

City, University of London Institutional Repository

Citation: Mahbub, K. & Spanoudakis, G. (2010). Proactive SLA Negotiation for Service

Based Systems. 2010 6th World Congress on Services (SERVICES-1), pp. 519-526. doi:
10.1109/services.2010.15

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/5168/

Link to published version: https://doi.org/10.1109/services.2010.15

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Proactive SLA Negotiation for Service Based Systems

Khaled Mahbub
School of Informatics

City University London, UK
K.Mahbub@soi.city.ac.uk

George Spanoudakis
School of Informatics

City University London, UK
G.Spanoudakis @soi.city.ac.uk

Abstract— In this paper we propose a framework for proactive
SLA negotiation that integrates this process with dynamic
service discovery and, hence, can provide integrated runtime
support for both these key activities which are necessary in
order to achieve the runtime operation of service based
systems with minimised interruptions. More specifically, our
framework discovers candidate constituent services for a
composite service, establishes an agreed but not enforced SLA
and a period during which this pre-agreement can be activated
should this become necessary

Keywords-Service discovery, Service level agreements,
Proactive SLA negotiation, service monitoring

I. INTRODUCTION
A service level agreement (SLA) is an explicit contract

between the provider and the consumers of a service that
defines the quality and, sometimes, functional properties
which should be guaranteed during the provision of the
service, as well as the penalties that should be applied in case
of defaulting [7][10][11]. An SLA is set through a
negotiation process between the provider and the consumer
of a service [4][12]. This process is particularly complex in
the case of composite services since, in order to ensure that
the provision of a composite service S is in line with the
SLAs required by its clients, the provider of S should also
negotiate and establish subordinate SLAs with the providers
of the constituent services of S. Furthermore, when a
constituent service of S becomes unavailable at runtime or
fails to perform according to its SLA, the provider of S
should be able to discover alternative replacement services
for it and negotiate SLAs with them at runtime.

As it has been suggested in [15], to minimise the runtime
interruption in the provision of composite services, the
discovery of back up replacement services for their
constituents should be proactive, i.e., it should be performed
before a constituent service of S becomes unavailable or fails
to perform according to its established SLA. Proactiveness is
important since service discovery is a time consuming
activity and, therefore, carrying it in a reactive mode, is
likely to cause significant interruption in the provision of the
composite service and violations of its own SLAs. SLA
negotiation should also be proactive as it will be necessary to
have adequate SLAs for the potential replacement services
that have been identified by proactive discovery attempting
SLA negotiation just prior to binding to an alternative
service is likely to cause significant delay.

Existing work on service level agreements has focused
on SLA specification [13][14], negotiation [4][6] and
monitoring [8]. The need for runtime SLA negotiation or re-
negotiation has been realised in [2][3][5][9], where either the
terms of an SLA are revised to accept a constituent service
from an existing provider [2][5] or a new SLA is negotiated
with a new service provider and an existing SLA is
terminated [3]. All these approaches, however, are reactive
as they support corrective actions only after an SLA has been
violated. Thus they can fail to guarantee uninterrupted
runtime provision of composite services.

To address this shortcoming, in this paper we introduce
an approach for proactive runtime SLA negotiation. Our
approach is based on an extension of a tool for proactive
runtime service discovery which is described in [15]. Our
approach weaves SLA negotiation into runtime service
discovery and provides a clear process model for carrying
these two activities in a coordinated manner. It also leverages
upon the language for expressing runtime service discovery
queries that has been developed in [15] and extends in order
to enable the specification of SLA negotiation criteria. Thus,
it provides integrated runtime support for both proactive
service discovery and SLA negotiation which is necessary in
order to achieve runtime composite service provision with
minimised interruptions.

Proactive SLA negotiation is weaved into the discovery
process and is performed after the execution of service
discovery queries to ensure that adequate SLAs can be set for
the discovered services. The objective of proactive
negotiation is to establish an agreed but not enforced SLA
and a period during which the consumer of the service will
be able to activate the pre-agreement should this become
necessary. Following this, a discovered service can be
considered as a candidate constituent service for a composite
service S. The negotiation process is also repeated when a
pre-agreed SLA comes close to expiry and, therefore, it has
to be renegotiated.

The rest of this paper is structured as follows. In Section
II, we discuss the architecture of the framework for
integrated proactive runtime service discovery and SLA
negotiation. In Section III, we describe the negotiation
process. In Section IV, we provide an overview of the
language for specifying the rules for triggering and carrying
out the SLA negotiation process (SLA triggering and SLA
negotiation rules). In Section V, we review related work and
finally in Section VI, we provide some concluding remarks
and outline directions for future work.

II. OVERVIEW OF PROACTIVE SERVICE DISCOVERY AND
SLA NEGOTIATION FRAMEWORK

The architecture of our integrated service discovery and
SLA negotiation framework is shown in Figure 1. According
to the figure, the framework consists of a runtime service
discovery tool, a service listener, an SLA negotiation broker
and a monitor. It also interacts with external service
registries and event captors.

Figure 1. Architecture for proactive (and reactive) SLA negotiation

The runtime service discovery tool is used to identify
potential alternative services for the services that a
composite service uses currently. The discovery process is
driven by service discovery queries. These queries are
associated with each of the constituent services Sc of the
composite service S and specify the conditions that should
be satisfied by any service that could replace them in the
composition. These conditions can refer to the structural
(interface), behavioural, contextual, and quality
characteristics that services should have in order to be
acceptable replacements for Sc and, therefore, provide the
criteria for discovering candidate constituent services for Sc.
Service discovery queries can be executed in two modes: (a)
in a reactive mode where the query is executed when the
constituent service Sc it is associated with becomes
unavailable or fails to satisfy an agreed SLA and, therefore,
a replacement service should be identified for it, or (b) in a
proactive mode where the query is executed in parallel with
the operation of the composite service S in order to discover
and maintain a set of candidate replacement services for it.
In the proactive execution mode, the query is executed
initially to build a replacement set of services for S (RS) and
then anytime when an event indicating that the description

of some service in RS has been changed or a new service
that could be a candidate for inclusion in RS has emerged.

The negotiation broker is the component that manages
and executes the negotiation process on behalf of a service
consumer (i.e., the composite service) or a service provider.
Our architecture assumes that a separate instance of this
component is associated with each of the two sides (the
service provider and consumer) which participate in the
negotiation process. Negotiation brokers are responsible for
negotiating and agreeing the guarantee terms of an SLA.
The negotiation process can be either reactive or proactive.
In proactive negotiation, the negotiation process is carried
out according to a two-phase protocol that may result in a
provisionally agreed SLA but not activated SLA (see Pre-
agreed SLA in Figure 1) or negotiation failure. In reactive
negotiation, the negotiation process is executed according to
a single phase protocol that can result in an agreed and
activated SLA (see Active SLA in Figure 1) or negotiation
failure. In the framework, a pre-agreed SLA describes a
service level agreement that has been reached but not
activated yet. Pre-agreed SLAs have an expiry period
within which they will have to be activated or cease to exist.
A pre-agreed SLA becomes an Active SLA, if the consumer
of the service decides to activate it.

The service registry contains descriptions of services.
These should include at least a specification of the interface
of the service (WSDL) and SLA templates indicating the
terms (e.g. service quality levels, costs etc) under which the
provider of service is typically willing to provide it.
Additional types of service descriptions that are supported
by the framework are models of service behavior expressed
in BPEL and further quality characteristics that might not be
included in existing SLA templates or complement these
templates by specifying the entire range of values for a
given characteristics as opposed to the individual quality
level points or the sub-ranges of it which might be specified
in SLA templates.

The service listener polls service registries regularly to
identify changes in existing service descriptions or new
services that might have become available.

The monitor in the architecture of Figure 1 is
responsible for monitoring the provision of a service by a
given provider and the use of it by a set of service
consumer. In general there are two monitors: one associated
with the service provider and another associated with the
service consumer1. A monitor at either of these two sides is
typically used to detect if the SLA guarantee terms which
should apply to the provision of the service are satisfied, and
whether the conditions of the negotiation triggering rules of
the relevant party are satisfied in order to generate signals
for triggering negotiation (whether proactive or reactive). A

1 It is, however, also possible that the monitors of two parties of an SLA

are realised by a same monitoring service which may be offered by a
trusted external third party. Such a shared monitoring service would in
general be monitoring different sets of rules for each of the involved
parties and based on different sets of events.

Runtime
Service

Discovery
Tool

Service
Registry

Service Consumer
(SC)

Service
Listener

Service
Provider (SP)

Negotiation

Broker
(Consumer)

SLA:
offers/

counter
offers

Event Captors
(SP)

Specification/
Document

Functional
Component

Negotiation

Broker
(Provider)

Service
Discovery

Query

Monitor

Active
SLA

Negotiation
Triggering

Rules

Event Captors
(SC)

SLA
Templates

WSDL Service Behaviour
(BPEL)

Quality Ranges

Pre-
agreed

SLA

monitor at the side of the provider may also check the levels
of service usage by the relevant consumer as the latter may
be preconditions of SLA guarantee terms (e.g., a service
provider may have agreed to an average service throughput
only if the rate of service calls by a particular provider does
not exceed a given threshold).

If a monitor detects (or forecasts) that the conditions of
negotiation triggering rules in the negotiation policy of a
service provider or consumer are (or will be) violated, it
informs the relevant negotiation broker to initiate a
negotiation or renegotiation.

The checks performed by the monitors take into
account events that are intercepted during the use of services
(e.g. service invocations and responses, server loads). These
events are intercepted and notified to the framework by
different types of event captors that may be associated with
different services (e.g. SOAP message captors). These
events are notified to the monitor for verifying the
adherence of services to different SLA guarantee terms and
checking whether some SLA negotiation activity should be
initiated.

Negotiation Triggering Rules determine the
circumstances under which the negotiation of new service
level agreements should start (e.g., when a provisionally
agreed SLA is about to expire). Separate sets of such rules
may be specified by service providers and consumers for this
purpose. The negotiation triggering rules are monitored once
an SLA is established.

III. SLA NEGOTIATION PROCESS
Figure 2 presents the service discovery process of the
framework with the activity of SLA negotiation embedded
within it. The integrated discovery and negotiation process
is specified as a UML activity diagram. The process starts
with the submission of a service discovery query by the
composite service (i.e., the consumer of constituent
services). As discussed in Section 2, this query can specify
different service discovery criteria, namely: (a) structural
criteria describing the interface of required services, (b)
behavioural criteria describing the functionality of required
services, and (c) constraints describing quality
characteristics of required service. The initial execution of
the service discovery query (see the action state Execute
Query in Figure 2) results in a list of potential candidate
services (RS). The candidate services are identified by
evaluating the structural, behavioural and quality
characteristics specified in a query against the structural,
behavioural and quality of service specifications in service
registries. The execution of the discovery query also
computes distances between a query and candidate services
based on the query criteria and ranks the candidate services
based on their distances to the query. The list of potential
candidate services is updated by executing the service
discovery query when the framework is informed via the
service listener that a new service has become available in a
registry or the description of an existing service has been

modified (see the signal accept state New/Amended Service
Description in Figure 2). This ensures that new or updated
services are considered by the process.

Once an initial set of candidate services has been built
or updated (see the action state Create/Update Candidate
Service Set), the framework selects a service that does not
have a negotiated SLA from RS for negotiation (see the
transition guarded by the condition Exists Service in RS
without Negotiated SLA).

In the negotiation phase (i.e., the action state Negotiate
SLA), the desired level of service is negotiated with the
selected candidate service. In this phase, the QoS
characteristics of each candidate service are negotiated in
order to achieve the best possible SLA for the services that
is within the boundary constraints of the two parties.
Negotiation during this phase may fail and, if this happens,
for a selected candidate service then the service is removed
from RS and a new negotiation will start with another
candidate service in RS which does not have a pre-agreed
SLA. If the negotiation with a selected service succeeds,
however, a provisional SLA is established and the selected
candidate service in RS is updated to flag the existence of
the pre-agreed SLA.

Figure 2. SLA negotiation process

It should be noted that, the negotiated SLAs for the
services in RS do not come into force immediately. For each
pre-agreed SLA, the negotiation process establishes a time
period over which the pre-agreed SLA can be automatically
brought into force without further negotiation. This will
happen if the relevant service is selected for binding to the
composite service. If the validity period of a pre-agreed SLA
comes close to expiry without the candidate service being
bound to the composite service, the framework will
proactively re-negotiate the SLA (see the transition guarded
by the condition Pre-agreed SLA about to expire, from the
action state Create/Update Candidate Service Set to the

action state Select Service RS for Negotiation). The
remaining validity period threshold that determines when a
pre-agreed SLA should be negotiated is selected by the
composite service provider.

Following the selection of a service in RS for binding at
runtime, its SLA is automatically enforced (see the action
state Activate SLA in Figure 2). When an SLA comes into
force, its guarantee terms become subject of monitoring (see
the action states Receive SLA and Service & SLA Monitoring
in Figure 2). If the monitoring process detects violation of
the SLA or the deployed service becomes unavailable then
the service is replaced by the best available service in RS
(see the transition from the action state Service & SLA
Monitoring to the action state Select & Bind Best Service in
RS). The detection of violation of the conditions in
negotiation triggering rules (e.g. active SLA about to expire)
triggers the negotiation phase to establish a new SLA.

The relationship between the quality criteria expressed in
a discovery query and the quality preferences expressed in
the negotiation rules is exemplified in Figure 3. The figure
shows the case where the discovery and negotiation activity
take into account two quality criteria, namely Q1 and Q2
where the service consumer (composite service) seeks to
maximise the value of Q1 (e.g., service performance) and
minimise the value of Q2 (e.g., service cost). The dotted
lines q1 and q2 in the figure show the minimum acceptable
value for Q1 and the maximum acceptable value for Q2 that
the service consumer sets, respectively. These two boundary
lines should be expressed by quality constraints in the
service discovery query to ensure that no service which does
not satisfy them will be considered any further and could
participate in a negotiation process that is known to fail (such
services cannot become members of the set RS in Figure 2).

The zic-zac line in Figure 3 shows the preferences
expressed by the negotiation rules of the service consumer.
The figure shows a typical case where the consumer is
prepared to accept increases in Q2 in exchange of increases
in Q1 but cannot agree on any Q2 value that is higher than
q2 and any Q1 value that is lower than q1. Thus, the
negotiation process will only try to agree an SLA with Q1
and Q2 values in the shaded region of the figure. In our
framework we assume a multiphase negotiation protocol
where participants are allowed to generate counter offers in
response to a given offer until an acceptable goal is reached
[13].

Figure 3. Negotiation rules and query criteria

IV. SPECIFICATION LANGUAGES
In this section we describe the languages that are used in

our framework to express (i) Service Discovery Query, (ii)
Service Level Agreement, (iii) Negotiation Rules and (iv)
Negotiation Triggering Rules.

A. Service Discovery Query Language
Service discovery queries are specified in an XML

language introduced in [15]. Figure 4 shows an example of a
service discover query expressed in this language. As shown
in the figure, a query contains a structuralQuery,
BehaviourQuery and one or more Constraints. The
StructuralQuery specifies the required interface of candidate
services. This interface is specified in WSDL. The
BehaviourQuery specifies the required behavioural
characteristics of a service. These characteristics are
expressed in temporal logic language which allows the
specifications of conditions about: (a) the existence of certain
operations in a service specification; (b) the order in which
these operations should be executed by a service; (c) other
dependencies between operations; (d) pre-conditions; and (e)
loops concerning execution of certain operations. As they are
not related to the negotiation process, the structural and
behavioural parts of a query are not further exemplified in
Figure 4. Examples of such parts are, however, given in [15].

<dqns:ServiceQuery xmlns:dqns=
 "http://scube.eu/schema/DiscoveryQuery"
 xmlns:slac="http://scube.eu/schema/Constraint"
 xmlns:bqns="http://scube.eu/schema/Behavour_SQL"
 queryID="Q1">
 <dqns:StructuralQuery><!—WSDL->
 </dqns:StructuralQuery>
 <bqns:BehaviourQuery>..</bqns:BehaviourQuery>
 <slac:Constraint>
 <slac:LogicalExpression>
 <slac:Condition relation="GREATER-THAN">
 <slac:Arg1><slac:QualityAttribute
 name="AVAILABILITY"/>
 </slac:Arg1>
 <slac:Arg2><slac:Constant type="NUMERICAL"
 unit="PC">75</slac:Constant>
 </slac:Arg2>
 </slac:Condition>
 <slac:LogicalOperator>AND
 </slac:LogicalOperator>
 <slac:Condition relation="LESS-THAN">
 <slac:Arg1><slac:QualityAttribute
 name="RESPONSE_TIME"/>
 </slac:Arg1>
 <slac:Arg2><slac:Constant type="NUMERICAL"
 unit="MS">10</slac:Constant>
 </slac:Arg2>
 </slac:Condition>
 </slac:LogicalExpression>
 </slac:Constraint>
</dqns:ServiceQuery>

Figure 4. Example Service Discovery Query

The Constraint part of a discovery query comprises a set of
constraints specifying the required QoS characteristics of a
service. The example query of Figure 4 includes a constraint
expressed as a logical combination of two conditions. These
are: (a) a condition stating that the availability of acceptable

<sla:SLAContract xmlns:sla=
 "http://scube.eu/schema/SLA_Contract"
 xmlns:slac="http://scube.eu/schema/Constraint"
 contractID="SLA-No-2" name="S-Cube-SLA"
 scope="UNDER_NEGOTIATION">
 <sla:SLATerms>
 <sla:Actor>
 <sla:Role>PROVIDER</sla:Role>
 <sla:Type>
 <sla:Company name="XYZ"
 contactInformation="Street_Address">
 </sla:Company>
 </sla:Type>
 <sla:NegotiationStrategy>
 MULTI-PHASE_MULTI-ISSUE
 </sla:NegotiationStrategy>
 </sla:Actor>
 <slac:Constraint>
 <slac:LogicalExpression>
 <slac:Condition relation="EQUAL-TO">
 <slac:Arg1><slac:QualityAttribute
 name="AVAILABILITY"/>
 </slac:Arg1>
 <slac:Arg2>
 <slac:Constant type="NUMERICAL"
 unit="PC">80</slac:Constant>
 </slac:Arg2>
 </slac:Condition>
 </slac:LogicalExpression>
 <slac:LogicalOperator>AND
 </slac:LogicalOperator>
 <slac:LogicalExpression>
 <slac:Condition relation="EQUAL-TO">
 <slac:Arg1><slac:QualityAttribute
 name="RESPONSE_TIME" />
 </slac:Arg1>
 <slac:Arg2>
 <slac:Constant type="NUMERICAL"
 unit="MS">9</slac:Constant>
 </slac:Arg2>
 </slac:Condition>
 </slac:LogicalExpression>
 </slac:Constraint>
 </sla:SLATerms>

<sla:SLATerms>
 <sla:Actor>
 <sla:Role>CONSUMER</sla:Role>
 <sla:Type>
 <sla:Company name="City"
 contactInformation="Northampton_Sqr">
 </sla:Company>
 </sla:Type>
 <sla:NegotiationStrategy>
 MULTI-PHASE_MULTI-ISSUE
 </sla:NegotiationStrategy>

 </sla:Actor>
 <slac:Constraint>
 <slac:LogicalExpression>
 <slac:Condition relation="GREATER-THAN">
 <slac:Arg1><slac:QualityAttribute
 name="AVAILABILITY"/>
 </slac:Arg1>
 <slac:Arg2>
 <slac:Constant type="NUMERICAL"
 unit="PC">90</slac:Constant>
 </slac:Arg2>
 </slac:Condition>
 </slac:LogicalExpression>
 <slac:LogicalOperator>AND
 </slac:LogicalOperator>
 <slac:LogicalExpression>
 <slac:Condition relation="LESS-THAN">
 <slac:Arg1><slac:QualityAttribute
 name="RESPONSE_TIME" />
 </slac:Arg1>
 <slac:Arg2>
 <slac:Constant type="NUMERICAL"
 unit="MS">8</slac:Constant>
 </slac:Arg2>
 </slac:Condition>
 </slac:LogicalExpression>
 </slac:Constraint>
 </sla:SLATerms>
 <sla:Penalty>... . . .</sla:Penalty>
</sla:SLAContract>

Figure 5. Example SLA

services should be greater than 75% and (b) a condition
stating that the response time of acceptable should be less
than 10ms. These constraints, as discussed in Sect. III will
be used to find suitable candidate services during the
discovery process and set the bottom line for the required
QoS characteristics of services during the negotiation
process.

B. Service Level Agreement Specification
The Service Level Agreements (SLA) in our framework

are expressed in an XML language where the foundations of
this language are discussed in [14]15] and the schema which
defines the SLA specification language for our framework is
available in [16]. This language allows to specify not only
final SLAs after an agreement has been reached but also
SLA offers (and counter offers) that different parties may
create during the negotiation process.

Figure 5 shows an example including an SLA offer and
an SLA counter-offer made by two actors during an SLA
negotiation process. The attribute scope in the SLAContract
element signifies the status (e.g. under negotiation, pre-
agreed SLA or active SLA) of the SLA. As shown in the
figure, the SLA contract contains two sets of SLA terms
(i.e., constraints over QoS attributes). Each set of SLA terms
is proposed by a participating actor in the negotiation
process. In the example, the first set of SLA terms is
proposed by the actor “XYZ” (see the attribute name of the
sub-element Company of the element Actor). This actor has
the role of a service provider in our example as indicated by
the element Role in the specification of XYZ.

An actor can also specify its own negotiation strategy,
i.e., the negotiation protocol that it will use to govern the
negotiation process and the communication with the other
party during it. Whilst the details of the negotiation strategy
are hidden from the other participant, information of the

overall protocol that an actor will use should be revealed in
order for the two parties to be able to establish whether they
are using compatible protocols and it is, therefore, worth
engaging in the negotiation process. For the actor XYZ in
the example of Figure 5, the negotiation strategy is specified
as MULTI-PHASE_MULTI-ISSUE. This strategy indicates
that XYZ will consider, in principle, counter offers in
response to a given offer that it has made until an acceptable
goal is reached (MULTI-PHASE) and that more than one
issue can be the subject of negotiation (MULTI-ISSUE).

The SLA required by XYZ in Figure 5 is specified as a
logical combination of two conditions. The first of these
conditions states that availability of the service offered by
the actor is 80%. The second condition states that the
response time of the service offered by the actor is 9
milliseconds. Based on this offer, it is clear that XYZ fulfills
the boundary conditions of the discovery query of Figure 4
(i.e., AVAILABILITY > 75% and RESPONSE_TIME <
10ms), and it could, therefore, become party to negotiation
process where the offer and counter offer of Figure 5 could
be generated.

The second set of SLA terms in the example of Figure 5
is proposed by an actor, called “City” which has the role of
a service consumer. Hence, City is the service consumer in
our example. Furthermore, the service consumer specifies
its quality requirements in terms of a set of constraints
where each constraint in the set signifies a desired SLA
guarantee term.

In this example, the service consumer specifies a
constraint that is a logical combination of two conditions:
(a) a condition stating that availability should be greater
than 90% and (b) a condition stating that the response time
should be less than 8ms. It should be noted, that the
requestor, in this example has made counter offer for the
attributes availability and response time, in response to the
offers made by the service provider.

During the negotiation process the SLA contains multiple
sets of SLA terms where each set is proposed by a
participating actor in the negotiation process. This facilitates
a participant in the negotiation process to consider all the
offers made by all the participants without storing the offers
in local storage. However, after a successful negotiation
when an agreement is reached the SLA contains only one set
of SLA terms that includes the list of participants that agreed
to the constraints, as well as the penalties that will apply if
the SLA is violated and the time validity of the agreed (pre-
agreed SLA).

C. Specification of Negotiation Rules and Negotiation
Triggering Rules
In our framework, negotiation rules and negotiation

triggering rules are specified in an XML language. The
schema of this language can be found in [16]. A negotiation
rule in this language has the generic structure:

IF (condition) THEN (action) ELSE (action)
Conditions in these rules are expressed as atomic conditions
over quality attributes of services or logical combinations of

atomic conditions. Rule actions can be of three types: (i)
accept actions which enable the acceptance of the value of
one or more attributes in a given SLA offer, (ii) reject
actions which enable the rejection of the value of one or
more QoS attributes in a given SLA offer, and (iii) set
actions which allow to define a new value or range of values
for one or more QoS attribute.

<tnsr:NegotiationRule>
 <tnsr:If>
 <tnsr:LogicalExpression>
 <slac:Condition relation="EQUAL-TO">
 <slac:Arg1>
 <slac:QualityAttribute name="AVAILABILITY"
 party="PROVIDER"/>
 </slac:Arg1>
 <slac:Arg2>
 <slac:Constant type="NUMERICAL">90
 </slac:Constant>
 </slac:Arg2>
 </slac:Condition>
 <slac:LogicalOperator>AND</slac:LogicalOperator>
 <slac:Condition relation="LESS-THAN">
 <slac:Arg1>
 <slac:QualityAttribute name="PRICE"
 party="PROVIDER"/>
 </slac:Arg1>
 <slac:Arg2>
 <slac:ArithmeticExpression>
 <slac:ArithmeticOperand>
 <slac:QualityAttribute name="PRICE"
 party="CONSUMER"/>
 </slac:ArithmeticOperand>
 <slac:ArithmeticOperator>MULTIPLY
 </slac:ArithmeticOperator>
 <slac:ArithmeticOperand>
 <slac:Constant type="NUMERICAL">0.5
 </slac:Constant>
 </slac:ArithmeticOperand>
 </slac:ArithmeticExpression>
 </slac:Arg2>
 </slac:Condition>
 </tnsr:LogicalExpression>
 </tnsr:If>
 <tnsr:Then>
 <tnsr:Action>
 <tnsr:Accept>
 <tnsr:QualityAttribute name="AVAILABILITY"
 party ="PROVIDER"/>
 <tnsr:QualityAttribute name="PRICE"
 party ="PROVIDER" />
 </tnsr:Accept>
 </tnsr:Action>
 </tnsr:Then>
</tnsr:NegotiationRule>

Figure 6. Example Negotiation Rule

An example of a negotiation rule is shown in Figure 6.
This example expresses a rule used by a service consumer.
The rule states that if the service availability offered by a
provider is 90% and the offered service price is half of the
consumer's expected price then the offer should be accepted.

V. RELATED WORKS
An agent based framework for SLA management is
presented in [9]. In this framework an initiator agent from

the service consumer’s side and a responder agent from the
service provider’s side take part in the negotiation process.
The responder agent advertises the service level capabilities
and the initiator agent fetches these advertisements and
initializes the SLA negotiation process. Different stages of
SLA life cycle e.g. formation, enforcement and recovery is
performed through the autonomous interactions among
theses agents. In the case of an SLA violation, the initiator
agent may either claim compensation and renegotiate with
the service provider or select a new service provider.
Provision of compensation in case of violation of SLA is
also argued in [1]. This approach claims that the penalty
clauses in the SLA should not only specify the monetary
penalties or impact on potential future agreements between
the parties; rather the penalty clauses should include several
other issues such as which countries laws will be applied in
case a conflict between the provider and the client arise, the
impact of the penalty clauses on the choice of service level
objectives.

Runtime renegotiation is suggested in [4, 7, 5, 2, 3] to
manage SLA violations. In [2] service level objectives are
revised and renegotiated at runtime and the deployed service
is adjusted to the newly agreed service level objectives. A
similar approach which allows changing service level
objectives whilst keeping the existing SLA is described in
[5]. In [3] a renegotiation protocol is described that allows
the service consumer or service provider to initiate
renegotiation while the existing SLA is still in forced. In
this protocol either party may initiate the renegotiation due
to the changes in the business requirements and after a
successful renegotiation the existing SLA is superseded by a
new contract.

All of these approaches are reactive in nature, i.e.
renegotiation starts only after an existing SLA is violated.
The outcome of renegotiation is either a revised set of
service level objectives allowing the acceptance of a service
from an existing provider or a new SLA for a new service
provider terminating the existing SLA. All these approaches
either affect the quality of the delivered service or fail to
guarantee uninterrupted service. Our proposed framework
integrates SLA negotiation with dynamic service discovery
and, hence, can provide integrated runtime support for both
these key activities which are necessary in order to achieve
the runtime operation of service based applications with
minimised interruptions.

VI. CONCLUSION AND FUTURE WORK
This paper proposes a framework that integrates service

discovery and monitoring of service in order to facilitate
proactive SLA negotiation. The service discovery process is
used by service consumers (i.e., composite services and/or
service based applications) in order to identify potential
alternative services for the services that they currently use.
The identification of alternative services is based on various
characteristics of published services including structural,
behavioural and QoS characteristics.

The framework negotiates with each alternative service
to reach an agreement over the QoS level of the service. The
negotiation process is carried out according to a two-phase
protocol that may result in a provisionally agreed SLA but
not activated SLA or negotiation failure. A provisional SLA
is a service level agreement that has been agreed by a service
provider and a service consumer but has not been activated
yet. Such an SLA has an expiry date by which it will either
be activated or cease to exist. The monitoring process
monitors the runtime behaviour of the service provider and
the service requester in order to detect if the agreed SLA is
satisfied. If the monitor detects violations of the agreed SLA
then the service is replaced by an alternative service. Or if
the monitor detects situations that require renegotiation of
the SLA then the monitor triggers the framework to initiate
renegotiation.

The presented framework has also opened broad scope of
future investigations. For example the framework can be
extended to support proactive negotiation for hierarchical
SLA i.e. a complex SLA can be decomposed into several
SLAs and negotiated separately to come to a final
agreement. Also in the presented framework, negotiation
rules are specified by the participating parties before the
negotiation starts and followed in the negotiation process.
The framework can be extended to support dynamic
adaptation of the negotiation rules, i.e. the participants will
be able to dynamically change the negotiation rules during
the negotiation process.

ACKNOWLEDGMENT
The research leading to these results has received funding

from the European Community’s Seventh Framework
Programme [FP7/2007-2013] under Grant Agreement
215483 (S-Cube).

REFERENCES
[1] Omer Rana, Martin Warnier, Thomas B. Quillinan, Fances Brazier

and Dana Cojocarasu, “Managing Violations in Service Level
Agreements”, the Proceedings of the Usage of Service Level
Agreements in Grids Workshop, 2007

[2] Di Modica G.,Tomarhio O. and Lorenzo V., "A framework for the
management of dynamic SLAs in composite service scenarios",
Service-Oriented Computing - ICSOC 2007 Workshops: ICSOC
2007, International Workshops, Vienna, Austria, September 17, 2007

[3] Michael Parkin, Peer Hasselmeyer, Bastian Koller, Philipp Wieder:
An SLA Re-negotiation Protocol. In proceedings of the 2nd
Workshop on Non Functional Properties and Service Level
Agreements in Service Oriented Computing at ECOWS 2008. Dublin,
Ireland. 12 November 2008.

[4] Waeldrich, O., Ziegler, W., "A WS-Agreement based Negotiation
Protocol", Technical Report, Fraunhofer Institute SCAI, VIOLA -
Vertically Integrated Optical Testbed for Large Application in DFN.
2006

[5] Rizos Sakellariou and Viktor Yarmolenko, "On the Flexibility of WS-
Agreement for Job Submission", Proceedings of the 3rd International
Workshop on Middleware for Grid Computing MGC '05, vol. 117, 1-
6 (Nov. 2005)

[6] Catalin L. Dumitrescu and Ian Foster, "GRUBER: A Grid Resource
Usage SLA Broker", International Euro-Par conference, Lisbon ,
PORTUGAL (30/08/2005)

[7] Philipp Wieder, Jan Seidel, Oliver Wäldrich, Wolfgang Ziegler, and
Ramin Yahyapour, "Using SLA for Resource Management and

Scheduling - A Survey", Book Chapter, Grid Middleware and
Services Challenges and Solutions, Springer, 2008

[8] Raimondi, F. and Skene, J. and Chen, L. and Emmerich, W.,
"Efficient monitoring of web service SLAs", Technical report.
Research Notes (RN/07/01). UCL, London, UK. 2007

[9] Q. He, J. Yan, R. Kowalczyk, H. Jin, Y. Yang, "Lifetime Service
Level Agreement Management with Autonomous Agents for Services
Provision". Information Sciences, Elsevier, 2009

[10] Peer Hasselmeyer, Changtao Qu, Lutz Schubert, Bastian Koller, and
Philipp Wieder. Towards Autonomous Brokered SLA Negotiation.
In: Proceedings of the eChallenges e-2006 Conference, Barcelona,
Spain, October 2006.

[11] Paul Karaenke and Stefan Kirn, "Service Level Agreements:
Evaluation from a Business Application Perspective", Proceedings of
eChallenges 2007

[12] Pichot, A.; Wieder, P.; Ziegler, W.; Wäldrich, O. "Dynamic SLA-
negotiation based on WS-Agreement", CoreGRID - Network of
Excellence, 2007, CoreGrid Technical Report; 82, TR-0082

[13] V. Robu, D.J.A. Somefun, and J. A. La Poutre. "Modeling complex
multi-issue negotiations using utility graphs", In Proc. of the 4th Int.
Conf. on Autonomous Agents & Multi Agent Systems (AAMAS'05),
Utrecht, ACM Press, 2005

[14] Kyriakos Kritikos and Barbara Pernici, editors. "Initial Concepts for
Specifying End-to-End Quality Characteristics and Negotiating
SLAs". S-Cube project deliverable, June 2009. S-Cube project
deliverable: CD-JRA-1.3.3. http://www.s-cube-
network.eu/achievements-results/s-cube-deliverables.

[15] A. Zisman, G. Spanoudakis, and J. Dooley. A Framework for
Dynamic Service Discovery, 23rd Int. IEEE/ACM Conf. on
Automated Software Engineering, 2008.

[16] SLA Specifications: http://www.soi.city.ac.uk/~am697/sla/SLA-
Specification.zip

