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Abstract  

In the scope of the applications developed under the service-based paradigm, Service 
Level Agreements (SLAs) are a standard mechanism used to flexibly specify the Quality 
of Service (QoS) that must be delivered. These agreements contain the conditions 
negotiated between the service provider and consumers as well as the potential penalties 
derived from the violation of such conditions. In this context, it is important to assure 
that the service based application (SBA) behaves as expected in order to avoid potential 
consequences like penalties or dissatisfaction between the stakeholders that have 
negotiated and signed the SLA. In this article we address the testing of SLAs specified 
using the WS-Agreement standard by means of applying testing techniques such as the 
Classification Tree Method and Combinatorial Testing to generate test cases. From the 
content of the individual terms of the SLA, we identify situations that need to be tested. 
We also obtain a set of constraints based on the SLA specification and the behaviour of 
the SBA in order to guarantee the testability of the test cases. Furthermore, we define 
three different coverage strategies with the aim at grading the intensity of the tests. 
Finally, we have developed a tool named SLACT (SLA Combinatorial Testing) in order 
to automate the process and we have applied the whole approach to an eHealth case 
study. 

 

Keywords: Software Testing, Service Based Applications, Service Level Agreements, 

WS-Agreement, Classification Tree Method, Combinatorial Testing. 

1. Introduction 

Service Oriented Architecture (SOA) has become a solid paradigm to develop 
interoperable, flexible and highly dynamic service based applications (SBAs) by means 
of integrating available services over the web. The main features of these services 
include loose coupling between them, coarse grained service interfaces, dynamic service 
discovery and binding, self-containment of services, service interoperability and protocol 
independence [1]. SBAs are implemented using different Internet-based standards [2] 
such as the Simple Object Access Protocol (SOAP) [3] for transmitting data, the Web 
Service Description Language (WSDL) [4] for defining services or the Business Process 
Executable Language for Web Services (BPEL4WS) [5] for orchestrating services. 

In SBAs, it is necessary for the stakeholders involved to specify the conditions related 
to the provision and consumption of the services. These conditions are usually specified 
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in a contract or technical document, called Service Level Agreement (SLA), which is a 
standard mechanism that allows determining and regulating the trading between the 
service providers and the consumers. In the scope of SBAs, the WS-Agreement standard 
[6] is a language used to specify the conditions negotiated and agreed by these 
stakeholders. WS-Agreement supports the representation of information regarding the 
functional features of services, non-functional requirements related to the Quality of 
Service (QoS) level that should be achieved by the service provision, penalties derived 
from the violation of the terms and any other relevant information related to the 
agreement. It is therefore of utmost importance for both providers and consumers to 
develop suitable actions that allow avoiding or minimizing the consequences derived 
from SLA violations. 

The management of SLAs [7] is an integral part of the applications developed under 
the rules of a standard SOA Governance framework [8] and has received considerable 
attention both in industry and academia (see, for example, the SLA@SOI FP7 European 
Project [9]). Many large companies, including Amazon, Microsoft, Google, AT&T and 
HP, that provide XaaS (Everything as a Service) use SLAs as a mechanism for 
specifying the functionalities and QoS levels that they are capable of providing in their 
XaaS offerings [10][11][12][13][14].  

The management of SLAs involves different tasks including SLA negotiation [15], re-
negotiation [16][17], specification [18][19], evaluation [20], testing [21], and monitoring 
[22]. Among these tasks, the testing of the SLAs has been identified as a challenge 
[23][24][25]. The testing of the SLAs involves designing and executing tests in the SBA 
by means of considering the specification of the SLA as the test basis. This requires that 
the specification of the SLAs needs to be somehow formalized in order to automate as 
much as possible the process of obtaining the tests. 

Currently, there are different approaches that aim at detecting, forecasting or 
preventing SLA violations using testing techniques. Most of these works are reactive and 
use monitoring to observe the behaviour of the SBA at runtime in order to detect 
potential deviations from the guaranteed conditions specified in the SLA [22][40]. These 
approaches are useful in detecting problems in SBAs but they present an important 
drawback: problems are detected after their occurrence and, therefore, consequences 
derived from such problems cannot be avoided. On the other hand, different proactive 
approaches have been proposed to predict or anticipate the detection of problems 
associated to the violation of the SLA [21][36]. 

Considering the characteristics of both approaches, in a previous work we presented a 
conceptual method to test SLA-aware service based applications. In that work, our aim 
was to combine the advantages of both proactive and reactive approaches [26]. Later, we 
addressed the identification of situations to be tested from the information contained in 
the individual SLA terms [27]. These situations may be used to guide the design of an 
appropriate test suite that exercises such situations and also to derive a monitoring plan 
allowing checking the compliance of the SLA at runtime.  

In this article, and as a further step, we define a method to generate test cases from an 
SLA specified in WS-Agreement standard language by integrating testing techniques 
that have been used broadly in the industry and standardized in ISO/IEC/IEEE 29119 
[28]. We also provide a tool that automates the whole process. The main contributions of 
this article are the following: 

1) We define how standard techniques for testing, namely the Classification Tree 

Method and Combinatorial Testing can be applied in the context of SLAs in 

order to obtain a set of test cases that are suitable for testing an SBA in which 

the conditions that need to be satisfied are specified in a single SLA. 

2) We define how to automatically obtain specific constraints from the 

specification of the SLA and the behaviour of the SBA in order to avoid the 

generation of non-feasible test cases. 
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3) We define three different coverage strategies with the aim at grading the 

thoroughness of the resulting test suite. 

4) We implement a tool called SLACT that automatically generates the test cases, 

making use of an existing testing tool [29]. 

5) We apply the approach to an eHealth scenario that was proposed by the EU F7 

project PLASTIC [30] and has been previously used by other authors to test 

SLAs [31][32][33][34]. 

These contributions aim at taking into account some particular challenges that arise 
from the testing of service-based systems [23]. In our case, we have to deal with the 
controllability of the services and the infrastructure so, to mitigate this limitation, the 
services will be under our control and, consequently, the set of generated test cases will 
be executed in a controlled environment. 

The rest of this article is structured as follows. Section 2 outlines related work. 
Section 3 provides a background about the two cornerstones of this research: Software 
Testing standards and WS-Agreement. It also summarizes the four-valued logic used to 
evaluate SLA Guarantee Terms, which was previously developed by the authors [27] and 
is again used in this article. Section 4 discusses the generation of test cases and the level 
of automation provided by SLACT.  Section 5 presents the results derived from the 
application of our approach to the eHealth case study. Section 6 highlights the main 
limitations of this approach. Finally, Section 7 provides some concluding remarks and 
outlines plans for future work. 

2. Related Work 

In the scope of service-based applications, considerable effort has been spent in 
detecting SLA violations using different testing approaches. Typically, related strands of 
work may be categorized in two main groups: (i) the set of works which are aimed at 
anticipating problems and/or prevent them before such problems lead to undesired 
consequences for the stakeholders who have signed the agreement; and (ii) the set of 
works that are aimed at detecting SLA violations at runtime when the Software Under 
Test (SUT) is already deployed in the operational environment. 

Few approaches have focused on the identification of tests from the specification of 
the SLAs in order to anticipate problems. Di Penta et al. [21] perform black-box and 
white-box testing by means of using Genetic Algorithms with the aim of detecting SLA 
violations in atomic and composite services. This approach generates combinations of 
inputs, as we do in our contribution, and bindings of the constituent services that may 
cause violations of the SLA. Palacios et al. [35] identify test requirements from the 
conditions included in an SLA specified in WS-Agreement using a well known testing 
technique, called Category Partition Method. Once such test requirements have been 
identified, they are combined in order to derive the test cases. Such combinations of the 
identified test requirements are not addressed in that work whereas in our contribution 
we apply combinatorial testing techniques in order to derive the test cases from the test 
requirements. Palacios et at. [36] also provides a coverage based criterion in order to test 
SLA-aware service-based application. In that work they focus on the logical 
relationships between the guarantee terms of a SLA specified in WS-Agreement whereas 
in this article we are focusing on the content of the individual guarantee terms. 
Furthermore, Bertolino et al. [31] have proposed the PUPPET framework, which allows 
generating stubs from the WS-Agreement, WSDL and BPEL specification of the 
services to test SLA-aware service compositions. This work is related to our work. 
However, instead of specifying the tests for the SBA as we do, they provide the 
necessary infrastructure to deploy and execute such tests. Thus, both works may be 
mutually complemented. Kotsokalis et al. [37] have proposed to use Binary Decision 
Diagrams in order to model the content of SLAs for testing purposes. However they do 
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not focus on a specific standard language as we do although they attempt to obtain the 
diagrams from this language (WS-Agreement). In their approach, they use two different 
values to evaluate the terms of the SLA. In our work, we show that four different values 
are necessary to consider all the potential situations derived from the evaluation of SLA 
Guarantee Terms. Finally, Muller et al. [38][39] propose to detect and explain conflicts 
within the specification of WS-Agreements by means of applying techniques based on 
Constraints Satisfaction Problems. This work focuses on checking whether the 
specification of the SLA guarantee terms is consistent so the detected problems are 
related to the SLA and not the services. In our work we focus on the detection of 
problems in the SUT by means of taking the specification of the SLA as the test basis. 

Regarding the second group, several works have addressed the testing of SLAs using 
monitoring approaches in order to detect SLA violations. Mahbub and Spanoudakis [22] 
focus on WS-Agreement to propose modelling and monitoring the conditions contained 
in the SLA using an Event Calculus (EC) based approach. Raimondi et al. [40] proposed 
a system that automatically monitors SLAs, translating timeliness constraints into timed 
automata, which is used to verify traces of services executions. Comuzzi et al. [41] 
tackles the testing of SLA-aware SBA by monitoring the conditions specified in the 
SLA. This work was developed in the scope of the SLA@SOI European Project [9].  
Beyond these works, there are other systems that have been developed to monitor 
whether service based applications violate SLAs including, for example, SALMon [42][ 
43], SLAMonitor [44] HA-SLA [45] and CLAM [46]. 

Between these two groups, there is a set of works that make use of information 
gathered from monitoring techniques in order to prevent SLA violations. For example, 
Leitner et al. [47] propose a framework that allows monitoring and predicting SLA 
violations before they have occurred using machine learning techniques and they have 
also addressed the prevention of SLA violations using self-adaption [48]. Ivanovic et al. 
[49] propose a constraint-based approach to monitor and analyze the QoS metrics 
included in the SLA for the purpose of anticipating the detection of potential SLA 
violations. Schmieders et al. [50] combined monitoring and prediction techniques in 
order to prevent SLA violations. Finally, Lorenzoli and Spanoudakis [51] presented a 
framework (EVEREST+) which supports the monitoring and prediction of potential 
violations of the QoS metrics specified in an SLA. 

3. Background 

In this section we present the basic concepts about the two cornerstones of our 
research. On the one hand, we introduce some important standard definitions which are 
broadly used in the field of software testing. On the other hand, we focus on the structure 
of WS-Agreement standard language and how it is been used within the provisioning of 
applications developed under the paradigm of service oriented architectures. We also 
briefly present our previous research which is extended and improved in this article. 

3.1 Software testing and standards 

Testing can be defined as “an activity in which a system is executed under specified 
conditions, the results are observed or recorded, and an evaluation is made of some 
aspect of the system”, according to the ISO/IEC 24765 (Software and Systems 
Engineering Vocabulary) [52]. 

The generation of test cases allows designing the conditions under which the SUT 
will be executed. This is important for the success of the tests as a good test design will 
allow detecting a higher number of faults. According to the IEEE Standard Glossary of 
Software Engineering Technology, a test case is “a set of inputs, execution conditions, 
and expected results developed for a particular objective” [53]. Thus, executing the 
software and comparing the obtained outputs with the expected results allows 
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determining whether the behaviour of the software is correct or not. The approaches that 
use the generation and execution of test cases are proactive in the sense that they are able 
to anticipate the detection of faults before the problems occur in a production 
environment. The generation of test cases tries to maximize the trade-off among different 
business criteria such as cost, benefit or risks. In some cases, it may be possible to design 
an in-depth and exhaustive test suite even if it involves a high cost in terms of money or 
effort. In other cases, however, there might be constraints hindering the definition and 
execution of exhaustive tests. When this happens, the tester is forced to select a less 
exhaustive testing technique. The generation of test cases is often a very tedious task so it 
is desirable to automate it as much of it as it is possible.  

Currently, the fragmentation of the different standards is a common problem in this 
field. To fill this gap, the ISO/IEC/IEEE 29119 Systems and Software Engineering - 
Software Testing standard [28] is being developed with the aim of providing one 
definitive reference for software testing that defines vocabulary, processes, 
documentation and techniques. This standard comprises four parts: Definitions and 
Vocabulary (part 1), Test Process (part 2), Test Documentation (part 3) and Test 
Techniques (part 4).  

In this article, we describe how two techniques which are used broadly in industry and 
academia [54] and are described in Part 4 of ISO/IEC/IEEE 29119, namely the 
Classification Tree Method and Combinatorial Testing, can be applied in testing SLAs.  

The Classification Tree Method [55] provides a systematic way to hierarchically 
partition the inputs of a SUT into classifications and classes via the construction of an 
appropriate classification tree. Each classification is a disjoint partition related to the 
SUT and each class is a disjoint partition of the values of the corresponding 
classifications. From the constructed tree, test coverage items shall be derived by 
combining leaf nodes using combinatorial techniques. In this context, a test coverage 
item represents an attribute or combination of attributes regarding the SUT that will be 
exercised by a test case. 

Combinatorial testing techniques [56] are used to generate test cases that achieve 
different levels of coverage. The combinations are defined in terms of parameters and the 
values that they can take. To align this with the constructed classification tree, 
classifications represent parameters and classes represent parameter values. There are 
different combinatorial testing techniques such as All combinations, Pair-wise or Each 
choice that will be later used in this article.  

3.2 WS-Agreement Standard 

Over the last decade, different languages have been proposed with the aim to support 
and standardize the specification of SLAs (e.g., WSLA [57], WS-Agreement [6], WSLO 
[58], SLANG [59][18], WS-Policy [60], the SLA Model [61] and WS-QoS [62]). In our 
work, we focus on WS-Agreement because it is a well-accepted standard in the SOA 
protocol stack for the management of the SLAs (Figure 1) and has been used in different 
approaches regarding the testing of SBAs. 
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Figure 1: Web Service Protocol Stack (adapted from IBM Software Group [63]) 

WS-Agreement [6] was proposed by the Open Grid Forum working group (OGF). WS-
Agreement is a standard that specifies a protocol for establishing agreements between 
two parties and a schema for the definition of SLAs. The specification of domain specific 
languages or extensions to express the conditions of the Guarantee Terms is out of the 
scope of WS-Agreement. The specification of an SLA in WS-Agreement is composed of 
three main parts (Figure 2): 

 Name: This part represents an optional name that can be given to the agreement. 

 Context: This part describes the involved parties and their role as initiator or 
responder. Additionally, it may specify any other information of the agreement 
that is not related with the obligations of these parties, such as the “Expiration 
Date”. 

 Terms: This part expresses the negotiated and agreed obligations of each party. 
Obligations are specified using different types of terms: 

o Service Description Terms (SDT): describe information about the 
functional aspects of the services. 

o Service Properties (SP): provide measurable aspects that are used to 
express the requirements (guarantees) of the services. 

o Guarantee Terms (GT): describe the obligations that must be 
satisfied by a specific obligated party 

The Guarantee Terms are the most important section of an SLA. A Guarantee Term 
contains: an internal element, called Scope, that specifies the list of services and, an 
optional substructure of the service that the terms applies to (for example, a particular 
method or endpoint); a Qualifying Condition (QC) which is an assertion or precondition 
determining whether the term is valid or not; and a Service Level Objective (SLO) that is 
the guarantee that must be met. Optionally, a Business Value List (BVL) for such term 
may also be specified containing some information as the penalties for not having 
satisfied the associated guarantee. 

It is worth noting that WS-Agreement allows the logical combination of these terms 
by means of elements named Compositors. More specifically, there are three different 
compositors: All, OneOrMore and ExactlyOne, which are equivalent to the logical AND, 
OR and XOR operators respectively. 
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Figure 2: WS-Agreement structure 

3.3 Evaluation of SLA Guarantee Terms 

In previous research [27], we have developed a four-valued logic and defined a 
method to identify a set of test values from the information contained in the SLA 
Guarantee Terms. 

The evaluation is one of the most important tasks within the management of SLAs in 
the context of SBAs. It requires analyzing the information gathered from the monitors, 
checking the specification of the guarantee terms and their internal elements and, finally, 
making a decision about the fulfilment of the conditions contained in such terms. 
Typically, the evaluation of an SLA may be depicted with a two-way traffic light 
indicator (green / red), which represents whether the agreement has been fulfilled or 
violated respectively. 

Focusing on WS-Agreement standard language, a Guarantee Term is specified by 
means of the internal elements Scope, Qualifying Condition (QC) and Service Level 
Objective (SLO). Considering the syntax of a Guarantee Term and the possible forms of 
analysis of the collected information from the service executions at runtime, there are 
four (as opposed to two) possible evaluation values for a Guarantee term, notably: 

 

 Fulfilled – This value can be used if and only if the methods of the services 
specified in the Scope have been executed, the Qualifying Condition has been met 
and the Service Level Objective has been satisfied. 

 Violated – This value can be used if and only if the methods of the services 
specified in the Scope have been executed, the Qualifying Condition has been met 
and the Service Level Objective has not been satisfied. 

 Not Determined – This value can be used if and only if the methods of the 
services specified in the Scope have not been executed and the Qualifying 
Condition is met. 

 Inapplicable – This value can be used if and only if the Qualifying Condition has 
not been satisfied. 

 
The first three evaluation values are explicitly identified in the WS-Agreement 

standard as the three potential states in which the SLA can be so, from a testing point of 
view, we have added a four value (Inapplicable) in order to represent specific situations 
that are also interesting to be tested. In this case and in addition to the typical two 
evaluation values (i.e., Fulfilled / Violated), the utilization of Not Determined and 
Inapplicable leads to a four-valued logic where they are two similar interpretations of the 
treatment of the null value in the three-valued logic, broadly studied in the context of 

Name

Context

Guarantee Terms

Terms

WS-Agreement
<wsag>

  <Name> … </Name>       

  <Context>

      <AgreementInitiator> … </AgreementInitiator>

      <AgreementResponder> … </AgreementResponder>

      <ServiceProvider> … </ServiceProvider>

      <ExpirationDate> … </ExpirationDate>

      …

  </Context>

  <Terms>

      <All>

           <ServiceDescriptionTerm> … </ServiceDescriptionTerm>

           <ServiceProperties> … </ServiceProperties>

           <GuaranteeTerm>

                 <Scope> … </Scope>

                 <QualifyingCondition> … </QualifyingCondition>

                 <ServiceLevelObjective> … </ServiceLevelObjective>

           </GuaranteeTerm>

      </All>   

  </Terms> 

</wsag>

SLA

Service Description Terms

Service Properties

A
ll
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Data Base Management Systems (DBMS) and applied in the scope of software testing 
[64][65][66][67]. 

Hence, a Guarantee Term denoted by t can be evaluated using a function ev, which 
can provide four different values as output: 
 

ev(t) = { Fulfilled, Violated, Not Determined, Inapplicable } 
 

At first glance and based on these four evaluation values, we could think that it is 
necessary to identify four different situations with the aim of achieving full coverage 
while evaluating the Guarantee Term. However, the internal syntactic structure and the 
semantics of a guarantee term specified in WS-Agreement standard language require a 
more exhaustive test suite to represent the whole set of situations that are interesting to 
observe or exercise from a testing point of view. 

At this point, it is important to distinguish between the concepts of evaluation values 
and test values. An evaluation value is the outcome of the process of making a decision 
about the fulfilment of a Guarantee Term. If the behaviour of this mechanism is 
grounded in the proposed logic, there will be four possible evaluation values (i.e., 
Fulfilled, Violated, Not Determined and Inapplicable). On the other hand, a test value 
(also known as test requirement in our previous work) represents a situation of the SBA 
that must be covered (and satisfied) during testing [68]. A test value includes a set of 
conditions and steps that need to be checked through the execution of the SUT. And 
during this check, useful information gathered from monitors can be used by the 
evaluation mechanism in order to make a decision and provide the final evaluation value 
for the test value. In Figure 3, we show an example where a test value is identified from 
the content of a Guarantee Term specified in WS-Agreement. This test value exercises 
the situation where the method (service) specified in the Scope is executed, the 
Qualifying Condition is met and the objective is not satisfied. 

 
Thus, according to the above logic the guarantee term is evaluated as Violated. 
 

 

Figure 3: Relation Test Value – Evaluation Value 

Keeping this in mind, a Guarantee Term may be evaluated with four different values 
but it is possible to identify, for each term, six test values, as it can be seen in Figure 4. 
More specifically, as shown in the figure, the internal elements of a Guarantee Term 
include Scope, Qualifying Condition and Service Level Objective. At the top of the 
figure we check whether the methods of the services specified in the Scope element have 
been invoked or not at the time of evaluating the SLA (the verification of this condition 
is performed using satisfied/unsatisfied as outputs). Furthermore, the content of the 
Qualifying Condition and the Service Level Objective represent conditions that may also 
be evaluated as satisfied/unsatisfied. Thus, we apply the multiple combinations of these 
three internal elements of a Guarantee Term. As there are three conditions with two 
truth-values for each condition, we would obtain eight different situations to test 
regarding the content of the Guarantee Term. However, due to the semantic meaning of 

  <GuaranteeTerm 

      Name = “GT_Flight_Premium” Obligated = “ServiceProvider” 

      <Scope

           serviceName = “TravelAgency” method = “getFlightPrice”

     </Scope>

     <QualifyingCondition>

           clientType = Premium

     </QualifyingCondition>

     <ServiceLevelObjective>

           responseTime <= 180 seconds  

     </ServiceLevelObjective>

  </GuaranteeTerm> 

Test Value

The method getFlightPrice of the service 

TravelAgency is invoked by a Premium 

client. The service provides the price to the 

client in more than 180 seconds.

Evaluation Value

The Guarantee Term is evaluated as 

VIOLATED
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the internal elements of the term, there is a pair of combinations that do not make sense. 
These relate to cases where the methods of the services specified in the Scope have not 
been executed so it is useless to check whether the Service Level Objective have been 
satisfied or not (right branch of the Figure 4). Hence, we obtain six test values that are 
interesting to test from the specification of a Guarantee Term (identified by TV1-TV6). 

At the bottom of the figure, we align the relation between the test values and the value 
provided by the evaluation mechanism when exercising such test value. 

 

Scope

Qualifying 

Condition
Qualifying 

Condition

SLOSLO

Fulfilled InapplicableViolated
Not

Determined
Inapplicable Inapplicable

Satisfied

Unsatisfied

TV1 TV2 TV3 TV4 TV5 TV6

Fulfilled Violated Not 

Determined
Inapplicable

Evaluation Values

Test Values

 

Figure 4: Identification of test values from individual Guarantee Terms 

4. Test Method 

An SLA specified in WS-Agreement has a hierarchical structure that logically 
combines the Guarantee Terms through the use of the specific elements named 
compositors (All, OneOrMore and ExactlyOne). Then, it is necessary to define how these 
terms are analyzed in order to identify the situations that need to be tested. In this 
section, we describe the method that allows deriving the test cases by means of 
elaborating the classification tree, specifying the constraints that guide the derivation of 
the test coverage items avoiding the generation of non feasible test cases and, finally, the 
tool that automates the whole process. 

4.1 Construction of the Classification Tree 

The first step of the method involves the construction of a suitable model to 
hierarchically represent the relevant information of the SLA specification in WS-
Agreement, using the Classification Tree Method (CTM). This tree will later be used to 
derive the test coverage items and generate the test cases. To do so, we have to identify 
the classifications and classes that will formulate the tree. 

The simplest approach could be to parse the structure of the SLA and construct a 
classification for each of the elements of the SLA. In this case the Service Level 
Objectives of the Guarantee Terms would represent the classifications at the lowest level 
whereas the evaluation of such SLOs would represent the classes of the tree. However, 
we need to ensure that the resulting tree represents all the test situations that may arise 
during the evaluation of the Guarantee Terms. Hence, we use the compositors of WS-
Agreement to construct the first levels of the hierarchy in the tree and we raise the level 
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of abstraction of the most internal elements of the SLA. In particular, we take the 
structure of each Guarantee Term as a whole (including its Scope, Qualifying Condition 
and Service Level Objective) and we construct a classification for each of the SLA 
Guarantee Terms. Each of these classifications (Guarantee Terms) has six potential test 
values as we described in Section 3.3. Hence the leaves of the tree that represent the 
classes of each classification are constructed by representing the six test values for each 
Guarantee Term. With this approach, both the classifications and the classes fulfil the 
restriction of being disjoint partitions with respect to the SLA. Note that both 
classifications and classes represent different levels of detail of the situations to be tested. 
The lowest level (class) represents each situation that arises from each of the test values 
that have to be covered by the test cases. 

It is worth mention that in order to be consistent with the notation of the testing 
techniques described in the ISO/IEC/IEEE 29119, in the rest of the article we will use 
the concept of class (CL) when we refer to the different situations that arise from the 
evaluation of a Guarantee Term. 

At this stage, we have to deal with an important issue regarding the construction of 
the classes of the tree. Depending on the internal syntax and semantics of the Guarantee 
Terms of WS-Agreement, we have to consider two particular cases where not all the six 
classes are identified. These two cases are described next. 

Case 1 (C1): Guarantee Terms without Qualifying Condition 

The first particular case (C1) arises when the Guarantee Term has no Qualifying 
Condition associated. The Qualifying Condition determines whether a term is valid and it 
must be considered during the evaluation process or not. In this case and given that there 
is no Qualifying Condition the term is always valid so only three classes (CL1, CL2 and 
CL5) are identified. Thus in the classification that represents such Guarantee Terms, only 
three classes are constructed in the tree (see Figure 5). The specification of the classes 
CL1 and CL2 in this tree represent that the methods of the services are invoked and the 
Service Level Objective is satisfied or unsatisfied, respectively. Class CL5 represents 
that the methods of the services have not been executed. 

 

Scope

QC Qualifying 

Condition

SLOSLO

Fulfilled InapplicableViolated
Not

Determined
Inapplicable Inapplicable

Satisfied

Unsatisfied

CL1 CL2 CL3 CL4 CL5 CL6

Fulfilled Violated Not 

Determined
Inapplicable

Evaluation Values

Classes

<GuaranteeTerm 

    Name = “GT_BookCar” Obligated = “ServiceProvider” 

    <Scope

         serviceName = “TravelAgency” method = “bookCar”

   </Scope>

   <ServiceLevelObjective>

        responseTime < 50  

   </ServiceLevelObjective>

</GuaranteeTerm>

WSAG

 

Figure 5: Application of Case 1 (C1) 

Case 2 (C2): Qualifying Condition is an assertion over service attributes 

WS-Agreement states in its specification that the Qualifying Condition is an assertion 
over service attributes and/or external factors. In the former case, for example, this 
condition may make reference to an input parameter or condition of the service while in 
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the latter it can represent a specific state of the SUT. The second particular case (C2) 
arises when the Qualifying Condition of the Guarantee Term is an assertion over the 
service attributes. This case occurs because the semantics of the Qualifying Condition 
also affect the identification of the classes. In this case, it is impossible to check the 
fulfilment of the QC if the methods of the services have not been executed so the 
combinations performed in classes CL5 and CL6 do not make sense. In such case, 
classes CL5 and CL6 are joined in only one class representing that the methods of the 
services have not been executed (Figure 6). This means that we would construct five 
classes for the classification that represents such Guarantee Term instead of the six that 
are constructed in the general case. 
 

Scope

QC QC

SLOSLO

Fulfilled InapplicableViolated
Not

Determined
Inapplicable Inapplicable

Satisfied

Unsatisfied

CL1 CL2 CL3 CL4 CL5 CL6

Fulfilled Violated Not 

Determined
Inapplicable

Evaluation Values

Classes

<GuaranteeTerm 

    Name = “clientPremium” Obligated = “ServiceProvider” 

    <Scope

         serviceName = “TravelAgency” method = “getPrice”

   </Scope>

   <QualifyingCondition>

         clientType = Premium

   </QualifyingCondition>

   <ServiceLevelObjective>

         responseTime < 10  

   </ServiceLevelObjective>

</GuaranteeTerm>

WSAG

Not

Determined

CL5

 

Figure 6: Application of Case 2 (C2) 

After considering the application of both cases when constructing the classification 
tree, we finally obtain a tree that contains one classification for each Guarantee Term 
specified in the SLA and each classification can have 6, 3 or 5 classes depending on the 
particular cases applied. In Figure 7 we show an example of a tree constructed from the 
analysis of a WSAG-compliant agreement with three Guarantee Terms where no 
particular cases are applied to the first one, the particular case C1 is applied to the 
Guarantee Term GT2 and the particular case C2 is applied to the Guarantee Term GT3. 
The leaves that represent the classes are depicted with different colours depending on the 
evaluation value of the Guarantee Term when such class is exercised (green for Fulfilled, 
red for Violated, yellow for Inapplicable and grey for Not Determined). 

 

 

Figure 7: Example of a Classification Tree from an SLA 

CL1 CL2 CL3 CL5

WSAG 

(All)

GT1 GT2 GT3

CL4 CL6 CL1 CL2 CL5 CL1 CL2 CL3 CL5CL4
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4.2 Generation of test cases with combinatorial testing techniques 

Once we have constructed the classification tree, we can make a decision about the 
parts of the tree that represent the most critical situations and need to be covered with a 
higher intensity. To do this, we apply standard combinatorial testing techniques in order 
to derive the test coverage items and generate the test cases. 

When deriving the test coverage items, not all the combinations of classes will be 
used because we have to deal with two potential problems: 

 The first one is related to the number of derived test coverage items, which 
can be unmanageable if the SLA is complex. 

 The second problem affects the testability of specific test coverage items 
because there are combinations that lead to non feasible situations to be tested.  

To solve the first of these problems, we apply standard combinatorial testing 
techniques with the aim of obtaining a reduced (but significant) number of test cases. To 
address the second problem, we define specific constraints that the test suite has to 
satisfy to avoid generating non feasible test cases. 

4.2.1 Combinatorial strategy 

Once we have defined the classification tree and in order to derive the test coverage 
items, we use different combinatorial testing techniques. These techniques are defined in 
terms of parameters and values. When we use the constructed tree to test the SLA, the 
parameters are the classifications that represent the Guarantee Terms and the values are 
the classes that represent the test values. 

After the identification of the parameters and their corresponding values, we derive 
the test coverage items by means of applying any of the testing techniques standardized 
in the ISO/IEC/IEEE 29119, which allow grading the intensity of the tests. These 
techniques are usually based on coverage and there are different coverage criteria that 
can be applied. The simplest coverage criterion is provided by each choice testing (also 
known as 1-wise) which requires that every class of every classification (Guarantee 
Term) represents a test coverage item and it must be exercised in at least one test case in 
the test suite. The most exhaustive coverage criterion is provided by All Combinations 
testing, which requires that every possible combination of classes must be included in at 
least one test case. Between them, a widely used coverage criterion is provided by pair-
wise testing (also known as all pairs or 2-wise). Pair-wise testing requires that every 
possible pair of classes of any two classifications represent the test coverage items and 
they must be included in at least one test case. 

In addition to existing testing techniques, it is necessary to define a strategy that 
guides the combinations depending on factors related to the content of the SLA and the 
behaviour of the SBA (e.g., critical SBA functionalities). This means that we may want 
to be more exhaustive and apply a combinatorial testing technique in a specific part of 
the tree (for example, a branch or a group of classifications) whereas a less exhaustive 
technique may be applied in a different part of the tree. 

As a result of this process, we obtain the test coverage items that lead to the 
generation of test cases. Each test case contains a set of test coverage items where each 
classification is included in the test case just once (so each Guarantee Term will be 
evaluated once in each test case). The content of the classes combined in the test 
coverage items will determine the inputs of the test case. In addition to this information, 
it is necessary to have some knowledge about the behaviour of the SUT in order to 
specify the test case steps that exercise the classes. For example, different sources of 
information can be used such as UML State Transition Diagrams or Sequence Diagrams. 
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4.2.2 Definition of testability constraints 

The derivation of the test coverage items may produce some combinations, which do 
not make sense and lead to non feasible test cases that cannot be executed. In this section 
we define specific constraints that allow excluding unfeasible combinations of test 
coverage items. 

We distinguish between two types of constraints: implicit and explicit. The implicit 
constraints are based on the information that is represented in the terms of the SLA. The 
explicit constraints are identified through the analysis of the SUT. Both sets of 
constraints are always related to combinations of classes that represent feasible or non-
feasible situations to be exercised, disregarding the characteristics of the SUT. 

4.2.2.1 Implicit Constraints 

Based on the syntax and semantics structure of WS-Agreement, we can identify a set 
of implicit constraints that can help avoiding non feasible combinations of classes used 
to derive the test cases. These constraints are automatically obtained from the 
specification of the SLA.  

We have defined the following set of implicit constraints for the general case where 
six classes are identified for each classification. If any of the two particular cases 
described in Section 4.1 has been applied to the involved classifications, these 
constraints must be suitably adapted. 

Before discussing the constraints, let us assume that the selection of a class within a 
classification is represented by the function            , where GTx is the classification 
that represents such Guarantee Term and CLy is the corresponding class. 

I1: Guarantee Terms (GT) that affect the same method/service 

Suppose that the method/service specified in the scope of the Guarantee Term GT1 is 
the same as the one specified in Guarantee Term GT2. If any of the classes CL5-CL6 of 
the classification that represents GT1 is selected to be combined in a test coverage item 
(the method/service specified in the Scope of GT1 is not executed), then one of the 
classes CL5-CL6 of the classification that represents GT2 must also be exercised. This 
constraint can be formally expressed as: 

 
 

                                                              
 

 
                     

I2: Guarantee Terms that have the same Qualifying Conditions 

If some Guarantee Terms share the same Qualifying Condition and this is not met, 
then all the classifications that represent these Guarantee Terms must take the values of 
the classes CL3, CL4 or CL6. 

 
                                                           

 
 

                         

 
                                                           

 
 

                         

I3: Guarantee Terms that have mutually disjoint Qualifying Conditions 

If the Qualifying Condition of the first Guarantee Term is met then it is obvious that 
the Qualifying Condition of the second term must not be met and vice versa. 
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4.2.2.2 Explicit Constraints 

In order to identify explicit constraints, an analysis of the business logic of the SUT 
must be carried out. These constraints refer to some specific situations concerning the 
possible behaviour of the SUT with regards to the ability to execute particular 
combinations of service methods, and affect the evaluation of the Guarantee Terms 
involved in the corresponding execution. 

The specification of these constraints is manually done by the tester by using IF-
THEN statements in which specific combinations of the GT evaluation values are 
allowed or forbidden. 

The set of explicit constraints includes the following: 

E1: The execution of a method/service implies the non-execution of another 

method/service. 

It means that if a method/service Si (specified in the Scope of GTi) is executed then 
the method/service Sj (specified in the Scope of GTj) cannot be invoked or, formally: 

 
                                            

 
 

                      

E2: The non-execution of a method/service implies the non-execution of another 

method/service 

It means that if a method/service Si (specified in the Scope of GTi) is not executed 
then the method/service Sj (specified in the Scope of GTj) cannot be invoked. 
 

                                    
 

 
                      

E3: The execution of a method/service implies the execution of another method/service 

It means that if a method/service Si (specified in the Scope of GTi) is executed then 
the method / service Sj (specified in the Scope of GTj) must be invoked 
 

                                            
 

 
                              

E4: The non-execution of a method/service implies the execution of another 

method/service 

It means that if a method / service Si (specified in the Scope of GTi) is not executed 
then the method / service Sj (specified in the Scope of GTj) must be invoked. 
 

                                    
 

 
                              

E5: The execution of a method/service is required 

It means that a method / service Si (specified in the Scope of GTi) is mandatory to be 
invoked during the execution of the SUT. 
 

                              

E6: Additional constraints 
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Depending on the content of QCs or SLOs, the use of a specific test value of GT 
(GTi) may require also the use of a specific test value for another GT (GTj). The 
specification of this rule (E6) depends on the information of the Guarantee Terms. For 
example, consider the following two guarantee terms (left part of Figure 8) and a subset 
of the identified classes (right part of Figure 8). If GT1 is violated (exercising CL2) then 
GT2 must be evaluated as Inapplicable because the Qualifying Condition (client 
=Premium) is not met. In this case, the class CL4 must be exercised (note that CL3 could 
not be exercised because the response time forced by CL2 of GT1 is more than 10 
seconds so the Service Level Objective of GT2 would never be met). 

 

 

Figure 8: Excerpt of SLA Guarantee Terms and identified classes 

4.3 Tool support: SLACT (SLA Combinatorial Testing) 

To address the generation of test cases, we have developed a tool that is able to 
automatically generate test cases by means of deriving test coverage items through the 
combination of the classes identified from the SLA Guarantee Terms, called SLACT 
(SLA Combinatorial Testing). This tool builds upon an existing combinatorial testing 
tool [29]. 

SLACT has been implemented to automate: (1) the identification of classes and the 
definition of the implicit constraints, both processes from the specification of the WS-
Agreement, (2) the application of the combinatorial testing technique according to the 
coverage strategy selected by the tester, and (3) the generation of a test suite that satisfies 
the expected coverage with the least number of test cases and the analysis of the 
coverage of the classes of each Guarantee Term. 

SLACT has five components, as shown in Figure 9, namely the SLA Parser, 
Constraints Generator, Executor, Analyzer and, finally, the User Interface. The roles of 
these components are discussed below. 

 

<All>

  <GuaranteeTerm 

      Name = “GT1” Obligated = “ServiceProvider” 

      <Scope

           serviceName = “TravelAgency” method = “getDiscount”

     </Scope>

     <QualifyingCondition>

           clientType = Regular

     </QualifyingCondition>

     <ServiceLevelObjective>

           responseTime < 10 seconds 

     </ServiceLevelObjective>

  </GuaranteeTerm>

  <GuaranteeTerm 

      Name = “GT2” Obligated = “ServiceProvider” 

      <Scope

           serviceName = “TravelAgency” method = “getDiscount”

     </Scope>

     <QualifyingCondition>

           clientType = Premium

     </QualifyingCondition>

     <ServiceLevelObjective>

           responseTime < 3 seconds 

     </ServiceLevelObjective>

  </GuaranteeTerm>

</All>

WSAG

Classes

<GT1> 

...

CL2: getDiscount is invoked, the client is 

Regular and the response time is greater or 

equal than 10 seconds (GT = Violated).

…

<GT2>

…

CL3: getDiscount is invoked, the client is not 

Premium and the response time is less than 3 

seconds (GT = Inapplicable).

CL4: getDiscount is invoked, the client is not 

Premium and the response time is greater or 

equal than 3 seconds (GT=Inapplicable).

...
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Figure 9: SLACT Architecture 

SLA Parser 

The first of the SLACT components is called SLA Parser. This component is in 
charge of parsing the XML document that contains the SLA specified in WS-Agreement 
language and extracting the relevant information of the individual Guarantee Terms. 

Constraints Generator 

The second component of SLACT is called Constraints Generator. This component 
provides the following functions: 

- Analyzing the information extracted from the parser to automatically obtain the 
implicit constraints. 

- Allowing the definition of the explicit constraints. 
- Allowing the selection of the combinatorial strategy. 
The Constraints Generator is in charge of analyzing the information received from 

the SLA Parser in order to construct the classification tree by means of identifying the 
classifications and classes as it is described in Section 4.1. Also from the specification of 
the SLA, it automatically obtains the set of implicit constraints (taking the general case 
and the particular cases into account). Furthermore, through its User Interface (UI), 
SLACT allows the definition of the set of explicit constraints and the selection of the 
strategy that will guide the combinations to derive the test coverage items. Regarding 
this strategy, the tool allows the application of 1-wise, 2-wise or N-wise to all the 
classifications as well as the definition of a hybrid strategy that partially applies different 
combinatorial techniques to specific sets of classifications. 

 

Executor 

The third component of SLACT is called Executor. This component is in charge of 
executing the combinations of test cases with the appropriate parameters and values, 
considering the constraints provided by the Generator and the coverage strategy selected 
by the tester. Executor may be run in two different ways: 

(i) It may perform multiple executions with the aim at obtaining different test suites 
(the number of executions can also be specified by the tester) 
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(ii) It may perform a single execution with a specific and previously identified input 
in order to obtain the test suite that contains the least number of test cases for the 
selected strategy.  

This component makes use of the Pairwise Independent Combinatorial Tool (PICT) 
[29], which is a free tool developed by Microsoft that has been previously used in other 
testing approaches [69][70][71]. The core generation algorithm of PICT is based on a 
greedy heuristic optimized for speed. The output of Executor is the specification of the 
test suite that satisfies the selected coverage strategy with the least number of test cases. 

Analyzer 

The forth component of SLACT is called Analyzer. This component is in charge of 
two main tasks: 

(i) It receives the results of the multiple executions and obtains the test suite that 
satisfies the expected coverage with the least number of test cases.  

(ii) It also receives the specification of a test suite and performs an analysis of the test 
cases in order to assure that all of the classes are exercised and provides a report 
regarding the coverage of such classes. 

User Interface 

The last component of SLACT is the User Interface (Figure 10). This component 
allows: 

- Selecting the XML document of the SLA. 
- Representing the relevant information of the SLA as well as the implicit 

constraints automatically identified. 
- Specifying the explicit constraints. 
- Selecting the combinatorial testing strategy to be applied and the execution 

conditions. 
 

 

Figure 10: SLACT User Interface 
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5. Case Study: eHealth service-based Application 

To illustrate the complete process of generating test cases for SLAs, we have carried 
out a case study based on an eHealth service-based application scenario that has been 
proposed by the European Project PLASTIC [30] and has been used in previous service-
aware testing approaches [31][32][33][34]. This scenario represents the set of conditions 
that must be satisfied by the constituent services of an eHealth service based application 
as described in an SLA specified in WS-Agreement. This SLA can be downloaded from 
[72]. All the steps of the method described in Section 4 have been automatically 
performed using SLACT. 

5.1 Description 

The behaviour of the eHealth case study is represented in Figure 11. In summary, the 
application is deployed as a composite web service (WSHealth) that receives an alarm 
from patients and triggers appropriate actions to solve such alarms. When an alarm 
arrives at the system, this service finds the list of professionals who can take 
responsibility for handling the incident by invoking a service called WSRegistry. 
WSRegistry provides a list of IP addresses of the professionals who are available at that 
moment depending on the type of the alarm (Emergency or Not Confirmation). These 
professionals (WSDoctor or WSSupervisor) are connected to the system through wired 
or mobile devices. Thus, the conditions related to these connections are different. If a 
doctor is contacted, (s)he may get measures from medical devices (available as 
WSMedicalDevice services) deployed in the patient’s location. If the contacted agent is a 
supervisor, (s)he should arrange an appointment for the patient using the calendar service 
WSCalendar. 

The conditions that have to be fulfilled by the constituent services of this eHealth 
system are specified in an SLA using WS-Agreement. The SLA contains 14 Guarantee 
Terms related to 6 different services and 9 service methods. Twelve of these terms 
present the whole structure of a Guarantee Term, i.e., a scope, a Qualifying Condition 
and a Service Level Objective. The other two Guarantee Terms do not have Qualifying 
Condition. 

 

WSPlastic

WSDoctor

WSDoctor
WSMedical

Device

WSMedical

Device

WSRegistry

Patient

WSCalendar

WSSupervisor

WSSupervisor  

Figure 11: eHealth Scenario 
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5.2 Construction of the Classification Tree 

We have applied the steps described in Section 4.1 in order to construct the tree by 
means of identifying the classifications and classes from the eHealth SLA. The results of 
this process are summarized in Table 1. The services and methods that constitute the case 
study are represented in the first column. The classifications at the lowest level of the 
tree are represented in the second column. The particular cases applied to identify the 
classes are outlined in the third column. The identifiers of the classes of the tree are 
represented in the last column. In this scenario, the case C1 is applied to GT5 and GT12 
(only CL1, CL2 and CL5 are identified) and the case C2 is applied to all the other 
Guarantee Terms (class CL6 is never identified).  

This table is a simplified representation of the classification tree without including the 
nodes that represent the compositor elements of WS-Agreement. The classifications at 
the lowest level represent the Guarantee Terms of the SLA and the classes represented in 
the leaves of the tree are related to the identified test values for each Guarantee Term. 
Hence, the number of identified classifications is 14 and the number of classes is 66. 
This model is the basis to generate the test cases by means of deriving the test coverage 
items. This task is performed by combining the classes using specific combinatorial 
criteria and specifying the rules that guide such combinations. In this case study, the 
derivation of test coverage items involves the combination of 14 classifications. Twelve 
of these classifications have 5 classes each. The other two classifications have 3 classes 
each. 
 

Service.Method Classification Case/s Classes 

WSHealth.reportAlarm 
GT1 C2 CL1, CL2, CL3, CL4, CL5 

GT2 C2 CL1, CL2, CL3, CL4, CL5 

WS.Registry.getResidentialGateway - -  

WSRegistry.getConnectedDeviceIP 

GT3 C2 CL1, CL2, CL3, CL4, CL5 

GT4 C2 CL1, CL2, CL3, CL4, CL5 

GT5 C1, C2 CL1, CL2, CL5 

GT6 C2 CL1, CL2, CL3, CL4, CL5 

GT7 C2 CL1, CL2, CL3, CL4, CL5 

WSDoctor.receiveAlarm 
GT8 C2 CL1, CL2, CL3, CL4, CL5 

GT9 C2 CL1, CL2, CL3, CL4, CL5 

WSSupervisor.receiveAlarm 
GT10 C2 CL1, CL2, CL3, CL4, CL5 

GT11 C2 CL1, CL2, CL3, CL4, CL5 

WSMedicalDevice.getMedicalDevice GT12 C1, C2 CL1, CL2, CL5 

WSMedicalDevice.getMeasure 
GT13 C2 CL1, CL2, CL3, CL4, CL5 

GT14 C2 CL1, CL2, CL3, CL4, CL5 

WSCalendar.getAppointmentByMonth - - - 

WSCalendar.getAppointment - - - 

Total 14 Classifications  66 Classes 

Table 1: Traceability between GTs and CLs 

5.3 Generation of test cases 

In addition to the construction of the classification tree, we have identified the set of 
implicit and explicit constraints that will guide the combinations of the classifications 
and their classes. The implicit constraints are automatically obtained whereas the explicit 
constraints are specified through the User Interface of SLACT (see Figure 10). After 
analyzing the content of the SLA and relevant information regarding the behaviour of the 
SUT, 26 constraints have been identified in order to guide the generation of test cases. 
All these constraints are represented in Table 2. The identifier of each constraint is 
represented in the first column. The reference to the implicit or explicit applied constraint 
is represented in the second column. The Guarantee Terms whose values will be affected 
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by the constraint are represented in the third column. Finally, a brief explanation of the 
constraint is provided in the last column. 
 

ID Rule 
Constrained 

Guarantee Terms 
Explanation 

1 I1 GT1, GT2 Both GTs are related to WSHealth.reportAlarm 

2 I1 
GT3, GT4, GT5, 

GT6, GT7 
All these GTs are related to WSRegistry.getConnectedDeviceIP 

3 I1 GT8, GT9 Both GTs are related toWSDoctor.receiveAlarm 

4 I1 GT10, GT11 Both GTs are related to WSSupervisor.receiveAlarm 

5 I1 GT13, GT14 Both GTs are related to WSMedicalDevice.getMeasure 

6 I2 GT1, GT3, GT6 All these GTs have the same QC: alarmType = Emergency 

7 I2 GT2, GT4, GT7 All these GTs have the same QC: alarmType = Not Confirmation 

8 I2 GT8, GT10 Both GTs have the same QC: deployedOn = MobileNode 

9 I2 GT9, GT11 Both GTs have the same QC: deployedOn = WiredServer 

10 I3 
(GT1, GT3, GT6) vs 

(GT2, GT4, GT7) 
Both sets of GTs have mutually disjoint QCs: (alarmType = 
Emergency) vs (alarmType = Not Confirmation) 

11 I3 
(GT8, GT10) vs 

(GT9, GT11) 
Both sets of GTs have mutually disjoint QCs: (deployedOn = 
MobileNode) vs (deployedOn = WiredServer) 

12 I3 GT13 vs GT14 
Both GTs have mutually disjoint QCs: (idDevice = device_1) vs 
(idDevice = device_2) 

13 E1 GT10, GT11 
If the type of the alarm is an Emergency, a supervisor cannot be 
invoked. 

14 E1 GT8, GT9 
If the type of the alarm is Not Confirmation, a doctor cannot be 
invoked. 

15 E2 
GT8, GT9, GT10, 

GT11 
If the registry is not invoked, neither a doctor nor a supervisor can 
be invoked 

16 E3 GT10, GT11 If a doctor is invoked, a supervisor cannot be invoked 

17 E3 GT8, GT9 If a supervisor is invoked, a doctor cannot be invoked 

18 E4 GT12, GT13, GT14 If a doctor is not invoked, the medical devices cannot be invoked 

19 E5 GT1, GT2 WSHealth.reportAlarm must always be invoked. 

20 E6 
GT8, GT9, GT10, 

GT11 
If no professionals are found, no doctor nor supervisor can be 
invoked 

21 E6 GT13, GT14 
If medical devices IPs are not found, no medical devices can be 
invoked 

22 E6 GT1 If GT2 is violated, then GT1 is exercised through CL4. 

23 E6 GT3 If GT4 is violated, then GT3 is exercised through CL4. 

24 E6 GT9 If GT8 is violated, then GT9 is exercised through CL4. 

25 E6 GT11 If GT10 is violated, then GT11 is exercised through CL4. 

26 E6 GT13 If GT14 is violated, then GT13 is exercised through CL4. 

Table 2: eHealth implicit and explicit constraints 

Once we have identified the constraints that should influence the generation of test 
cases, it is necessary to select the strategy for combining the parameters and their values, 
and obtaining the test coverage items that will be used during testing. In general three 
different strategies can be applied in order to grade the level of intensity of the obtained 
test suites: 

(i) Each choice testing (1-wise) to all the classifications. 
(ii) Pair-wise testing (2-wise) to all the classifications. 
(iii) Hybrid. 
The third strategy is a hybrid of the other two which involves applying pair-wise 

testing to a specific set of Guarantee Terms and each choice to the rest. Particularly, in 
the selected case study, we have applied pair-wise to the most critical functionalities of 
the SUT (the actions that are triggered after receiving an alarm of type Emergency). It is 
remarkable that the Guarantee Terms that are related to the arrival of an Emergency are 
dispersed in the SLA and, thus, the classifications that represent such Guarantee Terms 
(GT1, GT3, GT8, GT9, GT12, GT13 and GT14 of Table 1) are represented in different 
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branches of the tree. This hybrid strategy provided an intermediate level of intensity 
between the weakest coverage provided by the each choice coverage and the strongest 
intensity provided by the pair-wise coverage. 

Bearing these considerations in mind, we have executed SLACT for each of the three 
coverage strategies, and run the combinations for each strategy several times and get the 
output with the lowest number of test cases that satisfies such coverage strategy. In order 
to check the behaviour of the combinations, for each strategy we have run the 
combinatorial testing tool 3000 times and we have obtained a minimum number of 10, 
42 and 32 test cases for the each choice, pair-wise and hybrid strategies respectively. 

The results of these multiple executions are represented in Figure 12. The x-axis in 
the figure represents the size of the obtained test suites (the number of test cases 
generated in each test suite) provided by the tool. The y-axis represents the number of 
times each size is obtained. For example, for the each choice strategy, a test suite with 11 
generated tests cases has been obtained more than 1200 times. 

 

 

Figure 12: Multiple executions results 

In the case of the each choice strategy, the results obtained for SLACT presents a 
mean (μ) of 11.37 (number of test cases) and a standard deviation (σ) of 0.91. To be 
more specific, 95% of the test suites contain approximately between 10 and 13 test cases. 
In the case of the pair-wise strategy, the parameters are μ = 47.68, σ = 1.48 and 95% of 
the executions have provided a test suite with a number of test cases between 45 and 50. 
Finally, the hybrid strategy is represented by μ = 34.84, σ = 1.22 and 95% of the test 
suites would contain between 33 and 37 test cases. 

Analyzing the results for each applied coverage strategy and starting with the first one 
(each choice), we have obtained a test suite that contains 10 test cases (the output file is 
represented in Figure 13). In this file, the classifications of the tree (Guarantee Terms) 
are represented in columns and the test cases obtained through the combination of the 
classes are represented in rows. In order to describe how to derive test cases from the 
combinations of the classes to a test case, we consider, for example, test case number 6, 
outlined in the figure. The test case is generated by analyzing, according to the 
specification of the SLA, the meaning of each of the classes contained in such test case 
as well as the knowledge about the behaviour of the SUT. In this test case, we are 
exercising the situation when an alarm arrives to the eHealth system. The steps included 
in this test case and their corresponding exercised classes are represented in Table 3. To 
execute the test cases, we will have to sequentially exercise the steps described in such 
table. 
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Figure 13: Content File of Each Choice Test Suite 

Exercised Classes Test Case Steps 

 An alarm arrives to the eHealth system. 

GT5 = CL1 
GT6 = CL1 
GT7 = CL3 

The registry is queried and it provides a correct list of professionals. 

GT3 = CL1 
GT4 = CL4 

The registry provides the answer in less than the specified time. 

GT8 = CL2 
GT9 = CL4 

A doctor connected to the system through a mobile device is contacted 
but he does not provide an answer in the specified time. 

GT12 = CL1 
In spite of this fact, the doctor finds the list of devices deployed in the 
patient’s home. 

GT13 = CL1 
GT14 = CL4 

The doctor successfully gets the measure of device_1. 

GT1 = CL2 
GT2 = CL3 

After having carried out all of these tasks, the eHealth system provides 
a response to the patient spending more time than the specified in the 
SLA 

GT10 = CL5 
GT11 = CL5 

No supervisors are invoked in this test case. 

Table 3: Specification of a test case 

With these ten test cases, 64 of the 66 classes are exercised at least once (except CL5 
for GT1 and GT2 that are constrained by the explicit rule with ID 19 of Table 2 and, 
thus, they are impossible to be exercised) and the coverage report provided by the 
Analyzer component of SLACT is represented in Table 4 (a). In the first column we 
represent the set of Guarantee Terms and in the first row we represent the classes 
obtained for each GT. In the table, each cell specifies the number of times such class is 
exercised within this test suite. For example, the class CL1 identified from the 
specification of GT5 is exercised in 8 test cases for this strategy. If there is a hyphen (-) 
in a cell, it means that the class represented in such column was not identified due to the 
application of the particular cases explained in Section 4. 
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Each choice (a) Pair-wise (b) Hybrid (c) 

 
CL1 CL2 CL3 CL4 CL5 CL1 CL2 CL3 CL4 CL5 CL1 CL2 CL3 CL4 CL5 

GT1 3 3 2 2 0 13 16 6 7 0 27 1 2 2 0 

GT2 3 1 3 3 0 7 6 16 13 0 3 1 2 26 0 

GT3 3 2 3 1 1 13 14 5 6 4 11 16 1 3 1 

GT4 3 1 3 2 1 6 5 14 13 4 2 2 26 1 1 

GT5 8 1 - - 1 34 4 - - 4 30 1 - - 1 

GT6 3 2 2 2 1 14 13 5 6 4 26 1 1 3 1 

GT7 2 2 4 1 1 5 6 14 13 4 1 3 1 26 1 

GT8 1 1 1 1 6 6 6 5 8 17 7 6 6 6 7 

GT9 1 1 1 1 6 7 6 5 7 17 5 7 6 7 7 

GT10 1 1 1 1 6 3 2 2 2 33 1 1 1 1 28 

GT11 1 1 1 1 6 2 2 2 3 33 1 1 1 1 28 

GT12 2 2 - - 6 12 9 - - 21 12 9 - - 11 

GT13 1 1 1 1 6 4 4 4 7 23 4 4 4 7 13 

GT14 1 1 1 1 6 5 4 5 5 23 4 4 5 6 13 

Table 4: Classes coverage analysis: each choice (a), pair-wise (b), hybrid (c) 

Regarding the second of the applied coverage strategies (pair-wise), the test suite with 
the least number of test cases that we obtained contained 42 test cases. The number of 
test cases obtained is higher than in the 1-wise strategy because, now, each potential pair 
of classes of different classifications (Guarantee Terms) is included in at least one test 
case. The results provided by the Analyzer regarding the coverage for the classes of each 
Guarantee Term are also represented in Table 4 (b). As it can be seen in this table, all 
classes in the 2-wise strategy have been exercised more than in the case of each choice. 
This indicates a higher level of intensity in the tests. Here again and due to the 
specification of the explicit rule 19, there are two classes that are never exercised (CL5 
for GT1 and GT2).  

Finally, we have also applied the hybrid-wise strategy with the aim of grading the 
intensity of the tests depending on the critical functionality of the eHealth system. With 
this strategy, the smallest test suite we have obtained contains 32 test cases. The results 
provided by the Analyzer are represented in Table 4 (c). There are some classes that are 
as much tested as in the pair-wise strategy because they are related to Guarantee Terms 
that affect the more critical part of the SUT (Emergencies). On the other hand, there are 
other classes that are covered with less intensity, representing non-critical situations of 
the SUT. 

All the results derived from the coverage of the different classes are synthesised in 
Figure 14. In the figure, the x-axis represents the Guarantee Terms and their 
corresponding classes and the y-axis represents the number of times each such class is 
exercised within the applied coverage strategy. As shown in the figure, in the hybrid 
strategy there are specific classes of Guarantee Terms that are much more exercised than 
others (for example, CL1 of GT1, CL2 and CL3 of GT2 or CL1 of GT5). These classes 
are related to situations that are considered critical for the behaviour of the SUT (e.g., the 
arrival of an alarm of type Emergency). Thus, we have decided to combine them more 
thoroughly than classes related to a non-critical behaviour of the SUT. 
 



24 

 

Figure 14: CLs Coverage Results 

Analyzing the results obtained from the applied strategies, we hereafter highlight 
some considerations. First of all, it is the each-choice strategy the one that allows 
obtaining the smallest test suite whereas the pairwise strategy provides the largest set of 
test cases. Hence, the each-choice strategy is useful when, on the one hand, the criticity 
of the application is not high in the sense that an SLA violation does not lead to serious 
consequences for the users and, on the other hand, specific factors such as deadlines or 
budget hinder the design and execution of more detailed tests. Likewise, the application 
of pairwise testing is effective when the application needs to be exhaustively tested and 
we have fewer limitations that prevent from executing more thorough tests. 

As intermediate solution we recommend to apply a hybrid testing strategy. By 
analyzing the application under test and identifying its more critical functionalities, we 
could design an appropriate strategy that allows obtaining a good balance between the 
number of generated tests and the intensity of such tests within the aforementioned parts 
of the application. In this case, we could decide to apply pairwise testing to the most 
critical functionalities whereas each-choice testing could be apply to the rest, as we have 
previously described. 

Bearing these strategies in mind, the number of generated test cases depends on the 
strategy we choose when designing the tests. The more intensity we decide to test the 
SUT, the higher number of test cases will be obtained. However, even when the SUT has 
a complex SLA with many guarantee terms associated, the election of the each-choice 
testing allows obtaining a reduced number of test cases so the scalability does not 
represent a problem. 

In addition to the choice of the testing strategy to be applied, the definition of the 
explicit constraints is another task that needs to be manually performed. As we have 
previously described, the use of the explicit constraints allows us to avoid the obtaining 
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of non-feasible combinations of test requirements concerning the behaviour of the SUT. 
If these explicit constraints are not defined and used, our approach allows identifying the 
test requirements and performs the combinations although the results would be less 
efficient. In this case, the tester would have to analyze each of the identified 
combinations of test requirements and, consequently, the test cases in order to detect 
situations that could not be exercised. Due to this, we would recommend to analyze the 
characteristics of the SUT and define the constraints before the obtaining of the tests 
because this is a task that is performed only once. After that, such constraints can be used 
to obtain different set of tests by applying the aforementioned testing strategies. 

In our contribution, the most effort and time consuming tasks are the definition of the 
explicit constraints and the final derivation of the test cases from the identified 
combinations of test requirements because the identification of the test requirements, the 
obtaining of the implicit constraints and the combination of such requirements are fully 
automated. In this sense the scalability of the approach in terms of time-consuming is not 
a problem if we had to manage a SLA with a higher number of guarantee terms because 
the executions of SLACT are measured in the scale of a few seconds. 

6. Limitations of this approach 

In this section we discuss the main limitations of this approach. 
First of all, we have used the WS-Agreement [6] standard language in order to specify 

the SLAs that are taken as the test basis. In spite of the fact that many languages have 
been proposed to standardize the specification of SLAs, for example, WSLA [57], 
WSLO [58], SLANG [59][18], WS-QoS [62] or WS-Policy [60], the specification 
language that has received more attention regarding the testing of SLAs has been WS-
Agreement, at least from the academic domain. As WS-Agreement presents a generic 
syntax, we envision that its derived outcomes could be extrapolated to any other existing 
SLA specification language. 

In addition to this, in our work we are analyzing the content of the individual 
guarantee terms in order to generate the tests. However, an SLA may represent a 
hierarchy of terms that are logically combined using the specific compositor elements. 
As we state in our future work, we will improve the generation of tests by means of 
taking into account the logical structure of the agreement. 

Likewise, in this work we are considering the content of the Qualifying Condition and 
the Service Level Objective elements as a whole, without analysing the internal 
conditions of both elements. Hence, we say that the QC (or the SLO) is satisfied or not 
but we do not take into account whether the QC (or the SLO) contains a more complex 
expression that needs to be evaluated. We consider that a more detailed analysis of such 
elements could help to refine and improve the generated tests although the size of the test 
suite could grow and become unmanageable. 

Finally, we have described that the SLA is our test basis and its analysis allows us to 
generate the test cases. From the content of the SLA, we use the developed tool, SLACT, 
to obtain the set of test requirements that will be later exercised through the generated 
test cases. However, any change in the specification of the SLA (even if it is a minor 
change) affects the identification of the tests so a new set of test requirements needs to be 
identified and, consequently, new test cases are generated without reusing the previous 
one. 

7. Conclusions and Future Work 

In this article we have been concerned with the problem of testing service based 
applications (SBAs) regulated by Service Level Agreements (SLAs) that have been 
negotiated between the service provider and consumer. To address this problem, we 
propose a step-wise method that generates test cases from a specification based on WS-
Agreement by means of defining how to apply existing testing techniques used in the 
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industry. We have also developed tool, called SLACT (SLA Combinatorial Testing), to 
automate the process. 

The approach is based on identifying a set of classifications and classes from the 
content of the SLA in order to construct a hierarchical model using the Classification 
Tree Method. From this structure, we apply standard combinatorial testing techniques in 
order to derive the test coverage items through the combination of the classes represented 
in the leaves. We have applied three strategies that provide different levels of 
thoroughness in the resulting test suites. 

The main benefit of our work is that supports the automatic generation of a set of test 
cases from the specification of SLAs, described in WS-Agreement. The execution of the 
test cases allows detecting problems in the SBA proactively, i.e., before such problems 
lead to undesired consequences for the stakeholders who have agreed the SLA. In 
addition to this, our approach can assure that the number of generated test cases will be 
manageable and such test cases are feasible to be executed in the SBA. Furthermore, it 
gives the tester the possibility to decide whether the SBA should be tested with more or 
less thoroughness or even determine which parts of the SBAs should be tested and with 
what degree of intensity. 

The whole process has been automated by SLACT. SLACT receives the SLA and 
automatically identifies the classes and extracts the implicit constraints. The tool can be 
used to define explicit testing constraints and selecting a combinatorial strategy for 
testing. Based on these inputs, SLACT generates different test suites and provides one 
that, whilst satisfying the expected coverage, contains the least number of test cases. 

The approach has been validated using an existing eHealth service based application 
where we applied the above three testing strategies obtaining three different test suites 
with 10, 42 and 32 test cases respectively. Thus we were able to obtain a reasonable and 
manageable number of tests for a critical scenario. 

In future work, we will focus on improving the definition of tests using additional 
information contained in the SLA and taking both the logical and hierarchical structure 
of the agreement into account. We expect to be able to identify new cases for testing by 
applying existing standard coverage criteria as, for example, the Modified Condition 
Decision Coverage (MCDC) defined in the RTCA/DO-178B standard [73]. In relation to 
this, we will have to evaluate the testability of these test situations and decide which of 
them can be exercised through the generation of tests and which of them should be 
checked at runtime using monitoring techniques. Finally, we are planning to study the 
feasibility of improving SLACT with the aim of integrating these new test criteria. 
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