

City, University of London Institutional Repository

Citation: Lorenzoli, D. & Spanoudakis, G. (2010). EVEREST+: Run-time SLA violations

prediction. In: Proceedings of the 5th International Workshop on Middleware for Service
Oriented Computing. (pp. 13-18). New York: ACM. ISBN 978-1-4503-0452-8 doi:
10.1145/1890912.1890915

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/5167/

Link to published version: https://doi.org/10.1145/1890912.1890915

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

EVEREST+: Run-Time SLA Violations Prediction

Davide Lorenzoli
School if Informatics, City University

Northampton square, London,
EC1V OHB, UK

+44 20 7040 3722

Davide.Lorenzoli.1@soi.city.ac.uk

George Spanoudakis
School if Informatics, City University

Northampton square, London,
EC1V OHB, UK

+44 20 7040 8413

G.Spanoudakis@soi.city.ac.uk
ABSTRACT

Monitoring the preservation of QoS properties during the
operation of service-based systems at run-time is an important
verification measure for checking if the current service usage is
compliant with agreed SLAs. Monitoring, however, does not
always provide sufficient scope for taking control actions
against violations as it only detects violations after they occur.

In this paper we describe a model-based prediction framework,
EVEREST+, for both QoS predictors development and
execution. EVEREST+ was designed to provide a framework
for developing in an easy and fast way QoS predictors only
focusing on their prediction algorithms implementation without
the need for caring about how to collect or retrieve historical
data or how to infer models out of collected data. It also
provides a run-time environment for executing QoS predictors
and storing their predictions.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications, C.4
[Performance of Systems]: Measurement techniques

General Terms
QoS Measurement, Algorithms

Keywords
Run-time QoS Prediction, Prediction Framework

1. INTRODUCTION
Monitoring the preservation of quality of service (QoS)
properties during the operation of service-based systems at run-
time is an important verification measure for checking if the
current usage and behaviour of the services deployed by the
system is compliant to the Service Level Agreements (SLAs) set
for these services. The monitoring of QoS properties specified in
an SLA has received significant attention in the literature and
several approaches and monitoring systems have been
developed to support it [12][11][1][7]. Most of these approaches
and systems, however, can only support the detection of a QoS

property violation once it has occurred. Thus, they do not
provide sufficient support for taking control actions that could
prevent violations or warning the relevant parties that violations
are likely to occur in the future.

The prediction of violations of QoS properties of software
systems has been the subject of research outside the area of SLA
monitoring. This work has focused on prediction related to
different types of properties including, for example, software
systems failures [13], system dependability [4], security [15],
and parameters of system infrastructures such as server
workloads, CPU loads, and network throughput [3][6]. Related
techniques have been based on wide spectrum of prediction
algorithms ranging from time series analysis [2] to mean-value
prediction techniques [3] or belief-based reasoning [8].

Three limitations of existing techniques that make them falling
short of providing adequate support for run-time prediction of
SLA violations are:

• They tend to focus on system infrastructure properties (e.g.,
network and server properties) rather than service level
application based properties (e.g., service throughput, mean
time to failure).

• They tend to focus on the prediction of specific types of
properties without providing a more generic framework for
building predictors that can cover a wide or even the whole
spectrum of service properties that can be part of an SLA

• They are not integrated with environments for monitoring
SLAs for service-based systems

The latter limitation is important as the lack of relevant
integration prevents the development of support for proactive
management of service-based systems and SLAs including, for
example, proactive service discovery by service clients in cases
where the QoS properties in SLAs of the services used by a
system are forecasted to fail, proactive negotiation of new SLAs
with existing customers in cases where providers detect that
their SLAs are due to be violated, or proactive provision of
further service capacity in the same case.

In this paper, we introduce a new framework, which supports the
prediction of potential violations of QoS properties in SLAs.
This framework has been developed as part of a generic
monitoring framework for checking SLAs at run-time, called
EVEREST [15]. Our prediction framework provides an
integrated architecture for SLA monitoring and prediction that
supports the latter activity through the deployment of a built-in
set of model-based predictors (including for example a generic
predictor for constraints regarding mean values of QoS
properties). Our framework receives specifications of the QoS
properties, which need to be monitored and predicted, expressed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MW4SOC’10, November, 2010, Bangalore, India.
Copyright 2010 ACM 978-1-4503-0452-8/10/11…$10.00.

in a general high level SLA specification language developed as
part of FP7 EU project SLA@SOI, and a specification of the
prediction parameters and model that should be used for
generating predictions of violations of these properties. Based
on the input QoS and prediction model specifications, the
framework generates automatically operational monitoring
specifications expressed in Event Calculus [5] to enable not only
the classic (i.e., non predictive) monitoring of the required QoS
properties but also the acquisition and recording of run-time
information that will be required for predicting potential
violations of the given QoS properties. Following the generation
of operational monitoring specifications, the framework
activates these specifications to perform run-time monitoring,
and uses the data gathered during monitoring to compute
automatically the prediction model identified for the relevant
QoS property and generate the required forecasts.

The architectural design of the framework enables its extension
by new QoS predictors that may be required for specific types of
properties, and provides a language that enables the users of the
framework to declare how new predictors can fit in the generic
prediction approach advocated by it and the type of predictor(s)
that should be used for a given property if more than one
predictors are available for the property by specifying
appropriate configuration specifications.

Our integrated monitoring-prediction framework addresses the
lack of integration of monitoring and prediction systems and the
tendency to provide specific prediction algorithms instead of a
generic framework for building predictors. Our framework
provides a coherent approach to data collection and analysis
both for monitoring and prediction purpose. Moreover, it
supports the developing of monitoring and prediction uses-
designed algorithm that can be used for extending the
framework abilities. Also, it defines a single point of access for
configuring the integrated framework.

In the rest of this paper, we compare our approach with existing
work (Section 2), present the key concepts underpinning our
framework (Section 3), present our framework key points and its
architecture (Section 4 and 5), present the specifications used by
our framework (Section 6). We also present an initial
experimental evaluation of the framework (Section 7) and
outline directions for future work (Section 8).

2. RELATED WORK
Several different approaches to QoS monitoring have been
proposed in literature (e.g. [12][11][1]) and recommendations
about QoS metrics measurement for web services have been
described in [14].

Michlmayr et al. [11] present an event-based QoS monitoring
and SLA violation detection framework. They developed client
and service side monitoring and integrated them in the VRESCo
[10], a run-time environment for service-oriented computing. At
the moment VRESCo supports a limited list of QoS properties.
Our approach, like [11], can monitor both client and server side,
but it doesn’t have a fixed list of supported QoS properties.
Indeed, users can specify new properties to be monitored as EC-
Assertions.
Sahai et al. [12] present an automated and distributed SLA
monitoring engine. They use both client and service side
collected information. There is not a fixed set of monitorable
properties, but to add a new property a new SLA evaluator

component must be developed and deployed into the framework.
Our approach does not require any new components to be
developed and deployed to monitor a new QoS property. It is
only required to write a new AC-Assertion specification.

De Luc et al. [1] present a middleware component for
monitoring services and delivery timely and coherent
monitoring data to business processing using them in run-time
decision making settings. This work focuses on data collection
and how to efficiently deliver it to other components. Our
approach also detects when monitored data violates QoS
requirements.

Leitner et al. [7] present an approach for predicting SLA
violations at run-time. The Prediction approach requires the
definition at design-time of checkpoints for each BPEL
subjected to prediction. Moreover, it does not support the
prediction of aggregate properties. Our approach does not
require defining any checkpoints; in fact a prediction can be
requested at any time. It can also predict aggregate properties.

All the described approaches focus on monitoring or prediction
only. On contrary, our approach integrates monitoring and
prediction with in a same coherent framework. Moreover, we
provide a more generic framework for building predictors that
can cover a wide or even the whole spectrum of service
properties that can be part of an SLA.

3. BACKGROUND: The EVEREST
Monitoring Framework
EVEREST is a generic monitoring engine for checking
violations of software system properties expressed in an Event
Calculus (EC) based language called EC-Assertion at run-time.
EVEREST has been used for monitoring different types of
properties of software systems including functional security and
dependability properties [15]. It has also been applied for
monitoring SLA guarantee terms for service-based systems [9].
Whilst a full description of EVEREST is beyond the scope of
this paper, in this section we provide an overview of the
language that it uses to express monitorable SLA guarantee
terms to enable the reader understand how the prediction
specifications used by the prediction framework relate to
specifications of these terms.

More specifically, the SLA terms that can be checked by
EVEREST are expressed as EC-Assertion monitoring rules
and/or assumptions of the form: body ⇒ head. The semantics
of a monitoring rule of this form is that when the body of the
rule evaluates to True, its head must also evaluate to True.
The semantics of assumption of this form is that when the body
of the rule evaluates to True, its head is deduced by
EVEREST. The body and head of EC-Assertion rules and
assumptions are defined in terms of standard EC predicates:

(a) Happens(e,t,R(lb,ub)) − This predicate denotes that an
instantaneous event e occurs at some time t with in the time
range R(lb,ub), where lb≤ub are R lower and upper bounds.

(b) HoldsAt(f,t) − This predicate denotes that a state (a.k.a.
fluent) f holds at time t

(c) Initiates(e,f,t) and Terminates(e,f,t) − These predicates
denote the initiation and the termination of a fluent f by an
event e at a time t respectively, and

(d) Initially(f) which denotes that a fluent holds at the start of
the operation of a system.

An example of an SLA term specified in EC-Assertion is shown
in Table 1. The formulas in the table check whether the mean
time to repair of a service (MTTR) _Srv, i.e., is the mean length
of the periods of time over which a service does not respond to
operation calls and is therefore unavailable, is always below a
given threshold K, i.e., MTTR≤K.

Rule R1:
Happens(e(_id1, _Snd, _Srv, Call(_O), _Srv), t1, [t1,t1]) ∧
Happens(e(_id2, _Srv, _Snd, Response(_O), _Srv), t2, [t1,t1+d]) ∧
∃ _PN, _STime, _MTTR: HoldsAt(Unavailable(_PN, _Srv, _STime), t1)) ∧
HoldsAt(MTTR(_Srv, _PN, _MTTR), t1)) ⇒
_MTTR < K
Assumption R1.A1:
Happens(e(_id1, _Snd, _Srv, Call(_O), _Srv), t1, [t1,t1]) ∧
¬Happens(e(_id2, _Srv, _Snd, Response(_O), _Srv), t2, [t1,t1+d]) ∧
¬∃ _PeriodNum, _STime,: HoldsAt(Unavailable(_PeriodNum, _Srv, _STime),
t1)) ∧
∃ _PN, _MTTR: HoldsAt(MTTR(_Srv, _PN, _MTTR), t1)) ⇒
Initiates(e(_id1, _Snd, _Srv, Call(_O), _Srv), Unavailable(_PN+1, _Srv, t1), t1)
∧
Terminates(e(_id1, _Snd, _Srv, Call(_O), _Srv), MTTR(_Srv, _PN, _MTTR), t1)
∧
Initiates(e(_id1, _Snd, _Srv, Call(_O), _Srv), MTTR(_Srv, _PN+1, _MTTR), t1

Assumption R1.A2:
Happens(e(_id1, _Snd, _Srv, Call(_O), _Srv), t1, [t1,t1]) ∧
Happens(e(_id2, _Srv, _Snd, Response(_O), _Srv), t2, [t1,t1+d]) ∧
∃ _PeriodNum, _STime: HoldsAt(Unavailable(_PeriodNum, _Srv, _STime), t1)
⇒
Terminates(e(_id1, _Snd, _Srv, Call(_O), _Srv), Unavailable(_PeriodNum,
_Srv, _STime), t1+1)
Assumption R1.A3:
Happens(e(_id1, _Snd, _Srv, Call(_O), _Srv), t1, [t1,t1]) ∧
Happens(e(_id2, _Srv, _Snd, Response(_O), _Srv), t2, [t1,t1+d]) ∧
∃ _PeriodNum, _STime,: HoldsAt(Unavailable(_PeriodNum, _Srv, _STime),
t1)) ∧
∃ _PN, _MTTR: HoldsAt(MTTR(_Srv, _PN, _MTTR), t2)) ⇒
Terminates(e(_id1, _Snd, _Srv, Call(_O), _Srv), MTTR(_Srv, _PN, _MTTR), t2)
∧
Initiates(e(_id1, _Snd, _Srv, Call(_O), _Srv), MTTR(_Srv, _PN,
(_MTTR*(_PN−1) +(t1 − STime))/_PN), t2)

Table 1. EC formula for monitoring MTTR
More specifically, rule R1 in Table 1 checks for MTTR
violations when a call of an operation of the service _Srv is
served after a period of unavailability. The first two conditions
in the rule check whether a served operation call has occurred.
The latter two conditions check whether this happens at a time
when the service has been unavailable.

The first assumption in Table 1 (R1.A1) initiates the fluent
Unavailable(_PN+1, _Srv, t1) to represent a period of service
unavailability. This fluent is initiated when service call occurs
(i.e., the call represented by the event _id1), no response to this
call is produced within d time units, and at the time of the
occurrence of the call the service is not already unavailable (i.e.,
no fluent of the form Unavailable(_PeriodNum, _Srv, _STime)
already holds). The number of the new unavailability period is
determined by increasing the variable _PN whose current value
is extracted from the fluent MTTR(_Srv, _PN, _MTTR) which
keeps a record of the number of the past periods of
unavailability of the service (i.e., _PN) and the mean length of
time during which the service remained unavailable in each of
these periods (i.e., the value of the variable _MTTR). As a new
period of unavailability is initiated for the service, the

assumption also re-initiates the fluent MTTR(_Srv, _PN,
_MTTR) in order to increase the number of unavailable periods
_PN.

The second assumption (R1.A2) terminates the fluent that
represents a currently active period of service unavailability
(i.e., the fluent Unavailable(_PeriodNum, _Srv, _STime)) when
a served service call occurs (i.e., the call represented by the
event _id1) and at the time of the occurrence of this call the
service is not unavailable (i.e., a fluent of the form
Unavailable(_PeriodNum, _Srv, _STime) holds).

The third assumption (R1.A3) updates the fluent that represents
the mean length of consecutive periods of service unavailability
(i.e., the value stored in the variable _MTTR of the fluent
MTTR(_Srv, _PN, _MTTR)) when a served service call occurs
(i.e., the call represented by the event _id1) and at the time of
the occurrence of this call the service is not unavailable (i.e., a
fluent of the form Unavailable(_PeriodNum, _Srv, _STime)
holds). The new mean value is computed as the mean of the
mean of the previous _PN-1 observations that is stored as the
current value of _MTTR and the new period of unavailability
(t1−STime).

4. OVERVIEW OF OUR PREDICTION
APPROACH
At a high level, our framework assumes that a prediction
problem can be formulated as follows: Given a request for
predicting whether a QoS property will be satisfied at some
future time point te that is received at a time point tc, prediction
is the computation of the probability that the QoS property will
be satisfied at te. The computation of this probability will, in
general, be based on estimating the probability of different
values for specific variables that underpin the QoS property
and/or the QoS property itself. These probabilities can be
computed by fitting probability distribution functions to
historical data of these variables.

 Figure 1. Prediction framework common definitions

Figure 1 illustrates this general formulation. More specifically, tc
in the figure is the time point at which a prediction is requested,
te is the time point in the future that the prediction is required
for, p is the prediction window (i.e., p=te−tc), N is the number of
QoS observations between ts and tc, Y is the number of future
QoS observations between tc and ts, QoSc is the value of the
observed QoS at the time point tc, and QoSy is the value of the
predicted QoS at the time point te.
The design of EVEREST+ enables the realization of different
prediction models for QoS factors which are based on a common
underlying principle: the estimation of probabilities of specific
values (or ranges of values) for different variables that underpin
the violation or otherwise of a QoS term, and the use of these
probabilities in deriving the probability of the violation of the
term in a given period.

Figure 2. EVEREST+ components

In the case of the MTTR QoS term for a service, for instance, a
prediction model that we have developed for checking whether
MTTR ≤ K at a future time point te is based on the estimating
the probability distribution functions of two variables: (a) the
MTTR of a service itself and (b) the time between two
successive non served calls of service operations, referred to as
time-to-failure or TTF in the following.
More specifically, assuming that N is the number of TTR values
recorded until tc and y is the (yet unknown) number of TTR
values that will be recorded during the period p (or,
equivalently, the number of cases where a service became
available again following a period of unavailability), to violate
MTTR at time te the following inequality must be false.

(N*MTTRc + y*MTTRy)/(N+y) ≤ K (1)
From (1), we can deduce that for the MTTR term to be violated
it must be true that:

MTTRy ≥[K∗(N+y)−N∗MTTRc]/y=MTTRcrit (2)

Given (2), there are two factors to take into account to predict
MTTR:

• Pr(y), that is the probability to observe y failures in the
prediction time period p.

• Pr(MTTRy > MTTRcrit), that is the probability of having
MTTRy > MTTRcrit.

The probability to violate the QoS term constraint MTTR ≤ K at
the end of p time units is approximated by formula (3).

(3)

Pr(y) and Pr(MTTRy > MTTRcrit) are computed by using density
and cumulative probability functions. These probability
functions are inferred by analyzing MTTR and TTF historical
values collected by EVEREST, fitting different known
probability functions to them, and selecting the function that has
the best fit with the data. More specifically, during monitoring,
EVEREST stores all the fluents defined in the EC formulas of
Table 1 that required for monitoring the MTTR term including,
for instance, run-time values of the variable _MTTR of the
fluent MTTR(_Srv, _PN, _MTTR) from which the density and
probability function of MTTR can be inferred. The prediction
components of EVEREST+ use subsequently these historical
values to identify the probability density and probability
functions that have the best fit with the stored MTTR values and
use these functions to estimate Pr(MTTRy > MTTRcrit).

5. ARCHITECTURE OF EVEREST+
EVEREST+ has been designed with the general goal of
providing a framework for developing QoS predictors in an easy
and fast way by focusing only on prediction algorithm
implementations without the need for caring about how to
collect or retrieve historical data or how to infer statistical
models out of the collected data. The architecture of
EVEREST+, shown in Figure 2, includes two main components:
(1) the EVEREST monitoring framework, and (2) the new
prediction framework.

As discussed earlier, the EVEREST monitoring framework
checks services at run-time to determine whether they behave
according to SLAs QoS terms set for them. EVEREST checks
QoS terms based on events intercepted from services by internal
or external event captors. Whilst monitoring QoS terms,
EVEREST stores QoS related information, including the
computed QoS term values, the instances of QoS term violations
and satisfactions, and the values of any other state variables (aka
fluents) that have been taken into account in checking QoS
terms (see Section 3). This information is available through an
API that allows its retrieval from the internal EVEREST
monitoring database (see QoS data store in Figure 2).

The prediction framework (PF) fits statistical distribution
functions to different types of historical QoS data generated by
EVEREST, selects the distribution functions that have the best
fit with the data, and makes these functions and the “raw” QoS
data available to different QoS predictors that are deployed in
EVEREST+ as plug-ins. The prediction framework has three
main components, namely the model manager, QoS predictor,
and prediction manager. These components are described in the
following.

5.1 Prediction Manager
The Prediction Manager component coordinates and supervises
prediction tasks by managing prediction specifications,
triggering components, and reporting prediction results. The
operation of Prediction Manager is driven by prediction
specifications. As shown in Figure 3, these specifications
determine the QoS term that is to be monitored and forecasted
(qos_specification) and the prediction_parameters whose
statistical models will need to be determined in order to make
predictions for this QoS term. They also specify predictor
configuration parameters (e.g. type of predictor, prediction
period). The prediction manager extracts and sends the QoS
specification to EVEREST; selects and deploys the appropriate
QoS predictor and sends the necessary configuration parameters
to it, and sends the prediction configuration to the model

manager. Once all the above components are configured, QoS
predictors begin to produce predictions and store them into the
prediction database. It is prediction manager responsibility to
fetch and report them when needed.

5.2 Model Manager
The Model Manager is in charge of coordinating a pool of
Model Calculator components used for inferring models out of
historical QoS data collected by EVEREST. The model manager
also makes inferred models available to QoS predictors.

A Model Calculator component is a component implementing
model-specific algorithm. EVEREST+ has a set of already
implemented model calculators that can infer statistical
distribution functions from historical QoS data, e.g., probability
distribution (aka density) functions (PDF) and cumulative
probability distribution functions (CDF). Statistical models are
computed (and updated) at run-time, and stored in the model
database. EVEREST+ also provides mechanisms for extending
its default set model calculators.

The model manager also implements model-updating policies
that can be specified in EVEREST+ configuration files. They
can be time, data, or time/data driven. Time driven policies
trigger model updating after a certain time period has passed
from the last computed version of the model. Data driven
policies trigger model updating after a certain amount of data
has been computed after the last updating of the model.
Time/data driven policies trigger model updating by considering
both time elapsed and the data received after the last model
updating. The triggering policy should be chosen with respect to
the specific domain EVEREST+ is operating in. Variable data
might suggest a data driven policy, whilst for homogeneous data
a time driven policy would suit better.

5.3 QoS Predictors
QoS Predictor components are the components in EVEREST+
that implement specific QoS prediction algorithms. All QoS
predictors extend a basic predictor component. The base
predictor component provides the common functionalities
required for accessing EVEREST historical QoS data and the
statistical models inferred by the model calculator components.
It also provides functionality for storing QoS prediction results.
In this way, developers of specific QoS predictors can focus
only on prediction algorithm implementation without
implementing the above common core functionalities.

To render it deployable in the EVEREST+ framework, a QoS
predictor must also provide a prediction feature list and
dependencies. The list of prediction features indicates the QoS
terms that the particular predictor can generate forecasts for. The
dependency list indicates which data are required by a QoS
predictor to make predictions. For instance, a predictor for
MTTR based on the approach outlined in Section 4 (MTTR_PRE
predictor) has one prediction feature only, i.e., the QoS term
MTTR, and requires MTTR and TTF historical data to make its
predictions.

5.4 Monitoring Specification Generator
The Monitoring Specification Generator component receives a
prediction specification, translates it into a monitoring
specification expressed in EC-Assertion, and forwards it to
EVEREST. It also checks whether all needed resources required
by QoS predictors are available.

6. PREDICTION SPECIFICATIONS
A prediction specification is a user-defined document that tells
the prediction framework what to predict. To express prediction
specifications we use the high level SLA specification language
developed by the FP7 EU project SLA@SOI and extended it to
support the specification of prediction requirements.

Besides prediction targets, a prediction specification carries
information about how to configure QoS predictors and which
information is needed by QoS predictors to operate. Moreover, it
can contain EC rules (QoS specifications) to be used by
monitoring framework to monitor new QoS terms.

An example of a prediction specification is given in Figure 3. As
shown in the figure, a prediction specification specifies an
agreement_term element for a service identified by a service_id.
An agreement_term, identified by its unique id, can have one or
more guaranteed_state sub-elements specifying the QoS term
that the prediction is required for (i.e., MTTR in the example).
Each guaranteed state has its own unique id too. The triplet
(service id, agreement term id, guaranteed state id) is used to
retrieve stored prediction results.

The prediction specification tells the constraint that holds for the
QoS specified in the guaranteed state, whose violation will be
the subject of prediction (i.e., MTTR<K seconds in our
example), and the window of the prediction (i.e., the time period
in the future that the prediction should be concerned with). This
window is set to 10 minutes in our example, meaning that the
prediction required in this instance should be whether the MTTR
of _Srv will be greater than or equal to K seconds within 10
minutes following the prediction request

 Note that a prediction specification uses a QoS name that is also
used in a QoS specification, and therefore, enables the QoS
predictor to retrieve historical QoS data for the term in order to
compute the statistical prediction model for it.

6.1 QoS Specification
QoS specifications are EC formulas given to EVEREST to
instruct it for monitoring QoS terms, e.g., MTTR, TTF, and
availability. An example of QoS specification for monitoring
MTTR has been discussed in Section 2. Via QoS specifications
it is possible to extend the set of monitorable QoS terms own by
EVEREST. If a prediction about a new QoS term is required,
and EVEREST doesn’t have its QoS specification, it is sufficient
to attach to a prediction specification, a QoS specification that
describes how to monitor the new QoS term.

prediction_specification {
 serice_id = _Srv
 prediction.window = 10min
 Agreement_term {
 id = AG-1
 guaranteed_state {
 id= GS-1
 MTTR < K
 }
 prediction_parameters {
 qos { id = MTTR }
 qos { id = TTF }

 }
 prediction_configuration {
 predictor_id = MTTR_PRED
 configuration_property { history.window = 400 }

 }
 qos_specification {
 ec_formula_id = MTTR
 ec_formula = “The EC-Assertion formula” }
}

Figure 3. Example of prediction specification

6.2 QoS Predictor Configuration
Since EVEREST+ supports user-defined QoS predictors, each
predictor might require different kind of configurations. QoS
predictor configuration provides a key-value pair based
configuration policy.

For instance, in Figure 3, MTTR_PRED predictor receives a
QoS predictor configuration for configuring the data history size
it must use during its computation. QoS predictor configuration
sets the available data history size to 400 (history.window=400).

7. EXPERIMENTAL RESULTS
The current implementation EVEREST+ is based on Java
Platform Standard Edition 5.0 (J2SE 5.0) and uses MySQL 5.1
as DBMS. J2SE 5.0.

Monitoring and prediction can be time critical tasks. In real-time
or high performance environments decision must taken within a
few seconds or even a few milliseconds time. Therefore, the
ability to provide results fast is crucial. EVEREST+ current
implementation most consuming activity is model inferring from
historical data. The inferring process fits up 43 statistical
distributions given a set of data points.

We evaluated EVEREST+ performance with historical data of
different sizes, from 50 to 20000 data points. Table 2 shows the
input size, the number of inferred models, and the time
consumed by the inferring process in the first, second, and third
column respectively. As expected, the bigger is the history size,
the longer the inferring process takes. However, it exceeds one-
second time only for history sizes greater equal to 10000. Our
experiments also highlighted how data point set sizes of 1000
and 5000 are sufficient to produce quality statistical models.

Data points Inferred models Inferring time (ms)

50 20 ~322
100 20 ~217
500 20 ~217

1000 20 ~222
5000 20 ~656

10000 18 ~1196
20000 18 ~1701

Table 2 Model inferring performance
Moreover, the prediction algorithm execution time is of a few
milliseconds only. Therefore, latencies of one or two seconds (in
the worst case) are still acceptable in not time critical systems.

8. CONCLUSION
This paper presents a model-based prediction framework for
detecting potential violations of QoS properties. The proposed
approach key properties are generality and extensibility. It is
general because it doesn’t support a limited set of QoS only and
it is extensible because the definition of which data to collect
and how to analyse them can be specified using models (QoS
specifications) and pluggable components (QoS predictors).

To proofing the validity of our approach we defined a QoS
specification for monitoring MTTR QoS term values and we
implemented a QoS predictor to predict about MTTR violations.
Our experiments show that good performance results about the
automatically inferred statistical models.
For future work, we plan to extend the set of available QoS
predictors and automatically inferred models to create a robust
and flexible support for QoS monitoring and prediction.

9. ACKNOWLEDGEMENT
This research has been supported by the EU Commission under
the Framework 7 project SLA@SOI (grant n. 216556).

10. REFERENCES
[1] Duc B. L., P., Châtel Rivierre N., Malenfant J., Collet P.,

Truck I.: Non-functional data collection for adaptive
business processes and decision-making. In Proceedings of
the 4th MWSOC. ACM, 2009.

[2] Garg S. Garg, A. V. Moorsel A. V., K. Vaidyanathan K.,
and Trivedi K.: A methodology for detection and
estimation of software aging. ISSRE, 0:283, 1998.

[3] Iyer R. K. Iyer and Rossetti D. J.: Effect of system
workload on operating system reliability: A study on ibm
3081. IEEE Trans. Softw. Eng., 1985.

[4] Iyer R. K., Young L. T., and Iyer P. K.: Automatic
Recognition of Intermittent Failures: An Experimental
Study of Field Data. IEEE Trans. Comput. 39, 4, 1990.

[5] Kowalski R. and Sergot M.: A logic-based calculus of
events. New Gen. Comput., 4(1):67–95, 1986.

[6] Lee B-D, Schopf J M.: Run-Time Prediction of Parallel
Applications on Shared Environments, Cluster Computing,
IEEE International Conference on, p. 487, Fifth IEEE
International Conference CLUSTER, 2003.

[7] Leitner P., Wetzstein B., Rosenberg F., Michlmayr A.,
Dustdar S. and Leymann F.: Runtime Prediction of Service
Level Agreement Violations for Composite Services. The
3rd Workshop NFPSLAM-SOC, 2009.

[8] Lorenzoli D. and Spanoudakis G.: Detection of security and
dependability threats: A belief based reasoning approach.
SECURWARE, 0:312–320, 2009.

[9] Mahbub K. Spanoudakis G.: Monitoring WS Agreements:
An Event Calculus Based Approach, Test and Analysis of
Service Oriented Systems, (eds) L. Baresi, E. diNitto,
Springer- Verlang, 2007

[10] Michlmayr A., Rosemberg F., Leitner P., and Dustdar S.:
End-to-end support for QoS-aware service selection,
invocation and mediation in VRESCo. Technical report,
Vienna University of Technology, 2009.

[11] Michlmayr A., Rosenberg F., Leitner P., and Dustdar A.:
Comprehensive QoS monitoring of Web services and
event-based SLA violation detection. In Proceedings of the
4th MWSOC. ACM, 2009.

[12] Sahai A., Machiraju V., Sayal M., Moorsel A. P., and
Casati F.: Automated SLA Monitoring for Web Services. In
Proceedings of the 13th IFIP/IEEE international Workshop
on Distributed Systems, 2002.

[13] Salfner F., Schieschke M., and Malek M.: Predicting
failures of computer systems: a case study for a
telecommunication system. IPDPS, 0:415, 2006.

[14] Thio N., Karunasekera S.. Automatic measurement of a
Qos metric for Web Services. In proc. of ASWEC, 2005.

[15] Tsigkritis T., Spanoudakis G., and Lorenzoli D.: Diagnosis
and Threat Detection Capabilities of the SERENITY
Monitoring Framework,. cChapter 14, pages 239–271.
Advances in Information Security. Springer US, 2009.

