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Fault Tolerance via Diversity for Off-The-Shelf 
Products: a Study with SQL Database Servers 

Ilir GASHI, Peter POPOV, and Lorenzo STRIGINI, Member, IEEE 

Abstract— If an off-the-shelf software product exhibits poor dependability due to design faults, software fault tolerance is often the 

only way available to users and system integrators to alleviate the problem. Thanks to low acquisition costs, even using multiple 

versions of software in a parallel architecture, a scheme formerly reserved for few and highly critical applications, may become 

viable for many applications. We have studied the potential dependability gains from these solutions for off-the-shelf database 

servers. We based the study on the bug reports available for four off-the-shelf SQL servers, plus later releases of two of them. We 

found that many of these faults cause systematic, non-crash failures, a category ignored by most studies and standard 

implementations of fault tolerance for databases. Our observations suggest that diverse redundancy would be effective for tolerating 

design faults in this category of products. Only in very few cases would demands that triggered a bug in one server cause failures in 

another one, and  there were no coincident failures in more than two of the servers.  Use of different releases of the same product 

would also tolerate a significant fraction of the faults. We report our results and discuss their implications, the architectural options 

available for exploiting them and the difficulties that they may present. 

Index Terms— C.4.b Fault tolerance, C.4.f Reliability, availability, and serviceability, H.2.4.i Relational databases, D.2.17.e Error 

processing, design diversity, COTS software, fault records, non-crash failures, database availability, experimental results.  

——————————   �   —————————— 

1 INTRODUCTION

HE use of “off-the-shelf” (OTS) – rather than custom-
built – products is attractive in terms of acquisition 
costs and time to deployment but brings concerns 

about dependability and "total cost of ownership". For 
safety- or business-critical applications, in particular, pur-
pose-built products would normally come with extensive 
documentation of good development practice and extensive 
verification and validation; when switching to mass-
distributed OTS systems, users – system designers or end 
users – often find not only a lack of this documentation, but 
anecdotal evidence of serious failures and/or bugs that 
undermines trust in the product. Despite the large-scale 
adoption of some products, there is usually no formal sta-
tistical documentation of achieved dependability levels, 
from which a user could attempt to extrapolate the levels to 
be achieved in his/her own usage environment. 

For all these reasons, when systems are built out of OTS 
products, fault tolerance is often the only viable way of ob-
taining the required system dependability [1], [2], [3]. These 
considerations apply not only to OTS software, but also to 
hardware, like microprocessors, or complete hardware-
plus-software systems. In this paper we will consider 
“software fault tolerance” (by which we mean “fault toler-
ance against software faults”), focusing on a specific cate-
gory of software products. Fault tolerance may take multi-
ple forms [4], from simple error detection and recovery 
add-ons (e.g. wrappers) [5] to full-fledged “diverse modu-
lar redundancy” (e.g. "N-version programming": replica-

tion with diverse versions of the components) [4]. Even this 
latter class of solutions becomes affordable with many OTS 
products and has the advantage of a fairly simple architec-
ture. The cost of procuring two or even more OTS products 
(some of which may be free) would still be far less than that 
of developing one’s own product. 

All these design solutions are well known from the lit-
erature. The questions, for the developers of a system using 
OTS components, are about the dependability gains, im-
plementation difficulties and extra cost that they would 
bring for that specific system. We report here some evi-
dence about potential gains, and briefly discuss the archi-
tectural issues that would determine feasibility and costs, 
for a specific category of OTS products: SQL database serv-
ers, or "database management systems" (DBMSs)1.  

This category of products offers a realistic case study of 
the advantages and challenges of software fault tolerance in 
OTS products. DBMS products are complex, mature 
enough for widespread adoption, and yet with many faults 
in each release2. Fault tolerance in DBMS products is a 
thoroughly studied subject, with standard recognized solu-
tions, some of which are commercially available. But these 
solutions do not give full protection against software faults, 
because they assume fail-stop [8] or at least self-evident 

 

1  Everyday terms may be ambiguous when discussing redundant and 
diverse architectures. We will apply these conventions: a DBMS product is a 
specific software package; a fault-tolerant database server includes one or 
more channels (each performing the database server function), each includ-
ing an installation of a DBMS product (these may be the same product or 
different ones - different versions) and a replica of the database. Two replicas 
of the database will be physically different if they are in channels that use 
different DBMS products. They may also exhibit temporary differences due 
to the asynchronous operation of the channels. We follow the popular us-
age of the word “bug” as synonym for “software fault” or “defect”. 

2  And even features that imply an accepted possibility of an incorrect be-
havior, albeit rare. An example of the latter is the known “write skew” [6] 
problem with some optimistic concurrency control architectures [7] 
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failures3: errors are detected promptly enough that the da-
tabase contents are not corrupted, or that a suitable correct 
checkpoint can be identified and used for rollback. There is 
no guarantee that software faults in the OTS DBMS prod-
ucts themselves will satisfy this assumption. As we docu-
ment here, they do not, and we know of no published sta-
tistical evidence of the frequency of violations, which one 
could use as evidence that the assumption is satisfied with 
high enough probability for a specific application of one of 
these OTS products.  

There are many OTS SQL DBMS products, obeying (at 
least nominally) common standards (SQL 92 and SQL 99), 
which makes diverse redundancy feasible in principle. For 
instance, a parallel-redundant architecture using two repli-
cas of a database, managed by two diverse DBMS products, 
would allow error detection via comparison of results from 
the two DBMS products. A fault-tolerant server capable of 
tolerating server software faults can be built from installa-
tions of two or more diverse DBMS products, connected by 
middleware that makes them appear to clients as a single 
database server. There are clearly problems as well: in par-
ticular, existing DBMS products have certain concurrency 
control and fault tolerance features that rely on lack of di-
versity between replicated executions for their proper and 
efficient operation. However, it is worth exploring the costs 
and benefits of solutions that accept the drawbacks of di-
versity in return for improved dependability. For many 
users, there is no practical alternative to OTS DBMS prod-
ucts, and performance losses may well be acceptable in re-
turn for improved assurance. In addition to tolerating faults 
in general, users may look at software fault tolerance as a 
way of guaranteeing good service during upgrades of the 
DBMS products, when new bugs might appear that are 
serious under the usage profile of their specific installation, 
and/or of delaying “patches” and upgrades, thus reducing 
the total cost of ownership of DBMS products. 

As a preliminary assessment of the potential effective-
ness of software fault tolerance with DBMS products, we 
have studied publicly available fault reports for four DBMS 
products (two open-source and two closed-development). 
We ask questions about the potential effectiveness of design 
diversity – deploying two different products. Fault reports 
are the only publicly available dependability evidence for 
these products, so our study concerns fault diversity among 
them. Complete failure logs would be much more useful as 
statistical evidence, but they are not available. Many ven-
dors discourage users from reporting already known bugs; 
detailed failure data are rarely available even to the soft-
ware vendors themselves. This scarcity of data also makes 
it difficult to estimate how dependable a DBMS product 
will be for a specific installation. But the many reports of 
failures of DBMS products suggest that some users need 
reliability improvements. 

In a first study [9], we looked at the set of bugs reported 
for one release of each DBMS product. For each bug, we 

 

3 By “self-evident failures” we will mean failures that a generic client of 
the DBMS product can detect without depending on knowledge of the 
specific database and its semantics. They are those failures that – as seen by 
the client – consist in issuing an error message to the client, spontaneously 
aborting a transaction, “hanging” or crashing. 

took the bug script (a sequence of SQL statements) that 
would trigger it and ran it on all four DBMS products (if 
possible), to check for coincident failures: if the bug script 
does not trigger failures in the other DBMS product, we 
take this as evidence that software fault tolerance would 
tolerate that fault. We found that a high number of reported 
faults would not be tolerated (or even detected) by existing, 
non-diverse fault-tolerant schemes but did not cause coin-
cident failures in any two DBMS products, offering a way 
of tolerating them.   

These intriguing results suggested a potential for con-
siderable dependability gains from using diverse OTS 
DBMS products, but they only concerned a specific snapshot 
in the evolution of these products. We therefore ran a fol-
low-up study with later releases of DBMS products (thus 
with different set of bug reports), with results that substan-
tially confirm the previous ones. This paper reports the 
complete results of the two studies.  

The rest of the paper is organized as follows: in Section 
2, we briefly discuss the architectural issues in software 
fault tolerance with DBMS products – feasibility, design 
alternatives and performance issues – since they determine 
the usefulness of the empirical results we report; Section 3 
presents the results of the two empirical studies of known 
bugs of DBMS products, including the comparisons be-
tween older and newer releases of two DBMS products; 
Section 4 contains a discussion of the implications of our 
studies; Section 5 contains a review of related work on da-
tabase replication, interoperability of databases, empirical 
evidence on DBMS products’ faults and failures and diver-
sity with off-the-shelf components and Section 6 contains 
conclusions and outlines of further work. 

2 ARCHITECTURAL CONSIDERATIONS 

2.1 Current Solutions for DBMS Replication 

Standard solutions for automatic fault tolerance in data-
bases use the mechanisms of atomic transactions and/or 
checkpointing to support backward recovery, which can be 
followed by retry of the failed transactions. These solutions 
will tolerate transient faults, if detected, and if combined 
with replication will mask permanent faults, without ser-
vice interruption. 

Various data replication solutions exist [10], [11], [12], 
[13], [14]. In commercial DBMS products, they are often 
called “fail-over” solutions: following a (crash) failure of 
the primary DBMS product, the load is transparently taken 
over by a separate installation of the DBMS product hold-
ing a redundant copy of the database, at the cost of aborting 
the transactions affected by the crash. Multiple copies may 
be used. The code for fault tolerance is integrated inside the 
DBMS product. A recent survey [15] calls this a “white box” 
solution. Alternatively, replication can be managed by 
middleware separate from the DBMS products: “black box” 
solutions (fault tolerance is entirely the responsibility of the 
middleware), or “gray box” (the middleware exploits use-
ful functions available from the DBMS products [16]). Our 
discussion here will refer to “black box” solutions: the only 
ones that can be built without access to OTS source code, 
and most convenient for studying the design issues in the 
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use of redundancy and diversity. We will assume that fault 
tolerance is managed by a layer of middleware; clients see 
the fault-tolerant database server via this middleware layer, 
which co-ordinates the redundant channels.  

Existing data replication solutions use sophisticated 
schemes for reducing the overhead involved in keeping the 
copies up to date. Their common weakness is their depend-
ence on the assumption of “fail-stop” or at least “self-
evident” failures. This assumption simplifies the protocols 
for data replication, and allows some performance optimi-
zation. For instance, in the Read Once Write All Available 
(ROWAA) [10] replication protocol the read statements4 are 
executed by a single replica while the write statements are 
executed by all replicas.  These fault-tolerant solutions are 
considered adequate by standardizing bodies [17], despite 
the assumption being false in principle. Some recent solu-
tions [18] seek further optimization by executing the write 
statements on a single replica, which then propagates the 
changes to all the (available) replicas. 

As we shall see, current OTS DBMS products suffer from 
many bugs that cause non-crash, non self-evident failures. 
The failures that these cause may be undetected erroneous 
responses to read statements, and/or incorrect writes to all 
the replicas of the database.  

For these kinds of failure, the current data replication so-
lutions are deficient, in the first place from the viewpoint of 
error detection. Two kinds of remedy are possible: 
- database-, or client-specific solutions that depend on the 
client (an automatic process or a human operator) to run 
reasonableness checks on the outputs of the DBMS prod-
uct and order recovery actions if it detects errors. Good 
error detection may be achieved by exploiting knowledge 
of the semantics of the data stored and the processes that 
update them. This knowledge may also support more ef-
ficient error recovery than simple rollback and retry. The 
main disadvantages are high implementation cost (espe-
cially with a workforce generally unaware of the need for 
fault tolerance), high run-time cost, at least for human-run 
checks, and the possibility of low error detection coverage 
if the database is – as common – the sole repository of the 
data5.  

- generic solutions that use active replication [19] for error 
detection, so that errors can be detected by comparing the 
results of redundant executions, and/or corrected, via 
voting or copying the results of correct executions. 

2.2 Diversity 

Replication will give a basis for effective fault tolerance if 
the multiple channels do not usually fail together on the 
same demand, or at least they tend not to fail with identical 
erroneous results. To pursue such failure diversity, a de-
signer building a fault-tolerant database server can use 
various forms of diversity:  

 

4 We will use the term “statement” to refer to the SQL requests that are 
sent to the DBMS product. These may be read or write data manipulation 
language (DML) statements or data definition language (DDL) statements 

5 Simple reasonableness or “safety” checks are often available, but have 
limited efficacy against some failure scenarios. E.g., reasonableness checks 
may prevent the posting of incredibly large movements in a company’s 
accounts, yet allow many small systematic errors, allowing large cumula-
tive errors to build up before the problem comes to light. 

- simple separation of redundant executions. This is the 
weakest form, but it may yet tolerate some failures. It is 
well known that many bugs in complex, mature software 
products are “Heisenbugs”6 [20], i.e., they cause appar-
ently non-deterministic failures. When a database fails, its 
identical copy may not fail, even with the same sequence 
of inputs. Even repeating the same operations on the 
same copy of a database after rollback may in principle 
not replicate the same failure; 

- design diversity, the typical form of parallel redundancy 
for fault tolerance against design faults: the multiple rep-
licas of the database are managed by diverse DBMS 
products; 

- data diversity [21]: thanks to the redundancy in the SQL 
language, a sequence of one or more SQL statements can 
be "rephrased" into a different but logically equivalent se-
quence to produce redundant executions, reducing the 
risk of a failure being repeated when the rephrased se-
quence is executed on the same or another replica of even 
the same DBMS product. Two of the present authors have 
reported elsewhere [22] on a set of "rephrasing rules" that 
would tolerate at least 60% of the bugs examined in our 
studies. Another possibility is varying the “hints” to the 
“query optimizer” of the DBMS that are included with 
SQL statements. 

- configuration diversity (which can be seen as a special form 
of data diversity). DBMS products have many configura-
tion parameters, affecting e.g. the amount of system re-
sources they can use (amount of RAM and/or the “page 
size” used by the database), or the degree of optimization 
to be applied to certain operations: given the same data-
base contents, varying these parameters between two in-
stallations can produce different implementations of the 
data and the operation sequences on them, and thus de-
crease the risk of the same bug being triggered in two in-
stallations of the same DBMS product by the same se-
quence of SQL statements.  
These precautions can in principle be combined (for in-

stance, data diversity can be used with diverse DBMS 
products), and implemented in various ways, including 
manual application by a human operator. 

Among the above forms of diversity, design diversity 
appears the most likely to avoid coincident failures in re-
dundant executions, but it may impose substantial limita-
tions or design costs. In the first place, OTS DBMS prod-
ucts, even if they nominally implement the operations of 
the standard SQL language, in practice use different “dia-
lects”: they use different syntax for commands that are se-
mantically the same (this problem can be solved via auto-
matic, on-the-fly translation); more importantly, each offers 
extra, non-standard features, which would require either 
more complex translation (“rephrasing” of statements, 
mentioned above as a form of data diversity, can be useful 
to overcome problems with translation, as we have shown 
[22]), and/or clients to be limited to using a common subset 
 

6 The name introduced by Gray [20] for bugs that are difficult to repro-
duce, as they only cause failures under special conditions: "strange hard-
ware conditions (rare or transient device fault), limit conditions (out of 
storage, counter overflow, lost interrupt, etc.) or race conditions",  “Bohr-
bugs” instead appear to be deterministic (the failures they cause are easy to 
reproduce in testing). 
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among the features of the diverse DBMS products.  In addi-
tion, many aspects of database operation are specified in a 
non-deterministic fashion, making the goal of ensuring 
consistency among replicas difficult even with same-
product replication, and more so with diverse replication. 

A special case of design diversity is using successive re-
leases of the same DBMS product. This will avoid or greatly 
reduce the problems due to “dialect” differences. It may be 
expected to tolerate fewer faults, since the successive re-
leases will share large portions of their code, including 
some bugs; but it may be attractive for “smoothing out” 
upgrades which may otherwise cause peaks of unreliability 
in a database installation, due to the new faults introduced, 
and at the same time evaluating the new release to decide 
when it has reached sufficient dependability to be used 
alone. Similar practices have been applied for embedded 
and safety critical systems [23], [24]. 

We now discuss briefly the architectural options avail-
able in designing automated fault tolerance solutions with 
some form of diversity applied to OTS DBMS products. A 
basic "black box" replication architecture delegates the 
management of redundancy to a layer of middleware, as in 
Fig. 1, so that the multiple DBMS products appear to clients 
as a single server. There may be any number of channels, 
though typical values would be one (using "time redun-
dancy" – repeating the execution on the single DBMS prod-
uct – when needed), two or three (the minimum that allows 
error masking through voting). We will normally refer to 
systems with two replicas, unless otherwise noted. 

This basic architecture can be used for various fault tol-
erance strategies, with different trade-offs between cover-
age for various types of failures, performance, ease of inte-
gration etc [25]. The most serious design issues concern 
ensuring replica determinism, for those replication schemes 
that require it. The difficulty is that each DBMS product has 
its own concurrency control strategy, and these are non-
deterministic and may be different between products. Pro-
prietary replication solutions deal with this problem by 
using knowledge of the implementation of a DBMS prod-
uct. For a middleware layer managing generic OTS prod-
ucts, this is more difficult, especially since commercial ven-
dors may keep these details secret. The middleware can 
instead artificially serialize statements in the same way on 
all replicas [26], [27]. There are performance costs, but these 

will be acceptable for many installations, though intolerable 
on others, depending on the amount and pattern of write 
transactions in a specific installation. 

A separate requirement, easier to satisfy, is that any vot-
ing/comparison algorithm need to allow for “cosmetic” 
differences between equivalent correct results issued by 
different DBMS products, e.g. differences in the padding 
blank characters in character strings or different numbers of 
digits in the representations of floating point numbers. 
Trade-offs exist here between embedding in the algorithm 
more knowledge about the idiosyncrasies of each specific 
product, and keeping it more generic at the cost of possibly 
lower coverage. 

2.3 Design Options for Fault Tolerance via Diverse 
Replication 

2.3.1 Detection of Server Failures 

Erroneous responses to read statements can be detected by 
comparing the outputs of the channels, detecting those non-
self-evident failures that cause some discrepancy between 
these outputs. 

Both design diversity and data diversity increase the 
chance of detection, compared to simple replication. Rep-
lica determinism is necessary, i.e., discrepancies between 
correct results must be rare, as they may cause correct re-
sults to be treated as erroneous, and thus a performance 
penalty. Self-evident failures are detected as in non-diverse 
servers, via the server’s error messages (i.e., via the existing 
error detection mechanisms of the DBMS products) and 
time-outs.   

Erroneous updates to the databases that will only cause 
output discrepancies in the future are also a concern. To 
detect them, the middleware can compare the contents of 
the database replicas, via the standard read commands of 
the DBMS products. There is a degree of freedom in how 
much should be compared, allowing latency/performance 
trade-offs. The middleware could just ask each DBMS 
product for the list of the records modified in each write 
operation, and then read and compare their contents. In 
principle, though, a buggy DBMS product could omit some 
changed records from the list it returns. So, a designer 
could decide to compare a superset of the data that appear 
to be affected, trading off time for better error detection.  

 
Fig. 1 - A stylized design of a fault-tolerant database server with two channels. Each channel includes an installation of an OTS DBMS product 
(these may be the same or different products, including different releases of the same product) and a replica of the database. The middleware 
must ensure connectivity between the clients and the DBMS products, some filtering of the statements sent by clients (e.g. returning error 
messages to the client for statements that are not supported by both the underlying OTS DBMS products), replication and concurrency control, 
management of fault tolerance (error detection; error containment, diagnosis and correction; state recovery), as well as translation of SQL 
statements (“S” in the figure) sent by the clients to the dialects of the respective OTS DBMS products (translation may be done in off-the-shelf 
add-on components). Support for “data diversity” through “rephrasing” may also form part of the same components which perform translation: 
rephrasing rules will produce rephrased versions – “S-reph” in the figure –of the statements sent by clients. The middleware must also adjudi-
cate the results – “R” in the figure – from the OTS DBMS products and return a result to the client[s].  
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Another trade-off is possible between error latency and 
the overhead imposed by the fault-tolerant operation: error 
detection can be scheduled in a more or less pessimistic 
mode. In the most pessimistic mode, at each operation the 
middleware performs all its comparisons before forwarding 
to the client the response from the DBMS product[s]. More 
optimistically, it can forward most responses immediately, 
and run the checks in parallel with the subsequent opera-
tion of the client and DBMS products. A natural synchroni-
zation point is at transaction commit: the middleware only 
allows the transaction to commit if it detected no failures. 

In addition, the middleware can use slack capacity for a 
background audit task, comparing the complete contents of 
the database replicas. 

2.3.2 Error Containment, Diagnosis and Correction 

Error containment is tightly linked to detection. For read 
statements, the middleware receives multiple responses for 
each statement sent to the diverse channels, one from each 
of them, and must return a single response to the client. In 
general, the middleware will present to the client a DBMS 
product failure as a correct but possibly delayed response 
(masking), or as a self-evident failure (crash - the behavior 
of a “fail-silent” fault-tolerant server; or an error message - 
a “self-checking” server). DBMS product failures can be 
masked to the clients, if the middleware can select a result 
that has a high enough probability of being correct: 
- if more than two redundant responses are available, it can 
use majority voting to choose a consensus result, and to 
identify the failed replica which may need a recovery ac-
tion to correct its state.  

- with only two redundant channels, if they give different 
results the middleware cannot decide which one is in er-
ror. A possibility is not to offer masking, but simply a 
clean failure to be followed by manual diagnosis of the 
problem. Alternatively, additional redundant execution 
can be run by replaying the statements, possibly with 
“data diversity”, i.e., rephrasing the statements [22]. 
Depending on how redundant executions are organized, 

the middleware may need to resolve rather complex scenar-
ios, e.g., two diverse DBMS products, A and B, may give 
different responses upon first submission for a read state-
ment, while upon resubmission of a rephrased statement A 
produces an error message and B a result matching A’s 
previous result; but this is a standard adjudication problem 
[28], [29], [30] for which the design options and trade-offs 
are well known.  

Again, the need for replica determinism is the main de-
sign issue with these schemes. 

2.3.3 State Recovery 

Besides selecting probably correct results, adjudication will 
identify probably failed channels in the fault-tolerant data-
base server (diagnosis).  This improves availability: the 
middleware can selectively direct recovery actions at the 
channel diagnosed as having failed, while letting the other 
channel(s) continue providing the service. 

The state of a channel can be seen as composed of the 
state of permanent data in the database and that of volatile 
data in the DBMS product's variables. For erroneous states 

of the latter, since the middleware cannot see the internal 
state of each executing DBMS product, some form of "reju-
venation" [31] must be applied, e.g. stopping and restarting 
the DBMS product. 

As for state recovery of the database contents, it can be 
obtained: 
- via standard backward error recovery – rollback followed 
by retry of logged write statements –, which will some-
times be effective (failures due to Heisenbugs), at least if 
the failures did not violate the ACID properties in the af-
fected transactions. "Data diversity" will extend the set of 
failures that can be recovered this way. To command 
backward error recovery, the middleware can use the 
standard database transaction mechanisms: aborting the 
failed transaction and replaying its statements may pro-
duce a correct execution. Alternatively or additionally, it 
can use checkpointing [32]: the middleware orders the 
states of the database replicas to be saved at regular inter-
vals (by database “backup” commands: e.g., in Post-
greSQL the pg_dump command). After a failure, a data-
base replica is restored to its last checkpointed state and 
the middleware replays the sequence of (all or just write) 
statements since then (the redo log provided in some 
DBMS products cannot be used because it might contain 
erroneous writes). For finer granularity of recovery, the 
checkpoint-rollback mechanism can be used within trans-
actions: this allows the handling of exceptions within 
transactions, and should be applied when using data di-
versity through “rephrasing” [22]; 

- additionally, diversity allows one to achieve forward re-
covery by essentially copying the state of a correct data-
base replica into the failed one (similarly to [33]). Since 
the formats of database files differ between the DBMS 
products, the middleware would need to query the cor-
rect channel[s] for their database contents and command 
the failed channel to write them into the corresponding 
records in its database, similar to the solution proposed in 
[34]. This would be time-consuming, perhaps to be com-
pleted off-line, but a designer can use multi-level recov-
ery, in which the first step is to correct only those records 
that have been found erroneous on read statements. 
During any recovery phase, the fault-tolerant server 

would work with reduced redundancy. A two-channel 
fault-tolerant server would be reduced to a non-fault-
tolerant configuration. Trade-offs open to the designer in-
volve the duration of the recovery phase (it can be short-
ened by more efficient algorithms or by reducing the extent 
of the state that is checked/corrected), and the degree of 
conservatism applied during non-fault-tolerant operation. 

3 OUR STUDIES OF BUG REPORTS FOR OFF-THE-
SHELF DBMS PRODUCTS 

3.1 Generalities 

We use the following terminology. The known bugs for the 
OTS DBMS products are documented in bug report reposi-
tories (i.e. bug databases, mailing lists etc). Each bug report 
contains a description of the bug and a bug script for repro-
ducing the failure (the erroneous behavior that the reporter 
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of the bug observed). The bug script may come with indica-
tions on the database states that are preconditions for the 
failure (e.g., in the form of statements to issue for the data-
base to reach one such state), plus the statements (and val-
ues for their parameters) which reproduce the failure. In our 
study we collected these bug reports and ran the bug scripts 
on installations of each of the DBMS products we used (we 
will use the phrase “running a bug” for the sake of brevity).  

What constitutes an individual bug is of course not de-
finable by any a priori rule [35, Section 2]: people character-
ize a bug in terms of the apparent mistakes made by the 
developers, of code changes required to fix it, and/or of 
circumstances on which the software fails. We define a 
"demand" as the complete circumstances (i.e. an initial state 
plus a series of statements) that would cause failure. A bug 
report does not necessarily identify the whole set of de-
mands (the "failure region") on which the product fails and 
would no longer fail if the bug were corrected. When run-
ning a bug script, we usually tested all DBMS products in 
our study on at least one demand (the same for all) men-
tioned in the bug report, and listed the bug as present in all 
DBMS products that failed on that demand. In some cases, 
we also tested the DBMS products with other similar de-
mands - variations of the statements and/or parameters 
specified in a bug script. We did this when a bug script did 
not seem to trigger a failure in the DBMS product to which 
it related, to check whether the bug did appear to be pre-
sent, but the reporter may have been imprecise in character-
izing the conditions for triggering it; and when a bug script 
caused failures in more than one DBMS products, to study 
and compare the “failure regions” identified in the two 
products, especially to determine their overlap and whether 
the DBMS products fail identically throughout them. 

3.1.1 Reproducibility of Failures 

As mentioned earlier, DBMS products offer features that 
extend the SQL standard, and these extensions differ be-
tween products. Bugs affecting these extensions literally 
cannot exist in a DBMS product that lacks them. We called 
these bugs “dialect-specific”. For example, Interbase bug 
217138 [36] affects the use of the UNION operator in 
VIEWs, which PostgreSQL 7.0 VIEWs do not offer, and thus 
cannot be run in PostgreSQL 7.0: it is a dialect-specific bug. 

Another reproducibility issue arises when a bug script 
does not cause failure in the DBMS product for which the 
bug was reported. We called these bugs ‘Unreproduced’ 
bugs. They may be Heisenbugs [20] or bugs reported with-
out enough detail for reproducing them. Compared to our 
preliminary report [9], we have been able to trigger some 
more previously ‘Unreproduced’ bugs (and thus we report 
updated statistics): by running variations of the incomplete 
bug script, as mentioned above; or thanks to more complete 
bug scripts posted after our collection period or to mailing 
lists other than the main repository for the respective DBMS 
product.  

3.1.2 Classifications of Failures 

We ran each bug first on the DBMS product for which it 
was reported, and then (after translating the script into the 
appropriate SQL dialect[s]) on the other DBMS product[s].  

We classified bugs into Reproduced and Unreproduced 
and into dialect-specific and non-dialect-specific bugs, as 
explained previously, and failures into different categories 
that would require different fault tolerance mechanisms: 

Engine Crash failures: a crash or halt of the core engine of 
the DBMS product. 

Incorrect Result failures, which are not engine crashes but 
produce incorrect outputs: the results do not conform to the 
DBMS product’s specification or to the SQL standard.  

Performance-related failures. We classified as perform-
ance failures: i) failures that are so classified in bug reports; 
ii) failures observed by us if either the DBMS product 
clearly “hung” or, whatever the observed latency, the bug 
script generated a query plan indicating potential perform-
ance problems, e.g. with an un-utilized column “index” in a 
SELECT statement using that column. 

Other failures: e.g. security related failures, such as in-
correct privileges for database objects (tables, views etc.) 

We further classified failures according to their detect-
ability by a client of the DBMS products:  

Self-Evident Failure: engine crash failures, internal fail-
ures signaled by DBMS product exceptions (error mes-
sages) or performance failures 

Non-Self-Evident Failures: incorrect result failures without 
DBMS product exceptions, with acceptable response time.  

For clients with access to at least two diverse DBMS 
products the failures would be: 

Divergent failures: any failures where DBMS products re-
turn different results. All failures affecting only one out of 
two (or at most n-1 out of n) DBMS products are divergent. 
Even if all fail but ‘differently’ the failure will still be diver-
gent. 

Non-divergent failures: the ones for which two (or more) 
DBMS products fail with identical symptoms. For some 
bugs, all demands we ran caused non-divergent failures, 
for others only some demands did. In the tables that follow 
we use the labels “non-divergent – all demands” and “non-
divergent – some demands” for these two cases. 

All the divergent or self-evident failures are detectable by a 
client of the database server when at least two replicas of 
the database are available, on different DBMS products. 
Failures that are non-divergent and non-self-evident are non-
detectable. 

3.2 The First Study 

3.2.1 Description of the Study 

In our first study [9] we used four DBMS products: two 
commercial (Oracle 8.0.5 and Microsoft SQL Server 7, with-
out any service packs applied) and two open-source ones 
(PostgreSQL Version 7.0.0 and Interbase Version 6.0). Inter-
base, Oracle and MSSQL were all run on the Windows 2000 
Professional operating system; PostgreSQL 7.0.0 (not avail-
able for Windows) was run on RedHat Linux 6.0 (Hedwig). 
We use the following abbreviated identifiers (for Post-
greSQL we include the release number in the identifier 
since we will report later on results of one of its later re-
leases):  
- PG 7.0  - for PostgreSQL 7.0.0 
- IB    - for Interbase 6.0  
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- OR    - for Oracle 8.0.5  
- MS   -  for Microsoft SQL Server 7  

For each of these DBMS products there is an accessible 
repository of reports of known bugs. We collected the IB 
bugs from SourceForge [37], the PG 7.0 bugs from its mail-
ing list, [38], MS bugs from its service packs site [39] and 
OR bugs from the Oracle Metalink [40]. 

We only used bugs that caused failure of a DBMS prod-
uct’s core engine. Other bugs, e.g. causing failures of a cli-
ent application tool, various connectivity (JDBC/ODBC 
etc.) or installation-specific bugs were not included in the 
study, because in a future fault-tolerant architecture these 
functions would be provided by the middleware.  

For each reported bug, we attempted to run the corre-
sponding bug script. Full details are available in [36] (and 
also provided as Supplement A). 

3.2.2 Detailed Results 

In total, we included in the study 181 bug reports: 55 for 
IB, 57 for PG, 51 for MS and 18 for OR. None of these bugs 
was reported for more than one DBMS product. Out of 
these 181 bugs, 70 were dialect-specific (could be run in 
only one of the four DBMS products); 58 could be run in all 
four DBMS products; 26 could be run in only two DBMS 
products and 27 in only three DBMS products.  

Table 1 contains the results of the first study. The struc-
ture of the table is as follows. Each gray column lists the 
results produced when the bugs reported for a certain 
DBMS product were run on that DBMS product. For exam-
ple, we collected 55 known IB bugs, of which, when run on 
our installation of IB, 8 did not cause failures (Unrepro-
duced). The 47 bugs that caused failures are further classi-
fied in the part of the column below the double horizontal 

line, after the “Failure observed” row. Performance failures 
and engine crashes are self-evident. Incorrect Result fail-
ures and “Other” failures can be self-evident or non-self-
evident, depending on whether the DBMS product gives an 
error message. 

To the right of the gray column, three columns present 
the results of running the IB bugs on the other three DBMS 

products. For example, we can see that out of 55 IB bugs, 24 
cannot be run in PG 7.0 (dialect-specific bugs).  Of the other 
31, which we ran in PG 7.0: 3 are classified as “Undecided 
Performance” meaning that the bug report indicated a 
“performance failure” but we could not decide, from the 
query plan and observed response time, whether a per-
formance failure also occurs in PG 7.0; 27 did not cause a 
failure in PG 7.0; only 1 caused a failure in both IB and PG 
7.0. The table shows that this particular failure was a non-
self-evident incorrect result. Details about the bugs causing 
coincident failures were given in [9]. 
As for the failure types, we can see that most of the bugs for 
each DBMS product cause Incorrect Result failures. The 
percentage of non-self-evident failures is also high: they 
range from 44% for MS to 66% for IB. Engine crashes are 
less frequent: they range from 13% for MS to 21.5% for OR. 

3.2.3 Implications for Fault Tolerance: Two-Version 
Combinations 

We now look more closely at the two-version combinations 
of the four different DBMS products. We want first to find 
out how many of the coincident failures are detectable (i.e. 
divergent or self-evident) in the two-version systems. Table 2 
contains a summary of the results on each of the six possi-
ble two-version combinations7. 

Only twelve coincident failures occurred (note that there 
were thirteen bugs that caused failures in a different DBMS 
product than the one for which they were reported (as de-
tailed in Table 1); one bug (MS bug report 56775) [36], al-
though reported for MS, did not cause failure in MS (Unre-
produced) but did cause failure in PG 7.0); only four of 
these twelve are non-detectable. We can see that diversity 
allows detection of failures for at least 95% of these bugs (41 

 

7 Here we only include bugs (reported for any of the four DBMS prod-
ucts) that could be run on both DBMS products, i.e. we exclude dialect-
specific bugs. For instance, Table 2 shows that a total of 71 bugs could be 
run on both IB and PG 7.0. In detail, 31 of these were reported for IB and 24 
for PG; these two numbers can be deduced from Table 1. The remaining 16 
were bugs of either OR or MS which could be run on both IB and PG 7.0 – 
these numbers are not directly deducible from Table 1 due to some bugs 
being dialect-specific for one DBMS product but not another; they can how-
ever be obtained from [36]). 

TABLE 1. STUDY 1: RESULTS OF RUNNING THE BUG SCRIPTS ON ALL FOUR DBMS PRODUCTS.  
ABBREVIATIONS: IB – INTERBASE 6.0; PG 7.0 - POSTGRESQL 7.0.0; OR – ORACLE 8.0.5; MS – MICROSOFT SQL SERVER 7. 

 IB PG 7.0 OR MS PG 7.0 IB OR MS OR IB MS PG 7.0 MS IB OR PG 7.0 

Total bug scripts 55 55 55 55 57 57 57 57 18 18 18 18 51 51 51 51 

Bug script cannot be run  

(Functionality Missing) 
n/a 24 21 17 n/a 33 27 24 n/a 14 14 13 n/a 36 35 31 

Total bug scripts run 55 31 34 38 57 24 30 33 18 4 4 5 51 15 16 20 

Undecided performance 0 3 3 3 0 0 0 0 0 0 0 1 0 3 4 2 

No failure observed 8 27 31 33 5 24 30 31 4 4 4 3 12 11 12 12 

Failure observed 47 1 0 2 52 0 0 2 14 0 0 1 39 1 0 6 

 Poor Performance 3 0 0 0 0 0 0 0 1 0 0 0 6 0 0 0 

Engine Crash 7 0 0 0 11 0 0 0 3 0 0 0 5 0 0 0 

Self-evident 4 0 0 1 14 0 0 1 3 0 0 0 10 0 0 6 Incorrect 

Result Non-self-evident 23 1 0 1 20 0 0 1 7 0 0 1 17 1 0 0 

Self-evident 2 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 

T
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Other 
Non-self-evident 8 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 
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out of 43, for the IB+MS pair). Moreover, it would support 
masking and forward recovery (following the self-evident 
failure of a single channel) for a fraction of bugs varying 
between 11/32 (34%) for the IB+OR pair) and 11/18 (61%) 
for the OR+MS pair. More details on these bugs are in [9] 
and [36]. 

3.3 The Second Study 

3.3.1 Description of the Study 

To repeat the study on later releases of DBMS products, we 
collected 92 new bug reports for the later releases of the 
open-source DBMS products: PostgreSQL 7.2 and Firebird 
1.0 (abbreviated as PG 7.2 and FB respectively; Firebird is 
the open-source descendant of Interbase 6.0. The later re-
leases of Interbase are issued as closed-development by 
Borland). We excluded the closed-development DBMS 
products as most of their bug reports lacked the bug scripts 
needed to trigger the faults. But we still translated the new 
bug scripts of bugs reported for the open-source DBMS 
products into the dialects of the closed-development ones, 
and ran them in the releases used in our first study (Oracle 
8.0.5 and MSSQL 7.0). The results of the second study are 
shown in Table 3 (for full details see [36]). The classifica-
tions of faults and failures are as defined in Section 3.1. 
Incorrect results are still the most frequent failures. Engine 
crashes are slightly more frequent than in the first study but 
still no more than 22.2%. The number of non-self-evident 
failures is lower than in the first study: 35% for PG 7.2 and 
53% in FB. The number of bugs causing coincident failures 
was again low: in the second study we observed a total of 5 
coincident failures. None of the bugs caused failures in 
more than two DBMS products. The coincident failures are 
detailed in Section 3.3.3. 

3.3.2 Implications for Fault Tolerance: Two-Version 
Combinations 

Table 4 shows the results of the two-version combinations 
of the 4 DBMS products used in the second study. None of 
the bugs caused non-detectable failures for all demands. 
Here there are some bugs that are “non-divergent” for 
“some demands” only. One caused non-detectable failure 
only for a few demands in the common failure region, but 
detectable failure on the others. Three bugs caused self-
evident failures in both DBMS products and one caused 
non-self-evident failure in one and self-evident failure in 
the other. 

So, diversity allows detection of failures for all these bugs. 
It would allow masking and forward recovery (following 
the self-evident failure of a single channel) for a fraction of 
bugs varying between 11/28 (39%) for the FB+MS pair and 
12/20 (60%) for the PG 7.2+MS pair. 

3.3.3 Common Bugs 

It is interesting to describe in some more detail some of the 
bugs that caused coincident failures, listed in Table 5, and 
speculate about the probable frequency and severity of the 
failure observed (similar accounts for bugs in Study 1 are in 
our preliminary report [9]). 
Arithmetic-related bugs 
Firebird bug 926001 [36] causes non-self-evident failure in 
both FB and PG 7.2 when the DBMS product is asked to 
add two values of type Timestamp (a timestamp value con-
tains both date and time information). Due to rounding 
errors, FB always gives a result that is 1 second less than the 
correct result, whereas PG 7.2 adds the dates but not the 
time of the second timestamp value (i.e. it treats the opera-
tion as Timestamp1 + Date2). The failure rate for this bug 
would be highest in applications that require high precision 
arithmetic computations with timestamp datatypes. On 
most demands the erroneous results of the two DBMS 
products would be different: the failure is non-divergent 
only for some (probably rare) demands. 

FB bug 926624 [36] causes a crash in both FB and MS. 
The crash is due to a stack overflow from attempting to use 
in the column part of the SELECT statement an arithmetic 
expression longer than: 8000 characters in FB; 2834 charac-
ters in MS. Therefore FB fails for a smaller set of demands 
than MS. The expected correct behavior is for the DBMS 
product to process the statements, or to give an error mes-
sage that warns the user of the maximum allowed expres-
sion length. The failure rate for this bug would probably be 
low for most installations, as SELECT statements would 
seldom contain such long arithmetic expressions. 
Miscellaneous bugs 
FB bug 910423 [36] causes failure in both FB and MS. Fig. 2 
shows the demands for which they fail. The failure consists 
in allowing the datatype of a table column to be changed 
from integer to string even when the string type is specified 
to be shorter than needed to hold the data already stored in 
the column. The expected correct behavior is for the DBMS 
product to refuse (with an error message) to change the 
datatype of either any column that already contains data, or 

TABLE 2. STUDY 1: SUMMARY OF RESULTS FOR THE TWO-VERSION COMBINATIONS. 
ABBREVIATIONS: S.E. – SELF-EVIDENT FAILURE; N.S.E. - NON-SELF-EVIDENT FAILURE. 

One out of two DBMS 
products failing 

Both DBMS products failing 

Non – Divergent Divergent 

All Demands Some Demands 

Pairs of 
DBMS 

Products 

Total 
number 
of bug 
scripts 

run 

Bugs scripts 
causing failure 
(in at least one 
DBMS product) 

s.e. n.s.e. 

s.e. n.s.e. s.e. n.s.e. 

1 s.e. & 
1 n.s.e. 

2 
s.e. 

2 
n.s.e. 

IB + PG 7.0 71 49 22 26 0 1 0 0 0 0 0 

IB + OR 69 32 11 21 0 0 0 0 0 0 0 

IB + MS 78 43 17 23 1 2 0 0 0 0 0 

PG 7.0 + OR 72 33 16 16 0 0 0 0 0 0 1 

PG 7.0 + MS 85  48 20 21 0 1 0 0 3 3 0 

OR + MS 80 18 11 7 0 0 0 0 0 0 0 
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at least those containing data that wouldn’t fit in the new 
length specified. If a client later tries to read the column 
affected, the two DBMS products react differently: FB re-
sponds with an error message (self-evident failure), while 
MS returns a ‘*’ symbol. We have therefore classified the 
failure as divergent. As shown, MS actually fails on a su-
perset of the demands on which FB does. It is difficult to 
conjecture how often applications change the datatypes of 
columns and hence the likely failure rates for this bug. The 
severity of this failure is different in the two DBMS prod-
ucts. FB does not lose the data stored in the column: if you 

just change the type again to a long enough string (>=10 in 
the example above) then the data can again be read. MS 
instead truncates the data item to the new length, so that it 
is irremediably lost. 

PG 7.2 bug 847 [36] causes failure in both PG 7.2 and 
MS. PG 7.2 allows the creation of exceptions that return a 
message longer than 4000 characters, but then crashes if the 
exception is raised. The correct behavior is for a DBMS 
product to give an error message once its maximum length 
for exception messages is reached: either when the excep-
tion is defined or when attempting to raise the exception. 
The same problem occurs in MS, but the threshold message 
length is even smaller (440 characters), and thus failures 
would be more frequent. 

 The PG 7.2 bug reported on 16 May 2003 (with no ID in 
the PG 7.2 mailing list [36]) causes an error message in PG 
7.2 and FB, although no error exists. The bug script is given 
below. The UPDATE statement causes the contents of the 
database to violate the UNIQUE CONSTRAINT (a con-
straint over a set of columns requiring that no two values 
for different rows be equal) at some intermediate stage, 
although the final state does not violate it: 

CREATE TABLE TEST2 (V1    INT, V2    INT, CONSTRAINT 
UQ_TEST UNIQUE (V1,V2)); 
INSERT INTO TEST2 VALUES (0,0); 
INSERT INTO TEST2 VALUES (0,1); 
INSERT INTO TEST2 VALUES (0,2); 
UPDATE TEST2 SET V2=V2+2; 

Violation of UNIQUE KEY constraint "UQ_TEST" on table "TEST2" 

 OR and MS correctly execute the script without error 
messages; PG 7.2 and FB perform the UNIQUE CON-
STRAINT  checks at intermediate states (in this case after 

TABLE 3. STUDY 2: RESULTS OF RUNNING THE BUG SCRIPTS OF FB AND PG ON ALL FOUR DBMS PRODUCTS.  
ABBREVIATIONS: FB – FIREBIRD 1.0; PG 7.2 - POSTGRESQL 7.2; OR – ORACLE 8.0.5; MS – MICROSOFT SQL SERVER 7. 

 FB PG 7.2 OR MS PG 7.2 FB OR MS 

Total bug scripts 43 43 43 43 49 49 49 49 

Bug script cannot be run (Functionality Missing) n/a 12 15 13 n/a 29 29 30 

Total bug scripts run 43 31 28 30 49 20 20 19 

Undecided performance 0 1 2 1 0 2 2 0 

No failure observed 4 29 26 27 4 17 18 18 

Failure observed 39 1 0 2 45 1 0 1 

Poor Performance 4 0 0 0 5 0 0 0 

Engine Crash 6 0 0 1 10 0 0 1 

Self-evident 7 0 0 0 13 1 0 0 
Incorrect Result 

Non-self-evident 20 1 0 1 15 0 0 0 

Self-evident 1 0 0 0 1 0 0 0 

T
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Other 
Non-self-evident 1 0 0 0 1 0 0 0 

TABLE 4. STUDY 2: SUMMARY OF RESULTS  FOR THE TWO-VERSION COMBINATIONS.  
ABBREVIATIONS: S.E. – SELF-EVIDENT FAILURE; N.S.E. - NON-SELF-EVIDENT FAILURE. 

One out of two DBMS 
products failing 

Both DBMS products failing 

Non – Divergent Divergent 

All Demands Some Demands 

Pairs of 
DBMS 

Products 

Total 
number 
of bug 
scripts 

run 

Bugs scripts 
causing fail-

ure (in at least 
one DBMS 
product) 

s.e. n.s.e. 

s.e. n.s.e. s.e. n.s.e. 

1 s.e. & 
1 n.s.e. 

2 
s.e. 

2 
n.s.e. 

FB + PG 7.2 51 47 26 19 1 0 0 1 0 0 0 

FB + OR 46 25 10 15 0 0 0 0 0 0 0 

FB + MS 46 28 11 15 0 0 1 0 1 0 0 

PG 7.2 + OR 47 21 13 8 0 0 0 0 0 0 0 

PG 7.2 + MS 47 20 12 7 0 0 1 0 0 0 0 

TABLE 5. BUGS THAT CAUSE COINCIDENT FAILURES  

On which additional DBMS product was failure observed? 

 FB PG OR MS 

FB N/A 
1  - (Bug ID 
926001) 

0 
2– (BugIDs 

910423, 926624) 
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PG 
1 (Bug report 

date 16/05/2003) 
N/A 0 1 – (BugID 847) 

 

Fig. 2. FB bug 910423: demands on which MS fails (light gray shaded 

boxes) and demands for which both FB and MS fail (dark gray). 
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each row is updated), which causes the exception to be 
raised. The failure is not specific to this bug script. It can be 
triggered with any UNIQUE CONSTRAINT on integer, real 
or float datatypes affecting single or multiple columns, 
whenever an update is attempted that will (at an interme-
diate step during the execution) set a value of a row to that 
of an existing row in the table, although at the end of the 
execution of the statement no violations would be present.  
On every set of parameter values that we tried, either both 
DBMS products failed or neither did. The failure rate for 
this bug is expected to be relatively high in update-
intensive applications if UNIQUE CONSTRAINT is used. 

3.4 Newer vs. Older Releases (Open-Source DBMS 
Products)  

We now look more closely at those DBMS products that 
were used in both studies (i.e. the two open-source prod-
ucts). We ran all the new bugs reported for the newer re-
leases on the older releases, to check how many already 
existed there. The results are in the leftmost eight columns 
of Table 6 (full details are in [36]). 

The structure of Table 6 is the same as that of Table 1 
and Table 3. We can see that 33 bugs reported for FB also 
cause failure in the older release IB. Of the six that do not 
cause failures in IB, four were Unreproduced in FB. So only 
2 bugs that caused failure in FB (the new release) appear to 
be new bugs, introduced in functionalities that used to 
work correctly. The reason might be that FB 1.0 was mainly 
a bug fix release, with no major enhancements, which 
probably also reduced the number of new problems that 
could be introduced. 

The situation is different for PG 7.2, which featured 
many more enhancements, for example the support for 
OUTER JOINS in SELECT statements. We can see that 13 of 
the bugs reported for PG 7.2 cannot be run at all in the 
older release (they affect newly added functionality) and, 
more importantly, 17 of the other 36 bugs do not cause fail-
ures in the older release (2 of them are Unreproduced in 
both releases). This means that the development of the 
newer release introduced many bugs in functionality that 
used to work correctly in the old release. 

We also ran the old bugs in the new releases of the 
DBMS products to see how many had been fixed. The re-
sults are in the rightmost eight columns of Table 6 (full de-
tails are in [36]). 

More PG 7.0 bugs were fixed in PG 7.2 than the IB  bugs 
fixed in FB. This high number of fixes, with the attendant 
risk of new bugs, may be one cause of the relatively many 
PG 7.2 bugs affecting pre-existing PG 7.0 functionalities(cf. 
the first half of Table 6). 

3.4.1 Implications for Fault Tolerance: The Open-Source 
Two-Version Combinations 

Table 7 shows the results for all the bugs, from both studies, 
that could be run on the various open-source combinations. 

The first two rows concern the pairs of different releases 
of the same DBMS product. For PostgreSQL, we see that 
out of 93 bugs that caused failure in at least one of the re-
leases, 7.0 or 7.2, only 35 cause failures in both; 58 bugs 
cause failures in only one of the releases. So, using diverse 

releases of the same DBMS product in a fault-tolerant con-
figuration, as discussed in Section 2, does provide some 
protection against upgrade problems and can help to assure 
higher dependability. However there are still many bugs 
causing failures in both releases of the same DBMS product: 
- 57 in Interbase/Firebird 
- 35 in PostgreSQL.  
This can be compared with the four DBMS product pairs 
using different DBMS products (last four rows in Table 7), 
where we get at most 2 bugs that cause coincident failures. 
This is because:   
- The IB 6.0 bug 223512(2) which caused non-divergent co-
incident failure in IB 6.0 and PG 7.0, has been fixed in the 
newer releases of both DBMS products.  

- The FB 1.0 bug 926001 [36], which causes coincident fail-
ure in the new releases FB 1.0 and PG 7.2, did not cause a 
failure in IB 6.0 and cannot be run in PG 7.0 (dialect-
specific). 
The main conclusion is to confirm the high level of fault 

diversity between these DBMS products, and thus potential 
advantages of a diverse redundant fault-tolerant server. 
Using different releases of the same DBMS product would 
also yield dependability gains, but these seem nowhere 
near as high as the gains that can be achieved by using di-
verse DBMS products. 

4. DISCUSSION 

The results presented in Section 3 are intriguing and sug-
gest that assembling a fault-tolerant database server from 
two or more of these OTS DBMS products could yield large 
dependability gains. But they are not definitive evidence. 
Apart from the sampling difficulties caused e.g. by lack of 
certain bug scripts, it is important to clarify to what extent 
our observations allow us to predict such gains. We gave a 
detailed discussion of the difficulties in [9]. In summary: 
- the reports available concern bugs, not how many failures 
each caused. They do not tell us whether a bug has a large 
or a small effect on reliability, although the unknown 
faults – those that have not yet caused failures – would 
tend to have stochastically lower effect on reliability than 
those that did cause failures. A better analysis would be 
obtained from the actual failure reports (including failure 
counts), if available to the vendors. However, vendors are 
often wary of sharing such detailed dependability infor-
mation with their customers; 

- less than 100% of the failures that occur, and thus also of 
the bugs causing them, are reported. However, blatant 
failures are more likely to be reported than subtle (argua-
bly more dangerous) failures. Therefore failure underre-
porting probably causes a bias towards underestimating 
the frequency of these subtler failures for which diversity 
would help; 

- an organization needs to predict the dependability of its 
specific installation[s] of a diverse server, compared to a 
single DBMS product, which depends on the organiza-
tion’s (or each specific installation’s) usage profile, which 
differs – perhaps markedly – from the aggregate profile of 
the user population which generated the bug reports. 
How can then individual user organizations decide 
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whether diversity is a suitable option for them, with their 
specific requirements and usage profiles? As usual for de-
pendability-enhancing measures, the cost is reasonably 
easy to assess: costs of the DBMS products, the required 
middleware, difficulties with client applications that re-
quire vendor-specific features, hardware costs, run-time 
cost of the synchronization and consistency-enforcing 
mechanisms, and possibly more complex recovery after 
some failures. The gains in improved reliability and avail-
ability (fewer system failures and easier recovery from 
some failures, to be set against possible extra failures due to 
the added middleware), and possibly less frequent up-
grades, are difficult to predict except empirically. Using 
ballpark figures may provide useful guidelines: there are 
studies that suggest that the “Total Cost of Ownership” 
may exceed the initial investment by more than one order 
of magnitude, and the cost of recovery from failures is a 
major part of this [41]. This uncertainty will be com-
pounded, for many user organizations, by the lack of 
trustworthy estimates of their baseline reliability with re-
spect to subtle failures: databases are used with implicit 
confidence that failures will be self-evident. 

Despite all these uncertainties, for some users our evi-
dence already means that a diverse server is a reasonable 
and relatively cheap precautionary choice, even without 
good predictions of its effects. These are users who have: 

serious concerns about dependability (e.g., high costs for 
interruptions of service or for undetected incorrect data 
being stored); applications which use mostly the core fea-
tures common to multiple off-the-shelf DBMS products 
(recommended by practitioners to improve portability of 
the applications); modest throughput requirements for 
write statements, which make it easy to accept the synchro-
nization delays of a fault-tolerant diverse server. 

5. RELATED WORK 

5.1 Fault Tolerance in Databases 

Fault tolerance in databases has been thoroughly studied 
and successfully applied in established products. We al-
ready mentioned standard database mechanisms such as 
transaction rollback and retry and checkpointing, which 
can be used to tolerate faults due to transient conditions. 
These techniques can be used with or without data replica-
tion (discussed in Section 2) in the databases.   

5.2 Interoperability Between Databases 

Due to the incompatibilities between the SQL “dialects” of 
different DBMS products we emphasized the need for SQL 
translators in the middleware of a diverse fault-tolerant 
server. Similar ideas have been applied for increasing inter-
operability between DBMS products [42], [43]: the grammar 

TABLE 6. THE RESULTS OF RUNNING THE NEW SCRIPTS REPORTED FOR FB AND PG 7.2 ON THE OLDER RELEASES (IB AND PG 7.0 
RESPECTIVELY) AND THE BUGS REPORTED FOR THE OLD RELEASES ON THE NEW ONES 

ABBREVIATIONS: FB – FIREBIRD 1.0; IB – INTERBASE 6.0; PG 7.0 - POSTGRESQL 7.0.0; PG 7.2 - POSTGRESQL 7.2. 

 FB IB PG 7.2 PG 7.0 PG 7.2 PG 7.0 FB IB IB FB PG 7.0 PG 7.2 PG 7.0 PG 7.2 IB FB 

Total bug scripts 43 43 43 43 49 49 49 49 55 55 55 55 57 57 57 57 

Bug script cannot be run  
(Functionality Missing) 

n/a 4 12 26 n/a 13 29 29 n/a n/a 24 21 n/a n/a 33 33 

Total bug scripts run 43 39 31 17 49 36 20 20 55 55 31 34 57 57 24 24 

Undecided performance 0 0 1 1 0 0 2 2 0 0 3 3 0 0 0 0 

No failure observed 4 6 29 16 4 17 17 17 8 33 27 31 5 40 24 24 

Failure observed 39 33 1 0 45 19 1 1 47 22 1 0 52 17 0 0 

Poor Performance 4 3 0 0 5 1 0 0 3 2 0 0 0 0 0 0 

Engine Crash 6 6 0 0 10 3 0 0 7 2 0 0 11 2 0 0 

Self-evident 7 6 0 0 13 8 1 1 4 2 0 0 14 6 0 0 Incorrect 

Result Non-self-evident 20 16 1 0 15 5 0 0 23 10 1 0 20 5 0 0 

Self-evident 1 1 0 0 1 1 0 0 2 2 0 0 2 0 0 0 

T
y
p

e
s
 o

f 
fa

il
u

re
s
 

Other 
Non-self-evident 1 1 0 0 1 1 0 0 8 4 0 0 5 4 0 0 

TABLE 7. SUMMARY OF THE RESULTS OF BOTH STUDIES FOR OPEN-SOURCE TWO-VERSION COMBINATIONS  
(ABBREVIATIONS: S.E. – SELF-EVIDENT FAILURE; N.S.E.- NON-SELF-EVIDENT FAILURE) 

One out of two DBMS 
products failing 

Both DBMS products failing 

Non – Divergent Divergent 

All Demands Some Demands 

Pairs of 
DBMS  

products 

Total 
number 
of bug 
scripts 

run 

Bugs scripts 
causing  

failure (in at 
least one 

DBMS prod-
uct) 

s.e. n.s.e. 

s.e. n.s.e. s.e. n.s.e. 

1 s.e. & 
1 n.s.e. 

2 
s.e. 

2 
n.s.e. 

FB 1.0 + IB 6.0 157 84 8 19 24 33 0 0 0 0 0 

PG 7.2 + PG 7.0 164 93 33 25 20 15 0 0 0 0 0 

FB 1.0 + PG 7.2 127 65 33 30 1 0 0 1 0 0 0 

FB 1.0 + PG 7.0 106 65 34 30 1 0 0 0 0 0 0 

IB 6.0 + PG 7.2 127 79 37 41 1 0 0 0 0 0 0 

IB 6.0 + PG 7.0 106 77 39 37 0 1 0 0 0 0 0 
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of a DBMS product is re-defined to make it compatible with 
that of another DBMS product, while keeping the core 
DBMS product engine unchanged.  

5.3 Design Diversity  

Fault tolerance through design diversity has been studied 
for over 30 years. The literature is vast: the interested 
reader can refer to survey papers about the effectiveness of 
design diversity [44], and about design aspects [4]. More 
recent results on the effectiveness of design diversity in-
clude measurements with very large populations of ama-
teur programmers [45], and more detailed probabilistic 
models on how development affects the reliability of fault-
tolerant software [46]. The literature points at substantial 
reliability gains from diversity, although it cautions on the 
difficulty of predicting them, since independence of failures 
between diverse versions should not be expected.  

Our study differs from the earlier experimental studies 
in three main ways:  
- we study large  software products - DBMS products - 
rather than the small programs used in the earlier ex-
periments;  

- we study samples of known bug reports, not failures ob-
served during testing; 

- we study coincident failure points or regions rather than 
defects in source code; this is different, for instance, from 
the analysis by Brilliant et al [47] of the causes of coinci-
dent failures in the Knight and Leveson experiment [48]. 

5.4 Empirical Studies of Faults and Failures 

The usefulness of diversity depends on the frequency of 
those failures that cannot be tolerated without it. There 
have been comparatively few studies.  

Gray studied the TANDEM NonStop system (with non-
diverse replication) [20]. Over the (unspecified) measure-
ment period, 131 out of 132 faults were “Heisenbugs” and 
thus tolerated. A later study of field software failures for 
the Tandem Guardian90 operating system [49] found that 
82 % of the reported failures were tolerated. However, the 
others caused failure of both non-diverse processes in a 
Tandem process, and thus system failure. 

Other related studies concern the determinism and fail-
stop properties of database failures, but, like our study, 
they concern faults rather than failure measurements.  A 
study [50] examined fault reports of three applications 
(Apache Web server, GNOME and MySQL DBMS product). 
Only a small fraction of the faults (5-14%) were Heisenbugs 
triggered by transient conditions, that would be tolerated 
by simple rollback and retry. However, as the authors point 
out, the reason why they, like us, found few Heisenbugs, 
might be that people are less likely to report faults that they 
cannot reproduce. Using instead fault injection, the same 
authors also found [51] that a significant number of their 
injected faults (7%) violated the fail-stop model by writing 
incorrect data to stable storage. Although this fell to 2% 
when using the Postgres95 transaction mechanism, 2% is 
still high for applications with stringent reliability require-
ments. 

5.5 Diversity with Off-The-Shelf Applications 

Several research projects have addressed architectures sup-

porting software fault tolerance for OTS software. Some 
have as their main aim intrusion tolerance, e.g.: HACQIT 
[52], which demonstrated diverse replication (with two 
OTS web servers - Microsoft’s IIS and Apache) to detect 
failures (especially maliciously caused ones) and initiate 
recovery; SITAR [53], an intrusion-tolerant architecture for 
distributed services and especially COTS servers; the Cac-
tus architecture [3], intended to enhance survivability of 
applications which support diversity among application 
modules; DIT [2], an intrusion-tolerant architecture using 
diversity at several levels (hardware platform, operating 
system platform, and web servers); the MAFTIA [54] pro-
ject, which delivered a reference architecture and support-
ing mechanisms. Others target fault tolerance against 
mainly accidental faults, e.g.: the BASE approach [55] fo-
cuses on supporting state recovery for diverse replicas of 
components via a common abstract specification of a com-
mon abstract state, the initial state value and the behavior 
of each component; the GUARDS [56] and Chameleon [57] 
architectures aim at supporting multiple application-
transparent fault tolerance strategies using COTS hardware 
and software components. 

6. CONCLUSIONS 

We have reported two studies of samples of bug reports for 
four popular off-the-shelf SQL DBMS products, plus later 
releases of two of them. We checked for bugs that would 
cause common-mode failures if the products were used in a 
diverse redundant (fault-tolerant) architecture: such com-
mon bugs are rare. For most bugs, failures would be de-
tected (and may be masked) by a simple two-diverse con-
figuration using different DBMS products. In summary: 
- out of the 273 bug scripts run in both our studies, we 
found very few bug scripts that affected two DBMS prod-
ucts, and none that affected more than two; 

- only five of these bug scripts caused identical, non-
detectable failures in two DBMS products; of these five, 
one caused non-detectable failures on only a few among 
the demands affected. 
The results of the second study, on later releases of the 

same products, substantially confirmed the general conclu-
sions of the first study: the factors that make diversity use-
ful do not seem to disappear as the DBMS products evolve.  

Using successive releases of the same product for fault 
tolerance also appeared useful, although less so. We found 
a high level of fault diversity between successive releases of 
PostgreSQL: most of the old bugs had been fixed in the new 
release; many of the newly reported bugs did not cause 
failure (or could not be run at all) in the old release. This 
special form of design diversity is attractive for users who 
need the SQL “dialectal” features of a specific DBMS prod-
uct, but gives less dependability benefits than using differ-
ent products. With data diversity also a possibility, users 
have various trade-offs available between the wishes to 
exploit dialectal features and to get effective diversity. 

These results must be taken with caution, as discussed in 
Section 4, and their immediate implications vary between 
users. Our evidence suggests that the forms of redundancy 
and diversity discussed here will improve the dependabil-



GASHI ET AL.:  FAULT TOLERANCE VIA DIVERSITY FOR OFF-THE-SHELF PRODUCTS: A STUDY WITH SQL DATABASE SERVERS 13 

 

ity of DBMS products, perhaps dramatically. For some 
classes of DBMS installations, diversity could already be 
recommended as a prudent and cost-effective strategy. Yet, 
users with "ultra-high-dependability" requirements [58] 
would still have great difficulty achieving confidence that 
their requirements are satisfied. Our finding some common 
faults, however rare, certainly suggests caution. Such users 
might adopt our proposals, but still retain the database- or 
client-specific solutions mentioned in Section 2.1. 

The topic of diversity with OTS software certainly de-
serves further study. 

The need for middleware is an obstacle for users wishing 
to try out diversity in their applications. But our results 
provide a good business case for implementing the re-
quired middleware software. 

The performance penalty due to controlling concurrency 
via the middleware would be a problem with write-
intensive loads, but not if concurrent updates are rare [59]. 

Some other interesting observations include: 
- there is strong evidence against the fail-stop failure as-
sumption for DBMS products. The majority of bugs re-
ported, for all products, led to “incorrect result” failures 
rather than crashes (64.5% vs 17.1% in our first study; 
65.5% vs 19% in the second), despite crashes being more 
obvious to the user.  Even though these are bug reports 
and not failure reports, this evidence goes against the 
common assumption that the majority of failures are en-
gine crashes, and warrants more attention by users to 
fault-tolerant solutions, and by designers of fault-tolerant 
solutions to tolerating subtle and non fail-silent failures; 
- it may be worthwhile for vendors to test their DBMS 
products using the known bug reports for other DBMS 
products. For example, in the first study we observed 4 
MSSQL bugs that had not been reported in the MSSQL 
service packs (previous to our observation period). Oracle 
was the only DBMS product that never failed when run-
ning on it the reported bugs of the other DBMS products;  

Future work that is desirable includes: 
- statistical testing of the DBMS products to assess the ac-
tual reliability gains from diversity. We have run a few 
million queries with various loads, including ones based 
on the TPC-C benchmark, observing no failures (however, 
significant performance gains appear to be possible from 
using diverse servers [19], [59]). These results may not be 
particularly surprising, since these benchmarks use a lim-
ited set of well-exercised features of SQL servers. It would 
be interesting to repeat the tests with more varied test 
loads. However, these studies  are likely to be most useful 
with reference to specific application environments, for 
which the usage profile can be approximated reasonably 
well; 
- developing the necessary middleware components for 
users to be able to try out data replication with diverse 
servers in their own installations. Lack of these compo-
nents is the main practical obstacle to the adoption and 
practical evaluation of these solutions. There are signs 
that some DBMS product vendors may also help with this 
problem: EnterpriseDB [42] and Fyracle [43] are Oracle-
mode implementations based on PostgreSQL and Firebird 
DBMS engines, respectively. With these solutions the 

problem with SQL dialects is significantly reduced.  
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