used because we have to deal with two potential problems:

 The first one is related to the number of derived test coverage items, which
can be unmanageable if the SLA is complex.

 The second problem affects the testability of specific test coverage items
because there are combinations that lead to non feasible situations to be tested.

To solve the first of these problems, we apply standard combinatorial testing
techniques with the aim of obtaining a reduced (but significant) number of test cases. To
address the second problem, we define specific constraints that the test suite has to
satisfy to avoid generating non feasible test cases.

4.2.1 Combinatorial strategy

Once we have defined the classification tree and in order to derive the test coverage
items, we use different combinatorial testing techniques. These techniques are defined in
terms of parameters and values. When we use the constructed tree to test the SLA, the
parameters are the classifications that represent the Guarantee Terms and the values are
the classes that represent the test values.

After the identification of the parameters and their corresponding values, we derive
the test coverage items by means of applying any of the testing techniques standardized
in the ISO/IEC/IEEE 29119, which allow grading the intensity of the tests. These
techniques are usually based on coverage and there are different coverage criteria that
can be applied. The simplest coverage criterion is provided by each choice testing (also
known as 1-wise) which requires that every class of every classification (Guarantee
Term) represents a test coverage item and it must be exercised in at least one test case in
the test suite. The most exhaustive coverage criterion is provided by All Combinations
testing, which requires that every possible combination of classes must be included in at
least one test case. Between them, a widely used coverage criterion is provided by pair-
wise testing (also known as all pairs or 2-wise). Pair-wise testing requires that every
possible pair of classes of any two classifications represent the test coverage items and
they must be included in at least one test case.

In addition to existing testing techniques, it is necessary to define a strategy that
guides the combinations depending on factors related to the content of the SLA and the
behaviour of the SBA (e.g., critical SBA functionalities). This means that we may want
to be more exhaustive and apply a combinatorial testing technique in a specific part of
the tree (for example, a branch or a group of classifications) whereas a less exhaustive
technique may be applied in a different part of the tree.

As a result of this process, we obtain the test coverage items that lead to the
generation of test cases. Each test case contains a set of test coverage items where each
classification is included in the test case just once (so each Guarantee Term will be
evaluated once in each test case). The content of the classes combined in the test
coverage items will determine the inputs of the test case. In addition to this information,
it is necessary to have some knowledge about the behaviour of the SUT in order to
specify the test case steps that exercise the classes. For example, different sources of
information can be used such as UML State Transition Diagrams or Sequence Diagrams.

13

4.2.2 Definition of testability constraints

The derivation of the test coverage items may produce some combinations, which do
not make sense and lead to non feasible test cases that cannot be executed. In this section
we define specific constraints that allow excluding unfeasible combinations of test
coverage items.

We distinguish between two types of constraints: implicit and explicit. The implicit
constraints are based on the information that is represented in the terms of the SLA. The
explicit constraints are identified through the analysis of the SUT. Both sets of
constraints are always related to combinations of classes that represent feasible or non-
feasible situations to be exercised, disregarding the characteristics of the SUT.

4.2.2.1 Implicit Constraints

Based on the syntax and semantics structure of WS-Agreement, we can identify a set
of implicit constraints that can help avoiding non feasible combinations of classes used
to derive the test cases. These constraints are automatically obtained from the
specification of the SLA.

We have defined the following set of implicit constraints for the general case where
six classes are identified for each classification. If any of the two particular cases
described in Section 4.1 has been applied to the involved classifications, these
constraints must be suitably adapted.

Before discussing the constraints, let us assume that the selection of a class within a
classification is represented by the function , where GTx is the classification
that represents such Guarantee Term and CLy is the corresponding class.

I1: Guarantee Terms (GT) that affect the same method/service

Suppose that the method/service specified in the scope of the Guarantee Term GT1 is
the same as the one specified in Guarantee Term GT2. If any of the classes CL5-CL6 of
the classification that represents GT1 is selected to be combined in a test coverage item
(the method/service specified in the Scope of GT1 is not executed), then one of the
classes CL5-CL6 of the classification that represents GT2 must also be exercised. This
constraint can be formally expressed as:

I2: Guarantee Terms that have the same Qualifying Conditions

If some Guarantee Terms share the same Qualifying Condition and this is not met,
then all the classifications that represent these Guarantee Terms must take the values of
the classes CL3, CL4 or CL6.

I3: Guarantee Terms that have mutually disjoint Qualifying Conditions

If the Qualifying Condition of the first Guarantee Term is met then it is obvious that
the Qualifying Condition of the second term must not be met and vice versa.

14

4.2.2.2 Explicit Constraints

In order to identify explicit constraints, an analysis of the business logic of the SUT
must be carried out. These constraints refer to some specific situations concerning the
possible behaviour of the SUT with regards to the ability to execute particular
combinations of service methods, and affect the evaluation of the Guarantee Terms
involved in the corresponding execution.

The specification of these constraints is manually done by the tester by using IF-
THEN statements in which specific combinations of the GT evaluation values are
allowed or forbidden.

The set of explicit constraints includes the following:

E1: The execution of a method/service implies the non-execution of another

method/service.

It means that if a method/service Si (specified in the Scope of GTi) is executed then
the method/service Sj (specified in the Scope of GTj) cannot be invoked or, formally:

E2: The non-execution of a method/service implies the non-execution of another

method/service

It means that if a method/service Si (specified in the Scope of GTi) is not executed
then the method/service Sj (specified in the Scope of GTj) cannot be invoked.

E3: The execution of a method/service implies the execution of another method/service

It means that if a method/service Si (specified in the Scope of GTi) is executed then
the method / service Sj (specified in the Scope of GTj) must be invoked

E4: The non-execution of a method/service implies the execution of another

method/service

It means that if a method / service Si (specified in the Scope of GTi) is not executed
then the method / service Sj (specified in the Scope of GTj) must be invoked.

E5: The execution of a method/service is required

It means that a method / service Si (specified in the Scope of GTi) is mandatory to be
invoked during the execution of the SUT.

E6: Additional constraints

15

Depending on the content of QCs or SLOs, the use of a specific test value of GT
(GTi) may require also the use of a specific test value for another GT (GTj). The
specification of this rule (E6) depends on the information of the Guarantee Terms. For
example, consider the following two guarantee terms (left part of Figure 8) and a subset
of the identified classes (right part of Figure 8). If GT1 is violated (exercising CL2) then
GT2 must be evaluated as Inapplicable because the Qualifying Condition (client
=Premium) is not met. In this case, the class CL4 must be exercised (note that CL3 could
not be exercised because the response time forced by CL2 of GT1 is more than 10
seconds so the Service Level Objective of GT2 would never be met).

Figure 8: Excerpt of SLA Guarantee Terms and identified classes

4.3 Tool support: SLACT (SLA Combinatorial Testing)

To address the generation of test cases, we have developed a tool that is able to
automatically generate test cases by means of deriving test coverage items through the
combination of the classes identified from the SLA Guarantee Terms, called SLACT
(SLA Combinatorial Testing). This tool builds upon an existing combinatorial testing
tool [29].

SLACT has been implemented to automate: (1) the identification of classes and the
definition of the implicit constraints, both processes from the specification of the WS-
Agreement, (2) the application of the combinatorial testing technique according to the
coverage strategy selected by the tester, and (3) the generation of a test suite that satisfies
the expected coverage with the least number of test cases and the analysis of the
coverage of the classes of each Guarantee Term.

SLACT has five components, as shown in Figure 9, namely the SLA Parser,
Constraints Generator, Executor, Analyzer and, finally, the User Interface. The roles of
these components are discussed below.

<All>

 <GuaranteeTerm

 Name = “GT1” Obligated = “ServiceProvider”

 <Scope

 serviceName = “TravelAgency” method = “getDiscount”

 </Scope>

 <QualifyingCondition>

 clientType = Regular

 </QualifyingCondition>

 <ServiceLevelObjective>

 responseTime < 10 seconds

 </ServiceLevelObjective>

 </GuaranteeTerm>

 <GuaranteeTerm

 Name = “GT2” Obligated = “ServiceProvider”

 <Scope

 serviceName = “TravelAgency” method = “getDiscount”

 </Scope>

 <QualifyingCondition>

 clientType = Premium

 </QualifyingCondition>

 <ServiceLevelObjective>

 responseTime < 3 seconds

 </ServiceLevelObjective>

 </GuaranteeTerm>

</All>

WSAG

Classes

<GT1>

...

CL2: getDiscount is invoked, the client is

Regular and the response time is greater or

equal than 10 seconds (GT = Violated).

…

<GT2>

…

CL3: getDiscount is invoked, the client is not

Premium and the response time is less than 3

seconds (GT = Inapplicable).

CL4: getDiscount is invoked, the client is not

Premium and the response time is greater or

equal than 3 seconds (GT=Inapplicable).

...

16

Figure 9: SLACT Architecture

SLA Parser

The first of the SLACT components is called SLA Parser. This component is in
charge of parsing the XML document that contains the SLA specified in WS-Agreement
language and extracting the relevant information of the individual Guarantee Terms.

Constraints Generator

The second component of SLACT is called Constraints Generator. This component
provides the following functions:

- Analyzing the information extracted from the parser to automatically obtain the
implicit constraints.

- Allowing the definition of the explicit constraints.
- Allowing the selection of the combinatorial strategy.
The Constraints Generator is in charge of analyzing the information received from

the SLA Parser in order to construct the classification tree by means of identifying the
classifications and classes as it is described in Section 4.1. Also from the specification of
the SLA, it automatically obtains the set of implicit constraints (taking the general case
and the particular cases into account). Furthermore, through its User Interface (UI),
SLACT allows the definition of the set of explicit constraints and the selection of the
strategy that will guide the combinations to derive the test coverage items. Regarding
this strategy, the tool allows the application of 1-wise, 2-wise or N-wise to all the
classifications as well as the definition of a hybrid strategy that partially applies different
combinatorial techniques to specific sets of classifications.

Executor

The third component of SLACT is called Executor. This component is in charge of
executing the combinations of test cases with the appropriate parameters and values,
considering the constraints provided by the Generator and the coverage strategy selected
by the tester. Executor may be run in two different ways:

(i) It may perform multiple executions with the aim at obtaining different test suites
(the number of executions can also be specified by the tester)

SLA

Parser

Generator

Analyzer

Executor

PICT

Combinatorial

Strategy

Explicit

Constraints

SLA

Number of

Executions

SLA

SLA Information

Explicit

Constraints
*

Execution

Test Suite

Results

Test Cases

Coverage

Report

Implicit & Explicit

Constraits

Number of

Executions

Combinatorial

Strategy

INPUTS OUTPUTS

Test

Requirements

Description

U
s

e
r In

te
rfa

c
e

Best Test

Suite

17

(ii) It may perform a single execution with a specific and previously identified input
in order to obtain the test suite that contains the least number of test cases for the
selected strategy.

This component makes use of the Pairwise Independent Combinatorial Tool (PICT)
[29], which is a free tool developed by Microsoft that has been previously used in other
testing approaches [69][70][71]. The core generation algorithm of PICT is based on a
greedy heuristic optimized for speed. The output of Executor is the specification of the
test suite that satisfies the selected coverage strategy with the least number of test cases.

Analyzer

The forth component of SLACT is called Analyzer. This component is in charge of
two main tasks:

(i) It receives the results of the multiple executions and obtains the test suite that
satisfies the expected coverage with the least number of test cases.

(ii) It also receives the specification of a test suite and performs an analysis of the test
cases in order to assure that all of the classes are exercised and provides a report
regarding the coverage of such classes.

User Interface

The last component of SLACT is the User Interface (Figure 10). This component
allows:

- Selecting the XML document of the SLA.
- Representing the relevant information of the SLA as well as the implicit

constraints automatically identified.
- Specifying the explicit constraints.
- Selecting the combinatorial testing strategy to be applied and the execution

conditions.

Figure 10: SLACT User Interface

18

5. Case Study: eHealth service-based Application

To illustrate the complete process of generating test cases for SLAs, we have carried
out a case study based on an eHealth service-based application scenario that has been
proposed by the European Project PLASTIC [30] and has been used in previous service-
aware testing approaches [31][32][33][34]. This scenario represents the set of conditions
that must be satisfied by the constituent services of an eHealth service based application
as described in an SLA specified in WS-Agreement. This SLA can be downloaded from
[72]. All the steps of the method described in Section 4 have been automatically
performed using SLACT.

5.1 Description

The behaviour of the eHealth case study is represented in Figure 11. In summary, the
application is deployed as a composite web service (WSHealth) that receives an alarm
from patients and triggers appropriate actions to solve such alarms. When an alarm
arrives at the system, this service finds the list of professionals who can take
responsibility for handling the incident by invoking a service called WSRegistry.
WSRegistry provides a list of IP addresses of the professionals who are available at that
moment depending on the type of the alarm (Emergency or Not Confirmation). These
professionals (WSDoctor or WSSupervisor) are connected to the system through wired
or mobile devices. Thus, the conditions related to these connections are different. If a
doctor is contacted, (s)he may get measures from medical devices (available as
WSMedicalDevice services) deployed in the patient’s location. If the contacted agent is a
supervisor, (s)he should arrange an appointment for the patient using the calendar service
WSCalendar.

The conditions that have to be fulfilled by the constituent services of this eHealth
system are specified in an SLA using WS-Agreement. The SLA contains 14 Guarantee
Terms related to 6 different services and 9 service methods. Twelve of these terms
present the whole structure of a Guarantee Term, i.e., a scope, a Qualifying Condition
and a Service Level Objective. The other two Guarantee Terms do not have Qualifying
Condition.

WSPlastic

WSDoctor

WSDoctor
WSMedical

Device

WSMedical

Device

WSRegistry

Patient

WSCalendar

WSSupervisor

WSSupervisor

Figure 11: eHealth Scenario

19

5.2 Construction of the Classification Tree

We have applied the steps described in Section 4.1 in order to construct the tree by
means of identifying the classifications and classes from the eHealth SLA. The results of
this process are summarized in Table 1. The services and methods that constitute the case
study are represented in the first column. The classifications at the lowest level of the
tree are represented in the second column. The particular cases applied to identify the
classes are outlined in the third column. The identifiers of the classes of the tree are
represented in the last column. In this scenario, the case C1 is applied to GT5 and GT12
(only CL1, CL2 and CL5 are identified) and the case C2 is applied to all the other
Guarantee Terms (class CL6 is never identified).

This table is a simplified representation of the classification tree without including the
nodes that represent the compositor elements of WS-Agreement. The classifications at
the lowest level represent the Guarantee Terms of the SLA and the classes represented in
the leaves of the tree are related to the identified test values for each Guarantee Term.
Hence, the number of identified classifications is 14 and the number of classes is 66.
This model is the basis to generate the test cases by means of deriving the test coverage
items. This task is performed by combining the classes using specific combinatorial
criteria and specifying the rules that guide such combinations. In this case study, the
derivation of test coverage items involves the combination of 14 classifications. Twelve
of these classifications have 5 classes each. The other two classifications have 3 classes
each.

Service.Method Classification Case/s Classes

WSHealth.reportAlarm
GT1 C2 CL1, CL2, CL3, CL4, CL5

GT2 C2 CL1, CL2, CL3, CL4, CL5

WS.Registry.getResidentialGateway - -

WSRegistry.getConnectedDeviceIP

GT3 C2 CL1, CL2, CL3, CL4, CL5

GT4 C2 CL1, CL2, CL3, CL4, CL5

GT5 C1, C2 CL1, CL2, CL5

GT6 C2 CL1, CL2, CL3, CL4, CL5

GT7 C2 CL1, CL2, CL3, CL4, CL5

WSDoctor.receiveAlarm
GT8 C2 CL1, CL2, CL3, CL4, CL5

GT9 C2 CL1, CL2, CL3, CL4, CL5

WSSupervisor.receiveAlarm
GT10 C2 CL1, CL2, CL3, CL4, CL5

GT11 C2 CL1, CL2, CL3, CL4, CL5

WSMedicalDevice.getMedicalDevice GT12 C1, C2 CL1, CL2, CL5

WSMedicalDevice.getMeasure
GT13 C2 CL1, CL2, CL3, CL4, CL5

GT14 C2 CL1, CL2, CL3, CL4, CL5

WSCalendar.getAppointmentByMonth - - -

WSCalendar.getAppointment - - -

Total 14 Classifications 66 Classes

Table 1: Traceability between GTs and CLs

5.3 Generation of test cases

In addition to the construction of the classification tree, we have identified the set of
implicit and explicit constraints that will guide the combinations of the classifications
and their classes. The implicit constraints are automatically obtained whereas the explicit
constraints are specified through the User Interface of SLACT (see Figure 10). After
analyzing the content of the SLA and relevant information regarding the behaviour of the
SUT, 26 constraints have been identified in order to guide the generation of test cases.
All these constraints are represented in Table 2. The identifier of each constraint is
represented in the first column. The reference to the implicit or explicit applied constraint
is represented in the second column. The Guarantee Terms whose values will be affected

20

by the constraint are represented in the third column. Finally, a brief explanation of the
constraint is provided in the last column.

ID Rule
Constrained

Guarantee Terms
Explanation

1 I1 GT1, GT2 Both GTs are related to WSHealth.reportAlarm

2 I1
GT3, GT4, GT5,

GT6, GT7
All these GTs are related to WSRegistry.getConnectedDeviceIP

3 I1 GT8, GT9 Both GTs are related toWSDoctor.receiveAlarm

4 I1 GT10, GT11 Both GTs are related to WSSupervisor.receiveAlarm

5 I1 GT13, GT14 Both GTs are related to WSMedicalDevice.getMeasure

6 I2 GT1, GT3, GT6 All these GTs have the same QC: alarmType = Emergency

7 I2 GT2, GT4, GT7 All these GTs have the same QC: alarmType = Not Confirmation

8 I2 GT8, GT10 Both GTs have the same QC: deployedOn = MobileNode

9 I2 GT9, GT11 Both GTs have the same QC: deployedOn = WiredServer

10 I3
(GT1, GT3, GT6) vs

(GT2, GT4, GT7)
Both sets of GTs have mutually disjoint QCs: (alarmType =
Emergency) vs (alarmType = Not Confirmation)

11 I3
(GT8, GT10) vs

(GT9, GT11)
Both sets of GTs have mutually disjoint QCs: (deployedOn =
MobileNode) vs (deployedOn = WiredServer)

12 I3 GT13 vs GT14
Both GTs have mutually disjoint QCs: (idDevice = device_1) vs
(idDevice = device_2)

13 E1 GT10, GT11
If the type of the alarm is an Emergency, a supervisor cannot be
invoked.

14 E1 GT8, GT9
If the type of the alarm is Not Confirmation, a doctor cannot be
invoked.

15 E2
GT8, GT9, GT10,

GT11
If the registry is not invoked, neither a doctor nor a supervisor can
be invoked

16 E3 GT10, GT11 If a doctor is invoked, a supervisor cannot be invoked

17 E3 GT8, GT9 If a supervisor is invoked, a doctor cannot be invoked

18 E4 GT12, GT13, GT14 If a doctor is not invoked, the medical devices cannot be invoked

19 E5 GT1, GT2 WSHealth.reportAlarm must always be invoked.

20 E6
GT8, GT9, GT10,

GT11
If no professionals are found, no doctor nor supervisor can be
invoked

21 E6 GT13, GT14
If medical devices IPs are not found, no medical devices can be
invoked

22 E6 GT1 If GT2 is violated, then GT1 is exercised through CL4.

23 E6 GT3 If GT4 is violated, then GT3 is exercised through CL4.

24 E6 GT9 If GT8 is violated, then GT9 is exercised through CL4.

25 E6 GT11 If GT10 is violated, then GT11 is exercised through CL4.

26 E6 GT13 If GT14 is violated, then GT13 is exercised through CL4.

Table 2: eHealth implicit and explicit constraints

Once we have identified the constraints that should influence the generation of test
cases, it is necessary to select the strategy for combining the parameters and their values,
and obtaining the test coverage items that will be used during testing. In general three
different strategies can be applied in order to grade the level of intensity of the obtained
test suites:

(i) Each choice testing (1-wise) to all the classifications.
(ii) Pair-wise testing (2-wise) to all the classifications.
(iii) Hybrid.
The third strategy is a hybrid of the other two which involves applying pair-wise

testing to a specific set of Guarantee Terms and each choice to the rest. Particularly, in
the selected case study, we have applied pair-wise to the most critical functionalities of
the SUT (the actions that are triggered after receiving an alarm of type Emergency). It is
remarkable that the Guarantee Terms that are related to the arrival of an Emergency are
dispersed in the SLA and, thus, the classifications that represent such Guarantee Terms
(GT1, GT3, GT8, GT9, GT12, GT13 and GT14 of Table 1) are represented in different

21

branches of the tree. This hybrid strategy provided an intermediate level of intensity
between the weakest coverage provided by the each choice coverage and the strongest
intensity provided by the pair-wise coverage.

Bearing these considerations in mind, we have executed SLACT for each of the three
coverage strategies, and run the combinations for each strategy several times and get the
output with the lowest number of test cases that satisfies such coverage strategy. In order
to check the behaviour of the combinations, for each strategy we have run the
combinatorial testing tool 3000 times and we have obtained a minimum number of 10,
42 and 32 test cases for the each choice, pair-wise and hybrid strategies respectively.

The results of these multiple executions are represented in Figure 12. The x-axis in
the figure represents the size of the obtained test suites (the number of test cases
generated in each test suite) provided by the tool. The y-axis represents the number of
times each size is obtained. For example, for the each choice strategy, a test suite with 11
generated tests cases has been obtained more than 1200 times.

Figure 12: Multiple executions results

In the case of the each choice strategy, the results obtained for SLACT presents a
mean (μ) of 11.37 (number of test cases) and a standard deviation (σ) of 0.91. To be
more specific, 95% of the test suites contain approximately between 10 and 13 test cases.
In the case of the pair-wise strategy, the parameters are μ = 47.68, σ = 1.48 and 95% of
the executions have provided a test suite with a number of test cases between 45 and 50.
Finally, the hybrid strategy is represented by μ = 34.84, σ = 1.22 and 95% of the test
suites would contain between 33 and 37 test cases.

Analyzing the results for each applied coverage strategy and starting with the first one
(each choice), we have obtained a test suite that contains 10 test cases (the output file is
represented in Figure 13). In this file, the classifications of the tree (Guarantee Terms)
are represented in columns and the test cases obtained through the combination of the
classes are represented in rows. In order to describe how to derive test cases from the
combinations of the classes to a test case, we consider, for example, test case number 6,
outlined in the figure. The test case is generated by analyzing, according to the
specification of the SLA, the meaning of each of the classes contained in such test case
as well as the knowledge about the behaviour of the SUT. In this test case, we are
exercising the situation when an alarm arrives to the eHealth system. The steps included
in this test case and their corresponding exercised classes are represented in Table 3. To
execute the test cases, we will have to sequentially exercise the steps described in such
table.

22

Figure 13: Content File of Each Choice Test Suite

Exercised Classes Test Case Steps

 An alarm arrives to the eHealth system.

GT5 = CL1
GT6 = CL1
GT7 = CL3

The registry is queried and it provides a correct list of professionals.

GT3 = CL1
GT4 = CL4

The registry provides the answer in less than the specified time.

GT8 = CL2
GT9 = CL4

A doctor connected to the system through a mobile device is contacted
but he does not provide an answer in the specified time.

GT12 = CL1
In spite of this fact, the doctor finds the list of devices deployed in the
patient’s home.

GT13 = CL1
GT14 = CL4

The doctor successfully gets the measure of device_1.

GT1 = CL2
GT2 = CL3

After having carried out all of these tasks, the eHealth system provides
a response to the patient spending more time than the specified in the
SLA

GT10 = CL5
GT11 = CL5

No supervisors are invoked in this test case.

Table 3: Specification of a test case

With these ten test cases, 64 of the 66 classes are exercised at least once (except CL5
for GT1 and GT2 that are constrained by the explicit rule with ID 19 of Table 2 and,
thus, they are impossible to be exercised) and the coverage report provided by the
Analyzer component of SLACT is represented in Table 4 (a). In the first column we
represent the set of Guarantee Terms and in the first row we represent the classes
obtained for each GT. In the table, each cell specifies the number of times such class is
exercised within this test suite. For example, the class CL1 identified from the
specification of GT5 is exercised in 8 test cases for this strategy. If there is a hyphen (-)
in a cell, it means that the class represented in such column was not identified due to the
application of the particular cases explained in Section 4.

23

Each choice (a) Pair-wise (b) Hybrid (c)

CL1 CL2 CL3 CL4 CL5 CL1 CL2 CL3 CL4 CL5 CL1 CL2 CL3 CL4 CL5

GT1 3 3 2 2 0 13 16 6 7 0 27 1 2 2 0

GT2 3 1 3 3 0 7 6 16 13 0 3 1 2 26 0

GT3 3 2 3 1 1 13 14 5 6 4 11 16 1 3 1

GT4 3 1 3 2 1 6 5 14 13 4 2 2 26 1 1

GT5 8 1 - - 1 34 4 - - 4 30 1 - - 1

GT6 3 2 2 2 1 14 13 5 6 4 26 1 1 3 1

GT7 2 2 4 1 1 5 6 14 13 4 1 3 1 26 1

GT8 1 1 1 1 6 6 6 5 8 17 7 6 6 6 7

GT9 1 1 1 1 6 7 6 5 7 17 5 7 6 7 7

GT10 1 1 1 1 6 3 2 2 2 33 1 1 1 1 28

GT11 1 1 1 1 6 2 2 2 3 33 1 1 1 1 28

GT12 2 2 - - 6 12 9 - - 21 12 9 - - 11

GT13 1 1 1 1 6 4 4 4 7 23 4 4 4 7 13

GT14 1 1 1 1 6 5 4 5 5 23 4 4 5 6 13

Table 4: Classes coverage analysis: each choice (a), pair-wise (b), hybrid (c)

Regarding the second of the applied coverage strategies (pair-wise), the test suite with
the least number of test cases that we obtained contained 42 test cases. The number of
test cases obtained is higher than in the 1-wise strategy because, now, each potential pair
of classes of different classifications (Guarantee Terms) is included in at least one test
case. The results provided by the Analyzer regarding the coverage for the classes of each
Guarantee Term are also represented in Table 4 (b). As it can be seen in this table, all
classes in the 2-wise strategy have been exercised more than in the case of each choice.
This indicates a higher level of intensity in the tests. Here again and due to the
specification of the explicit rule 19, there are two classes that are never exercised (CL5
for GT1 and GT2).

Finally, we have also applied the hybrid-wise strategy with the aim of grading the
intensity of the tests depending on the critical functionality of the eHealth system. With
this strategy, the smallest test suite we have obtained contains 32 test cases. The results
provided by the Analyzer are represented in Table 4 (c). There are some classes that are
as much tested as in the pair-wise strategy because they are related to Guarantee Terms
that affect the more critical part of the SUT (Emergencies). On the other hand, there are
other classes that are covered with less intensity, representing non-critical situations of
the SUT.

All the results derived from the coverage of the different classes are synthesised in
Figure 14. In the figure, the x-axis represents the Guarantee Terms and their
corresponding classes and the y-axis represents the number of times each such class is
exercised within the applied coverage strategy. As shown in the figure, in the hybrid
strategy there are specific classes of Guarantee Terms that are much more exercised than
others (for example, CL1 of GT1, CL2 and CL3 of GT2 or CL1 of GT5). These classes
are related to situations that are considered critical for the behaviour of the SUT (e.g., the
arrival of an alarm of type Emergency). Thus, we have decided to combine them more
thoroughly than classes related to a non-critical behaviour of the SUT.

24

Figure 14: CLs Coverage Results

Analyzing the results obtained from the applied strategies, we hereafter highlight
some considerations. First of all, it is the each-choice strategy the one that allows
obtaining the smallest test suite whereas the pairwise strategy provides the largest set of
test cases. Hence, the each-choice strategy is useful when, on the one hand, the criticity
of the application is not high in the sense that an SLA violation does not lead to serious
consequences for the users and, on the other hand, specific factors such as deadlines or
budget hinder the design and execution of more detailed tests. Likewise, the application
of pairwise testing is effective when the application needs to be exhaustively tested and
we have fewer limitations that prevent from executing more thorough tests.

As intermediate solution we recommend to apply a hybrid testing strategy. By
analyzing the application under test and identifying its more critical functionalities, we
could design an appropriate strategy that allows obtaining a good balance between the
number of generated tests and the intensity of such tests within the aforementioned parts
of the application. In this case, we could decide to apply pairwise testing to the most
critical functionalities whereas each-choice testing could be apply to the rest, as we have
previously described.

Bearing these strategies in mind, the number of generated test cases depends on the
strategy we choose when designing the tests. The more intensity we decide to test the
SUT, the higher number of test cases will be obtained. However, even when the SUT has
a complex SLA with many guarantee terms associated, the election of the each-choice
testing allows obtaining a reduced number of test cases so the scalability does not
represent a problem.

In addition to the choice of the testing strategy to be applied, the definition of the
explicit constraints is another task that needs to be manually performed. As we have
previously described, the use of the explicit constraints allows us to avoid the obtaining

25

of non-feasible combinations of test requirements concerning the behaviour of the SUT.
If these explicit constraints are not defined and used, our approach allows identifying the
test requirements and performs the combinations although the results would be less
efficient. In this case, the tester would have to analyze each of the identified
combinations of test requirements and, consequently, the test cases in order to detect
situations that could not be exercised. Due to this, we would recommend to analyze the
characteristics of the SUT and define the constraints before the obtaining of the tests
because this is a task that is performed only once. After that, such constraints can be used
to obtain different set of tests by applying the aforementioned testing strategies.

In our contribution, the most effort and time consuming tasks are the definition of the
explicit constraints and the final derivation of the test cases from the identified
combinations of test requirements because the identification of the test requirements, the
obtaining of the implicit constraints and the combination of such requirements are fully
automated. In this sense the scalability of the approach in terms of time-consuming is not
a problem if we had to manage a SLA with a higher number of guarantee terms because
the executions of SLACT are measured in the scale of a few seconds.

6. Limitations of this approach

In this section we discuss the main limitations of this approach.
First of all, we have used the WS-Agreement [6] standard language in order to specify

the SLAs that are taken as the test basis. In spite of the fact that many languages have
been proposed to standardize the specification of SLAs, for example, WSLA [57],
WSLO [58], SLANG [59][18], WS-QoS [62] or WS-Policy [60], the specification
language that has received more attention regarding the testing of SLAs has been WS-
Agreement, at least from the academic domain. As WS-Agreement presents a generic
syntax, we envision that its derived outcomes could be extrapolated to any other existing
SLA specification language.

In addition to this, in our work we are analyzing the content of the individual
guarantee terms in order to generate the tests. However, an SLA may represent a
hierarchy of terms that are logically combined using the specific compositor elements.
As we state in our future work, we will improve the generation of tests by means of
taking into account the logical structure of the agreement.

Likewise, in this work we are considering the content of the Qualifying Condition and
the Service Level Objective elements as a whole, without analysing the internal
conditions of both elements. Hence, we say that the QC (or the SLO) is satisfied or not
but we do not take into account whether the QC (or the SLO) contains a more complex
expression that needs to be evaluated. We consider that a more detailed analysis of such
elements could help to refine and improve the generated tests although the size of the test
suite could grow and become unmanageable.

Finally, we have described that the SLA is our test basis and its analysis allows us to
generate the test cases. From the content of the SLA, we use the developed tool, SLACT,
to obtain the set of test requirements that will be later exercised through the generated
test cases. However, any change in the specification of the SLA (even if it is a minor
change) affects the identification of the tests so a new set of test requirements needs to be
identified and, consequently, new test cases are generated without reusing the previous
one.

7. Conclusions and Future Work

In this article we have been concerned with the problem of testing service based
applications (SBAs) regulated by Service Level Agreements (SLAs) that have been
negotiated between the service provider and consumer. To address this problem, we
propose a step-wise method that generates test cases from a specification based on WS-
Agreement by means of defining how to apply existing testing techniques used in the

26

industry. We have also developed tool, called SLACT (SLA Combinatorial Testing), to
automate the process.

The approach is based on identifying a set of classifications and classes from the
content of the SLA in order to construct a hierarchical model using the Classification
Tree Method. From this structure, we apply standard combinatorial testing techniques in
order to derive the test coverage items through the combination of the classes represented
in the leaves. We have applied three strategies that provide different levels of
thoroughness in the resulting test suites.

The main benefit of our work is that supports the automatic generation of a set of test
cases from the specification of SLAs, described in WS-Agreement. The execution of the
test cases allows detecting problems in the SBA proactively, i.e., before such problems
lead to undesired consequences for the stakeholders who have agreed the SLA. In
addition to this, our approach can assure that the number of generated test cases will be
manageable and such test cases are feasible to be executed in the SBA. Furthermore, it
gives the tester the possibility to decide whether the SBA should be tested with more or
less thoroughness or even determine which parts of the SBAs should be tested and with
what degree of intensity.

The whole process has been automated by SLACT. SLACT receives the SLA and
automatically identifies the classes and extracts the implicit constraints. The tool can be
used to define explicit testing constraints and selecting a combinatorial strategy for
testing. Based on these inputs, SLACT generates different test suites and provides one
that, whilst satisfying the expected coverage, contains the least number of test cases.

The approach has been validated using an existing eHealth service based application
where we applied the above three testing strategies obtaining three different test suites
with 10, 42 and 32 test cases respectively. Thus we were able to obtain a reasonable and
manageable number of tests for a critical scenario.

In future work, we will focus on improving the definition of tests using additional
information contained in the SLA and taking both the logical and hierarchical structure
of the agreement into account. We expect to be able to identify new cases for testing by
applying existing standard coverage criteria as, for example, the Modified Condition
Decision Coverage (MCDC) defined in the RTCA/DO-178B standard [73]. In relation to
this, we will have to evaluate the testability of these test situations and decide which of
them can be exercised through the generation of tests and which of them should be
checked at runtime using monitoring techniques. Finally, we are planning to study the
feasibility of improving SLACT with the aim of integrating these new test criteria.

Acknowledgment

This work has been partially funded by the Department of Science and Innovation
(Spain) and ERDF funds within the National Program for Research, Development and
Innovation, project Test4DBS (TIN2010-20057-C03-01), project PERTEST (TIN2013-
46928-C3-1-R) and FICYT (Government of the Principality of Asturias) Grant BP09-
075.

References

1. E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, K. Pohl, A journey to highly

dynamic, self-adaptive service-based applications, Automated Software Engineering, 15

(2008) 313–341.

2. M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-Oriented Computing:

State of the Art and Research Challenges, IEEE Computer, 11, (2007).

3. Simple Object Access Protocol (SOAP). http://www.w3.org/TR/2007/REC-soap12-part0-

20070427/ (Accessed August 2014).

4. Web Service Description Language (WSDL). http://www.w3.org/TR/wsdl20/ (Accessed

August 2014).

http://www.w3.org/TR/wsdl20/

27

5. OASIS: Web Services Business Process Execution Language (WSBPEL).

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (Accessed August 2014).

6. A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne, J.

Rofrano, S. Tuecke, M. Xu, Web Services Agreement Specification (WS-Agreement),

2011.

7. O. Rana, W. Ziegler, Research challenges in managing and using Service Level

Agreements, Grids, P2P and Services Computing, New York, NY: Springer, 2010, S.

187-200.

8. A. Bertolino, A. Polini, SOA Test Governance: enabling service integration testing across

organization and technology borders, International Conference on Software Testing,

Verification and Validation Workshops, 2009. ICSTW '09, 1-4 April 2009, pp.277-286.

9. SLA@SOI European Project. http://sla-at-soi.eu/ (Accessed in August 2014).

10. Amazon EC2 SLA: http://aws.amazon.com/ec2-sla/ (Accessed in August 2014)

11. Microsoft Windows Azure SLA: http://www.windowsazure.com/en-us/support/legal/sla

(Accessed in August 2014)

12. Google Apps SLA: http://www.google.com/apps/intl/en/terms/sla.html (Accessed in

August 2014)

13. AT&T services SLA: http://www.att.com/gen/general?pid=6622 (Accessed in August

2014)

14. HP Cloud SLA: https://www.hpcloud.com/SLA (Accessed in August 2014)

15. E. Di Nitto, M. Di Penta, A. Gambi, G. Ripa, M.L. Villani, Negotiation of Service Level

Agreements: An architecture and a search-based approach, Fifth International Conference

on Service-Oriented Computing - ICSOC 2007, Vienna, Austria, September 17-20, 2007,

Proceedings. (2007) 295–306.

16. A. Rumpl, O. Wäldrich, W. Ziegler, Extending WS-Agreement with Multi-round

Negotiation Capability, Grids and Service-Oriented Architectures for Service Level

Agreements, CoreGRID series 13, Springer, 2010, 89-103.

17. S Sharaf, K Djemame, Enabling service-level agreement renegotiation through extending

WS-Agreement specification, Service Oriented Computing and Applications, 2014.

18. J. Skene, F. Raimondi, W. Emmerich, Service-Level Agreements for Electronic Services,

IEEE Transactions on Software Engineering, 36 (2), (March-April 2010) 288--304.

19. J. Trienekens, J. Bouman, M. VanDerZwan, Specification of service level agreements:

Problems, principles and practices, Software Quality Journal, 12 (2004) 43– 57.

20. M. Palacios, L. Moreno, M.J. Escalona, M. Ruiz, Evaluating the Service Level

Agreements of NDT under WS-Agreement. An empirical analysis, Proceedings of the 8th

International Conference on Web Information Systems and Technologies, Porto,

Portugal, 18-21 April 2012, pp. 246-250.

21. M. Di Penta, G. Canfora, G. Esposito, V. Mazza, M. Bruno, Search-based testing of

service level agreements, Proceedings of the 9th Annual Conference on Genetic and

Evolutionary Computation (GECCO 07), London, ACM, New York, 2007, pp. 1090-

1097.

22. K. Mahbub, G. Spanoudakis, Monitoring WS-Agreements: an event calculus based

approach, Test and Analysis of Service Oriented Systems, Springer V., 2007, pp. 265-

306.

23. G. Canfora, M. Di Penta, Testing services and service-centric systems: challenges and

opportunities, IT Professional 8 (2) (2006) 9–17.

24. L. Baresi, N. Georgantas, K. Hamann, V. Issarny, W. Lamersdorf, A. Metzger, B. Pernici,

Emerging Research Themes, Services-Oriented Systems, SRII Global Conference (SRII),

2012 Annual, 24-27 July 2012, pp.333-342.

25. M. Palacios, J. García-Fanjul, J. Tuya, Testing service oriented architectures with

dynamic binding: a mapping study, Information and Software Technology, vol. 53 (3),

(2011), 171-189.

26. M. Palacios, Defining an SLA-aware method to test service-oriented systems, Proceeding

of the 9th International Conference on Service Oriented Computing (ICSOC), PhD

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

28

Symposium, G. Pallis et al. (Eds.): ICSOC 2011, LNCS 7221, pp. 164-170. Springer,

Heidelberg (2012).

27. M. Palacios, J. García-Fanjul, J. Tuya, G. Spanoudakis, Identifying test requirements by

analyzing SLA Guarantee Terms, Proceedings of the 19th International Conference on

Web Services, Application and Experience Track, Honolulu, Hawaii, USA, 24-29 June

2012, pp- 351-358.

28. ISO/IEC/IEEE 29119 - Software and Systems Engineering - Software Testing.

http://www.softwaretestingstandard.org/ (Accessed in August 2014)

29. J. Czerwonka, Pairwise testing in real world, Pacific Northwest Software Quality

Conference, October 2006, pp. 419–430.

30. PLASTIC European Project. http://www.ist-plastic.org/ (Accessed in August 2014).

31. A. Bertolino, G. De Angelis, L. Frantzen, A. Polini, Model-based generation of testbeds

for web services, Testing of communicating systems and formal approaches to software

testing - TESTCOM/FATES. LNCS, vol. 5047, 2008, pp. 266-282. Springer.

32. L. Frantzen, M.N. Huerta, Z.G. Kiss, T. Wallet, On-The-Fly model-based testing of web

services with Jambition, 5th International Workshop on Web Services and Formal

Methods (WS-FM 2008), ser. LNCS, no. 5387. Springer, 2009, pp. 143-157.

33. A. Bertolino, G. De Angelis, A. Di Marco, P. Inverardi, A. Sabetta, M. Tivoli, A

framework for analyzing and testing the performance of software services, Proceedings of

the 3rd ISoLA. CCIS, vol. 17, Springer, Heidelberg, 2008.

34. M. Autili, P.D. Benedetto, P. Inverardi, Context-aware adaptive services: The plastic

approach, 12th International Conference on Fundamental Approaches to Software

Engineering, FASE 2009, Held as Part of the Joint European Conferences on Theory and

Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings. Lecture

Notes in Computer Science, vol. 5503. Springer, 124–139.

35. M. Palacios, J. García-Fanjul, J. Tuya, C. de la Riva, A proactive approach to test service

level agreements, 5th International Conference on Software Engineering Advances

(ICSEA), 2010, pp. 453-458.

36. M. Palacios, J. García-Fanjul, J. Tuya, G. Spanoudakis, Coverage-based Testing for

Service Level Agreements, IEEE Transactions on Service Computing, February 2014 (in

press).

37. C. Kotsokalis, R. Yahyapour, M.A. Rojas Gonzalez, Modeling Service Level Agreements

with Binary Decision Diagrams, International Conference on Service-Oriented

Computing (ICSOC), 2009. LNCS. Vol. 5900, 190-204.

38. C. Muller, M. Resinas, A. Ruiz-Cortes, Automated Analysis of Conflicts in WS-

Agreement, IEEE Transactions on Services Computing, February 2013 (in press).

39. C. Muller, M. Oriol, X. Franch, J. Marco, Comprohensive Explanations of SLA

Violations at Runtime, IEEE Transactions on Service Computing, vol. 7 (2) (2014), 168-

183.

40. F. Raimondi, J. Skene, W. Emmerich, Efficient online monitoring of web-service SLAs,

Proceedings of the 16th ACM SIGSOFT Int. Symposium on Foundations of Software

Engineering (SIGSOFT'08/FSE-16), 2008.

41. M. Comuzzi, C. Kotsokalis, G. Spanoudakis, R. Yahyapour, Establishing and Monitoring

SLAs in Complex Service Based Systems, IEEE International Conference on Web

Services (ICWS), 2009, Los Angeles, CA, pp. 783-790.

42. C. Muller, M. Oriol, M. Rodriguez, X. Franch, J. Marco, M. Resinas, A. Ruiz-Cortes,

SALMonADA: A platform for monitoring and explaining violations of WS-agreement-

compliant documents, Workshop on Principles of Engineering Service Oriented Systems

(PESOS), 2012 ICSE, 4 June 2012, pp.43-49.

43. M. Oriol, J. Marco, X. Franch, D. Ameller, Monitoring adaptable SOA system using

SALMon, Workshop of Service Monitoring, Adaptation and Beyond (MONA+),

ServiceWave Conference, 2008.

44. N. Goel, .V.N. Kumar, R.K. Shyamasundar, SLA Monitor: A System for Dynamic

Monitoring of Adaptive Web Services, 9th IEEE European Conference on Web Services

(ECOWS), 2011, pp.109-116.

29

45. A. Mosallanejad, R. Atan, HA-SLA: A Hierarchical Autonomic SLA Model for SLA

Monitoring in Cloud Computing, Journal of Software Engineering and Applications, vol.

6 (2013), 114-117.

46. K. Bratanis, D. Dranidis, A. J. H. Simons, SLAs for cross-layer adaptation and

monitoring of service-based applications: a case study, International Workshop on

Quality Assurance for Service-Based Applications (QASBA), 2011.

47. P. Leitner, A. Michlmayr, F. Rosenberg, S. Dustdar, Monitoring, prediction and

prevention of SLA violations in composite services, IEEE International Conference on

Web Services (ICWS), 2010, pp. 369-376.

48. P. Leitner, S. Dustdar, B. Wetzstein, F. Leymann, Cost-based prevention of violations of

service level agreements in composed services using self-adaptation, Workshop on

European Software Services and Systems Research-Results and Challenges (S-Cube),

2012, pp. 34-35.

49. D. Ivanovic, M. Carro, M. Hermenegildo, Constraint-based runtime prediction of SLA

violations in service orchestrations, Proceedings of the International Conference on

Service Oriented Computing (ICSOC), 2011, pp. 62-76.

50. E. Schmieders, A. Micsik, M. Oriol, K. Mahbub, R. Kazhamiakin, Combining SLA

prediction and cross layer adaptation for preventing SLA violations, 2nd Workshop on

Software Services: Cloud Computing and Applications based on Software Services, 2011,

Timisoara, Romania.

51. D. Lorenzoli, G. Spanoudakis, Runtime Prediction of Software Service Availability,

International Conference on Software Engineering Research and Practice (SERP'11),

2011, pp. 239-245.

52. ISO/IEC 24765, Software and Systems Engineering Vocabulary, 2006.

53. IEEE Std 610.12-1990, IEEE standard glossary of software engineering terminology,

http://standards.ieee.org/findstds/standard/610.12-1990.html (Accessed in August 2014).

54. C. Nie, H. Leung, A survey of combinatorial testing, ACM Computing Surveys (CSUR),

Volume 43 Issue 2, January 2011.

55. M. Grochtmann, K. Grimm, Classification trees for partition testing, Software Testing,

Verification and Reliability, vol. 3 (2) (June 1993), 63–82.

56. M. Grindal, J. Offut, S.F. Andler, Combination testing strategies – a survey, Software

Testing, Verification and Reliability Volume 15, Issue 3, (September 2005), 167–199.

57. A. Keller, H. Ludwig, The WSLA Framework: Specifying and Monitoring of Service

Level Agreements for Web Services, IBM research report RC22456, 2002.

58. V. Tosic, B. Pagurek, K. Patel, B. Esfandiari, W. Ma, Management applications of the

Web Service Offerings Language (WSOL), 15th International Conference on Advanced

Information Systems Engineering(CAiSE'03), Velden, Austria, June 2003.

59. D.D. Lamanna, J. Skene, W. Emmerich, SLAng: A language for defining Service Level

Agreements, 9
th
 IEEE Workshop on Future Trends of Distributed Computing Systems

(FTDCS'03), San Juan, Puerto Rico, 2003.

60. A. S. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yendluri, T. Boubez, M.

Yalinalp, “Web services policy 1.5 — framework,” http://www.w3.org/TR/ws-policy, 04

September 2007.

61. K.T. Kearney, F. Torelli, The SLA Model, Service Level Agreements for Cloud

Computing, Springer New York, pp. 43-77, 2011.

62. M. Tian, A. Gramm, T. Naumowicz, H. Ritter, J. Schiller, A concept for QoS integration

in Web Services, 1st Web Services Quality Workshop (WQW 2003), in conjunction with

IEEE Computer Society 4th International Conference on Web Information Systems

Engineering (WISE 2003), Rome, Italy, December 2003.

63. D. Sabbah, Bringing Grid & Web Service Together, Opening Keynote Globus World

2004, Vice President of Strategy and Technology, IBM Software Group.

64. N.D. Belnap, A useful four-valued logic. In: J.M. Dunn, G. Epstein (eds.), Modern Uses

of Multiple-Valued Logic, Dordrecht: Reidel, (1977) 8-37.

65. E.F. Codd, The Relational Model for Database Management - Version 2. Addison-

Wesley, Reading, MA, (1990).

http://standards.ieee.org/findstds/standard/610.12-1990.html

30

66. G. Gessert, Four Valued Logic for Relational Database Systems, Sigmod Rec. 19 (1),

(1990) 29- 35.

67. J. Tuya, M.J. Suárez-Cabal, C. de la Riva, Full predicate coverage for testing SQL

database queries, Software Testing, Verification and Reliability, 20 (3) (September 2010)

237-288.

68. J. Offut, L. Nan, P. Ammann, X. Wuzhi, Using abstraction and Web applications to teach

criteria-based test design, 24th IEEECS Conference on Software Engineering Education

and Training (CSEE&T), 2011, pp.227-236.

69. M.B. Cohen, M.B. Dwyer, J. Shi, Interaction Testing of Highly-Configurable Systems in

the Presence of Constraints, Proceedings of the 2007 international symposium on

Software testing and analysis (ISSTA), 2007, ACM, New York, NY, USA, pp. 129-139.

70. T. Nanba, T. Tsuchiya, T. Kikuno, Constructing test sets for pairwise testing: A SAT-

based approach, Second International Conference on Networking and Computing

(ICNC), 2011, Nov. 30 2011-Dec. 2 2011, pp.271-274.

71. J.D. McCaffrey, An empirical study of pairwise test set generation using a genetic

algorithm, Seventh International Conference on Information Technology: New

Generations (ITNG), 2010, 12-14 April 2010, pp.992-997.

72. Software Engineering Research Group (GIIS) SLA downloads:

http://giis.uniovi.es/testing/downloads/sla/?lang=en (Accessed in August 2014).

73. RCTA Inc. DO-178-B: Software Considerations in Airborne Systems and Equipment

Certification. Radio Technical Commission for Aeronautics (RTCA), 1992.

Vitae

Marcos Palacios is currently a Teaching Assistant at University of Oviedo, Spain, and a member of the

Software Engineering Research Group of that University. He received his PhD in Computing in 2014 and

his M. Sc. in Computer Science in 2008, both from the University of Oviedo. He has collaborated with

City University London (London, UK) as visiting researcher. His research interests include software

engineering, software testing and service-based applications.

José García-Fanjul is currently Professor at University of Oviedo, Spain, and a member of the Software

Engineering Research Group of that University. He received his PhD and M.Sc. in Computing from the

University of Oviedo. His research interests include software engineering, software testing and service-

based applications, and he has authored several research papers published on journals and international

conferences.

Javier Tuya is Professor at University of Oviedo, Spain, where is the research leader of the Software

Engineering Research Group. He received his PhD in Engineering from the University of Oviedo. He is

Director of the Indra-Uniovi Chair, member of the ISO/IEC JTC1/SC7/WG26 working group for the

ISO/IEC/IEEE 29119 Software Testing standard and convener of the corresponding AENOR National

31

Body working group His research interests include software engineering, process improvement,

verification & validation and software testing.

George Spanoudakis is Professor of Computing and Associate Dean for Research in the School of

Informatics at City University London. His research is in software engineering with a focus on service

oriented computing and software systems security where he has published more than 120 peer-reviewed

papers. His research has attracted more than €4.8m of funding and has been the principal investigator of

several R&D projects. He has served in the committees of several international conferences, and the

editorial boards of several journals including the Int. J. of Software Engineering and Knowledge

Engineering and Int. J. of Advances in Security.

