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Abstract

We present a recurrent neural-network (RNN) controller designed to solve
the tracking problem for control systems. We demonstrate that a major
difficulty in training any RNN is the problem of exploding gradients, and we
propose a solution to this in the case of tracking problems, by introducing a
stabilization matrix and by using carefully constrained context units. This
solution allows us to achieve consistently lower training errors, and hence
allows us to more easily introduce adaptive capabilities. The resulting RNN
is one that has been trained off-line to be rapidly adaptive to changing plant
conditions and changing tracking targets.

The case study we use is a renewable-energy generator application; that of
producing an efficient controller for a three-phase grid-connected converter.
The controller we produce can cope with random variation of system param-
eters and fluctuating grid voltages. It produces tracking control with almost
instantaneous response to changing reference states, and virtually zero oscil-
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lation. This compares very favorably to the classical proportional integrator
(PI) controllers, which we show produce a much slower response and settling
time. In addition, the RNN we propose exhibits better learning stability and
convergence properties, and can exhibit faster adaptation, than is achievable
with adaptive critic designs.

Keywords: Tracking Problem, Stabilization Matrix, Recurrent Neural
Networks, Exploding Gradients, Vector Control

1. Introduction

In this paper we propose a recurrent neural-network controller to solve
the tracking problem. We consider a real-world test problem from electrical
power and energy applications, and this forms the motivation for develop-
ment of the neural-controller presented in this paper. The energy application
we consider is that of a three-phase grid-connected dc/ac voltage-source con-
verter, or grid-connected converter (GCC) for short.

A GCC is usually employed to interface between the dc and ac sides of an
electric power system. Typical converter configurations containing a GCC
include: 1) a dc/dc/ac converter for solar, battery and fuel cell applications
(Figueres et al., 2009; Wang and Nehrir, 2007), 2) a dc/ac converter for
STATCOM applications (Luo et al., 2009; Carrasco et al., 2006), and 3) an
ac/dc/ac converter for wind power and HVDC applications (Carrasco et al.,
2006; Xu and Wang, 2007; Mullane et al., 2005; Pena et al., 1996; Rabelo
et al., 2009).

In all these applications, controlling the GCC efficiently and making it
maintain a desired state (a tracking problem) is crucial for the reliability
and stability of both the ac and the dc subsystems. The controller must
be able to track any reference command variations quickly. For example,
these might occur in wind power and photovoltaic applications as a result of
sudden variations in the wind speed or solar irradiation levels.

Classically the tracking problem has been addressed using proportional
integrator (PI) controllers (Qiao et al., 2009b; Pena et al., 1996). Limitations
of these methods are that they can have slow response times to changing ref-
erence commands, can take considerable time to settle down from oscillating
around the target reference state (Dannehl et al., 2009), and have difficulty
recovering from short-circuit faults in either the generator or the power-grid.
Hence neural-network based solutions have been proposed to overcome these
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difficulties, in this control problem and related ones (Qiao et al., 2008b,
2009a; Li et al., 2012; Venayagamoorthy et al., 2002; Park et al., 2004; Qiao
et al., 2008a; Venayagamoorthy et al., 2003).

These neural-network approaches have mainly been based on Adaptive
Critic Designs (ACDs) (Wang et al., 2009; Prokhorov and Wunsch, 1997;
Werbos, 1992). ACDs use two neural networks: an action network and
a critic network. The critic network provides feedback to the action net-
work, allowing the action network to be trained on-line and in real-time, and
therefore to be continually learning and adaptive during plant operation.
However useful this double network design may be, proving convergence of
the two continually learning networks at once is challenging. In fact, just
proving the convergence of the critic network on its own is not trivial, since
critic learning algorithms generally are not true gradient descent (Barnard,
1993). The general instability in this case is proven by Werbos (1998), and
divergence examples of concurrent actor-critic learning exist (Fairbank and
Alonso, 2012). In practice, the best course of action is not to allow such a
system to be continually autonomously learning while controlling a delicate
or critical industrial system. Qiao et al. (2008b, 2009a) and Venayagamoor-
thy et al. (2003) overcome this problem by first training the action and critic
networks concurrently off-line, and then freezing the action neural network
and dispensing with the critic network for on-line operation of the plant.
This solution of course neutralizes the adaptive benefits of the ACD archi-
tecture. Adaptive behavior is often recreated by using lagged state inputs for
the action network (e.g. Venayagamoorthy et al., 2003), effectively creating
a time-delay neural network. Modest improvements over PI controllers are
made using ACDs, for example, see Qiao et al. (2008b, 2009a).

To improve on this situation further, we are using an architecture that
uses an action network only, but which is trained off-line through backpropa-
gation through time (BPTT) (Werbos, 1990). This approach has the advan-
tage that the learning algorithm is true gradient descent on the cost-to-go
function, and so convergence is assured (assuming a smooth error minimiza-
tion surface, and a sufficiently small learning rate). Also, since the BPTT
algorithm is true gradient descent, learning is guaranteed to find a true lo-
cal minimum of the training error. In contrast, the ACD learning algorithms
used by the aformentioned references are not true gradient descent, and hence
the learning progress appears stochastic, and the minimum obtained is often
not as low as that obtained by BPTT.

Recent studies show how a single action network can be trained with
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BPTT to control a GCC under fixed plant behavior (Li et al., 2012). How-
ever, for real-life applications, the plant behavior can change; system parame-
ters can exhibit random variations; voltages coming into the system from the
power grid can fluctuate; short circuits can occur. Hence the action network
needs to become more adaptive than demonstrated by Li et al. (2012).

Adaptive behavior can be enabled by modifying the action network to
have neural-context units which respond to the changing behavior of the
plant, thus making the action network into a RNN. This design for adaptation
is potentially much faster than the adaptation carried out by ACDs, in that
the weights of the RNN do not need to change to accommodate adaptation.
This is referred to as fixed-weight adaptive behavior by Prokhorov et al.
(2002), and can produce almost instantaneous adaptation. In contrast, ACD
adaptive behavior takes place by retraining the two neural networks involved,
and this kind of learning is slow.

A major difficulty with using a RNN for the controller is that because data
cycles around the RNN many times, learning gradients may decay rapidly
to zero, or alternatively, the learning gradients may rapidly become exces-
sively large, and both of these problems cause difficulties for learning by
gradient descent. These problems are known as “vanishing” or “exploding”
gradients, respectively, in the RNN literature (Hochreiter and Schmidhuber,
1997). While Hochreiter and Schmidhuber (1997) address the problem of
vanishing gradients, our paper attempts to minimize the problem of explod-
ing gradients for the tracking problem domain, through the introduction of
a “stabilization matrix”, and carefully constrained context units.

The novelties of this paper include: 1) the stabilizing matrix, which is
a hand-picked neural weight matrix which represents some pre-learned basic
control behavior, allowing the learning algorithm to concentrate on learning
the more advanced nuances of behavior and thus to acquire improved solu-
tions than otherwise possible, 2) a theoretical discussion on the importance
of handling the problem of exploding gradients in RNNs, and 3) a design for
using predicted as well as previous inputs that allows the neural network to
behave adaptively on-line, despite the training process having taken place
entirely off-line.

The rest of the paper is structured as follows: the basic topology of
the GCC neural-network vector controller, and how to train it to solve the
tracking problem using BPTT, is presented in Section 2. Section 3 shows the
stabilization matrix approach, which enhances neural-network training speed
and stability when the system matrix and the control voltage matrix are
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fixed. Section 4 presents how a RNN is trained to behave adaptively on-line
when these matrices vary, which relies upon novel extra context inputs to the
neural controller. Simulation experiments are given in Section 5. These
include GCC experiments for the neural vector controller, under variable and
dynamic conditions, and a comparison to two conventional control methods,
showing the advantages of our method. Also an experiment is included that
demonstrates how the stabilization-matrix method can be extended to the
case of non-invertible matrices. The paper concludes in Section 6 with a
summary and a discussion of further work, and Appendix A which proves
that the method for adaptation which we used is flexible enough to work in
a greater variety of applications than just our chosen experiments.

2. Neural-Network Vector-Control Architecture

Fig. 1 shows schematics of the GCC, in which a dc-link capacitor appears
on the left, and a three-phase voltage source, representing the voltage at the
Point of Common Coupling (PCC) of the ac system, appears on the right.
In this diagram the capacitor would be connected to the electrical generator
(for example the wind turbine, or photovoltaic array) and has a dc voltage
represented by Vdc, and the three voltages va, vb and vc would represent the
three-phase voltage of the electric power grid.

Figure 1: Grid-connected converter schematic.

The powers transferred between the grid and the converter include active
power and reactive power. The purpose of the GCC controller is to control
the active and reactive power transferred between the grid and the GCC.

The circuit contains 3-phase ac-voltages va, vb, and vc, with corresponding
3-phase ac-currents ia, ib and ic. By transforming to a rotating frame of
reference with axes d and q, as described by Li et al. (2011), it is possible to
largely eliminate the ac-sinusoidal variations, and to transform these three
dimensions down to just two, i.e. to currents id and iq, and voltages vd and
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vq. In this simpler d-q reference frame, the voltages and currents evolve
according to the following 2-dimensional vector differential equation (see Li
et al. (2011, 2012) for further derivation):

[
vd
vq

]
= R

[
id
iq

]
+ L

∂

∂t

[
id
iq

]
+ ωsL

[
−iq
id

]
+

[
vd1

vq1

]
(1)

Here ωs is the angular frequency of the PCC voltage (i.e. the angular fre-
quency of the rotating dq reference frame, which is also the angular frequency
of the ac grid), and L and R are the inductance and resistance of the grid
filter. vd1 and vq1 are the “control voltages” which are added into the system,
in the dq reference frame, through the GCC controller. The purpose of these
control voltages is to influence the current transferred between the grid and
the GCC, a process referred to as vector control. Fig. 2 shows schematics for
the GCC controller, with a neural network to make the control decisions, plus
circuits to transform both to and from the dq reference frame, as necessary,
and a pulse-width-modulation (PWM) scheme to convert the neural-network
control decisions to the high voltage control signals in the system. In the
figure, θe is the instantaneous rotating angle of the three-phase grid
voltage in the space vector domain.
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Figure 2: GCC neural vector-control structure.
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From now on we will just consider the voltage and current variables in the
simpler dq reference frame. The job of the GCC neural-controller is to output
control voltages vd1 and vq1 which will make the actual dq-axis currents, id
and iq match as closely as possible some externally set reference currents, i∗d
and i∗q.

Since the state variables are id and iq, Eq. (1) can be rearranged to give:

∂

∂t

[
id
iq

]
= −

[
R/L −ωs
ωs R/L

] [
id
iq

]
− 1

L

[
vd1 − vd
vq1 − vq

]
(2)

For digital control implementations, a discrete-time equation is required:[
id(kTs + Ts)
iq(kTs + Ts)

]
= A

[
id(kTs)
iq(kTs)

]
+ B

[
vd1(kTs)− vd
vq1(kTs)− vq

]
(3)

where k is an integer time step, A is the system matrix, and B is the matrix
associated with the control voltage. Our experiments used a zero-order-hold
mechanism (Franklin et al., 1998) with sampling time Ts = 0.001 to obtain
the discrete-time equation (Eq. (3)) from the continuous-time one (Eq. (2)).
This means the components of the matrices A and B are only available
numerically.

Using conventional control-system notation, we define the state vector to
be ~x :=

[
id
iq

]
, and the control vector to be ~u :=

[ vd1
vq1

]
(the “control voltages”),

and ~c to be a system vector (the “grid voltage”) defined by ~c :=
[
vd
vq

]
. Then,

the system state evolution Eq. (3) can be written in a more concise form:

~xk+1 = A~xk + B(~uk − ~c). (4)

2.1. A Basic NN Controller and Optimization Function

The tracking objective is to make the actual current state, ~xk, track the

given (possibly moving) target state ~x∗k :=
[ i∗d
i∗q

]
. Actions are chosen by

~uk = kpwmπ(~xk, ~x
∗
k − ~xk, ~w), (5)

where the function π(·) is a fully connected multi-layer perceptron (MLP,
(Bishop, 1995)) with dimensions 4-6-6-2, i.e. four inputs, two hidden layers
of six nodes each, and two output nodes, and where ~w is a vector of all of
the weights in the neural network. The MLP contained shortcut connections
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between all pairs of layers. All nodes had a bias weight, and a hyperbolic tan-
gent activation function. The input vectors were rescaled to be tanh(~xk/1000)
and tanh((~x∗k−~xk)/100), respectively. We define the function π(·) to include
these input rescalings.

kpwm = Vdc/2 is a scalar constant, referred to as the gain of the voltage
source dc/ac PWM converter (Mohan et al., 2002). From a neural-network
point of view, kpwm can be understood simply to be a constant for rescaling
the neural-network output. This will ensure each component of the action
vector, ui, lies in the following range:

ui ∈ [−kpwm, kpwm]. (6)

We train the weights of the action network to solve the tracking problem
by doing gradient descent with respect to ~w on the following cost function:

J(~x0, ~w) :=
K−1∑
k=0

γkU(~xk, ~x
∗
k, ~uk) (7)

where

U(~xk, ~x
∗
k, ~uk) := |~xk − ~x∗k|

m (8)

and m is some constant power (we used m = 1 in our experiments), |·| denotes
the modulus of a vector, and γ ∈ [0, 1] is the constant discount factor (we used
γ = 1 throughout). The trajectory duration used for training was K = 1000
time steps (i.e. 1 second of real time). Lines 1-7 of Alg. 1 illustrate how Eqs.
(4)-(8) can be used to simulate a single trajectory and calculate its total cost,
J .

To train the action network, we used BPTT, as described in the following
subsection.

2.2. Backpropagation Through Time Algorithm

The action network was trained to minimize the cost in Eq. (7) by using
BPTT (Werbos, 1990). BPTT efficiently calculates the gradient of J(~x0, ~w)
with respect to the weight vector of the action network, ~w, for a given tra-
jectory with arbitrary initial state ~x0. This gradient can thus be used to
optimize the vector-control strategy, for example by using gradient descent.
In general, the BPTT algorithm consists of two steps: a forward pass which
unrolls a trajectory, followed by a backward pass along the whole trajectory,
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Algorithm 1 BPTT for tracking control problem, with fixed A and B ma-
trices

1: J ← 0
2: {Unroll a full trajectory:}
3: for k = 0 to K − 1 do
4: ~uk ← kpwmπ(~xk, ~x

∗
k − ~xk, ~w) {Neural-network output}

5: ~xk+1 ← A~xk + B (~uk − ~c) {Calculate next state}
6: J ← J + γkU(~xk, ~x

∗
k, ~uk)

7: end for
8: {Backwards pass along trajectory:}
9: J ~w ← ~0

10: J ~xK ← ~0
11: for k = K − 1 to 0 step −1 do

12: J ~uk ← (BT )J ~xk+1 + γk
(
∂U(~xk,~x

∗
k,~uk)

∂~uk

)
13: J ~xk ← kpwm

(
dπ(~xk,~x

∗
k−~xk, ~w)

d~xk

)
J ~uk + (AT )J ~xk+1 + γk

(
∂U(~xk,~x

∗
k,~uk)

∂~xk

)
14: J ~w ← J ~w + kpwm

(
∂π(~xk,~x

∗
k−~xk, ~w)

∂ ~w

)
J ~uk

15: end for
16: {On exit, J ~w holds ∂J

∂ ~w
for the whole trajectory.}
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which accumulates the gradient-descent derivative. Alg. 1 gives pseudocode
for both stages of this process.

The second half of the algorithm calculates the desired gradient, ∂J
∂ ~w

. In
this code, the variables J ~xk, J ~uk and J ~w are workspace column vectors of
dimension 2, 2, and dim(~w), respectively. These variables hold the “ordered
partial derivatives” of J with respect to the given variable name, so that for
example J ~xk = ∂+J

∂~xk
. This ordered partial derivative, as defined by Werbos

(Werbos, 1990; Werbos et al., 1992), represents the derivative of J with
respect to ~xk, assuming all other variables which depend upon ~xk in lines 3-7
of Alg. 1 are not fixed, and thus their derivatives will influence the value of
∂+J
∂~xk

via the chain rule. The derivation of the gradient computation part of

the algorithm (lines 8-16) is exact, using the method known as generalized
backpropagation (Werbos, 1990), or automatic-differentiation (Werbos, 2005;
Rall, 1981). For full details of this derivation, see Werbos et al.
(1992).

The vector and matrix notation is such that all vectors are columns and
differentiation of a scalar by a vector gives a column. Differentiation of a
vector function by a vector argument gives a matrix defined by the transpose

of the usual Jacobian notation, such that for example,
(
∂π
∂ ~w

)ij
:= ∂πj

∂ ~wi .
The algorithm refers to the derivatives ∂π

∂~x
and ∂π

∂ ~w
. These would be cal-

culated by ordinary neural-network backpropagation. These derivatives are
only required as an inner product with the vector J ~uk, and thus each evalu-
ation of these derivatives could be performed in asymptotic time O

(
dim(~w)

)
.

These neural-network backpropagation calculations should be considered as
a sub-module necessary to implement Alg.1, and should not be confused with
the BPTT backpropagation itself, which is what the rest of Alg. 1 imple-
ments. Therefore the asymptotic running time for the whole BPTT algorithm
applied to a full trajectory with K time steps will be O

(
K dim(~w)

)
.

The algorithm also refers to the derivatives ∂U
∂~x

and ∂U
∂~u

. By differentiating
Eq. (8) directly, these are given by

∂U

∂~xk
= m(~xk − ~x∗k)U1−2/m

and,
∂U

∂~uk
= ~0.
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2.3. Training the Neural Controller

We first trained the network to control the plant in a situation where the
A and B matrices were fixed. To choose these constants, we employed a
standard arrangement for the integrated GCC and grid system, as used in
renewable energy conversion system applications (Mullane et al., 2005; Pena
et al., 1996; Li et al., 2011). These include 1) a three-phase 60Hz, 690V
voltage source signifying the grid (i.e. ωs = 120π,

[
vd
vq

]
=
[

690V
0V

]
), 2) a

reference voltage of 1200V for Vdc, and 3) a normal resistance of R = 0.012Ω
and a normal inductance L = 0.002H for the grid filter. These constants are
used to calculate the fixed A and B matrices in Eq. (3).

For training purposes, the reference current ~x∗ :=
[ i∗d
i∗q

]
was changed every

0.05s (i.e. every 50 time steps), within the range [−500A, 500A], in a fixed
pattern. Fig. 3 shows this reference-current trajectory used for training. The
objective of training is to make the actual trajectory match this reference
trajectory, by minimization of Eq. (7). The actual trajectory was made to
start from a fixed point, chosen arbitrarily to be ~x = [ 120

10 ].

-400
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200

400

0 200 400 600 800 1000

C
u
rr
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t

Time Step

i∗d
i∗q
id
iq

Figure 3: Training data and neural-network output in the GCC tracking problem. The
dotted lines indicate the reference currents that were used during training, and how these
varied over the one-second training trajectory. The solid lines show the performance of
the trained neural network (trained using a stabilization matrix, as described in Sec. 3.2)
in controlling the actual currents, which lie very closely on top of the reference current
curve, indicating that the tracking performance is good.

During training, the total gradient ∂J
∂ ~w

was accumulated over the full tra-
jectory length, using Alg. 1. This gradient was accelerated by RPROP
(Riedmiller and Braun, 1993) before each weight update was finally made.
After 800 iterations, the average trajectory cost per time step along the whole
trajectory was calculated and noted in Table 1, in the first row (without sta-
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bilization matrix). This was repeated for 10 different experiments. Each
experiment started with a different initial neural-weights randomization in
the range [−0.1, 0.1].

Table 1: Results with and without the “stabilization matrix”, with fixed known A and B
matrices.

Results showing different J values for different learning
trials from 10 different initial-weight randomizations.

Without stabilization matrix 15.99 20.56 14.38 17.86 14.75
14.34 11.87 14.01 11.92 14.43

With stabilization matrix 9.49 9.07 526.05 9.51 10.19
ignoring constraint (6) 9.38 9.63 10.18 9.83 9.33

With stabilization matrix and 10.23 9.96 1183.4 10.48 11.00
truncated actions by (6) 10.16 10.38 10.95 10.74 10.20

The neural controllers obtained by the best results in the first row of Table
1 replicate the neural controller performance described by Li et al. (2012),
which can outperform PI and ACD methods in tracking ability (as we will
show in the experiments of Section 5.1). As can be seen in the table, the
results are not as good as when the stabilization-matrix method, described
in the next section, is used.

3. Training Neural Network with a Stabilization Matrix

As indicated in Section 1, the control of a GCC normally faces the chal-
lenges of rapidly changing target states, random variation of system param-
eters, and oscillation of grid voltage. These issues cause a difficulties in
training the action network to meet a variety of GCC control requirements.
In this section we consider RNN action networks, and look at making more
robust RNN controllers by trying to solve the problem of “exploding gradi-
ents”, through the introduction of the stabilization matrix.

3.1. Why is training the action network so hard?

Training the action network is difficult because every time a component of
the weight vector ~w is changed, the actions chosen by Eq. (5) will change at
every time step. However what makes things even more challenging than this

12
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Figure 4: Power plant recurrence

is that each changed action (∆~uk) will consequently change the next state
(∆~xk+1) the system passes through, by Eq. (4). And each changed state
will further change the next action chosen, ∆~uk+1, by Eq. (5). Clearly this
creates an on-going cascade of changes. Hence changing one component of
~w, even by the tiniest finite amount, can completely scramble the trajectory
generated by Eqs. (4)-(5). This feedback is shown in Fig. 4. This difficulty is
analogous to one of the major difficulties in training RNNs, since the model
Eq. (4) can be interpreted to be just another layer of a neural network. In
that case Fig. 4 becomes identical to the schematics of a RNN.

Consequently the function J(~x, ~w) can be over-sensitive to tiny changes
in ~w, chaotic even. In other words, the surface of the function in ~w-space can
be extremely crinkly, as illustrated by Fig. 5(a). Gradient-descent methods
find it hard to traverse such a rugged surface, and hence it is difficult to
train the action network effectively. This is one major reason why training
the action network, or any recurrent network, is hard. This is referred to as
the problem of “exploding” gradients by Hochreiter and Schmidhuber (1997).

Our approach of using a stabilization matrix attempts to smooth out the
surface of Fig. 5(a).

3.2. Using the stabilization matrix

Fig. 6 shows the way the state vector would evolve if the action ~u ≡ ~0
and if ~c ≡ ~0, i.e. if the action network chose completely passive actions.
In this case the state vector would drift around the state space like a cork
floating on an ocean current.

To solve the tracking problem, the task of the action network can be split
into two stages: Firstly to fight against moving with the arrows in Fig. 6,
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(a) An error surface that is difficult
for gradient-descent algorithms.

(b) A smooth error surface that
is easy for gradient-descent algo-
rithms.

Figure 5: Types of error surfaces commonly encountered. In our problem this is the surface
of the function J(~x, ~w) in ~w space.

which will most likely take the state away from the target state ~x∗. Then,
secondly, to actively head towards the tracking target point ~x∗. The idea of
the stabilization matrix is to make the first of these two objectives automatic.
This should make the action network’s task much simpler. The presence of
the stability matrix should make the arrows in Fig. 6 vanish.

To achieve this, we first find the fixed point of Eq. (4) with respect to
the control action by:

~x = A~x+ B(~u− ~c)
~0 = (A− I)~x+ B(~u− ~c)

~u− ~c = −B−1(A− I)~x

~u = −B−1(A− I)~x+ ~c

where I is the identity matrix.
Choosing this action will keep the plant in exactly the same state. Hence

we change the action chosen by the action network from Eq. (5) into Eq.
(9):

~uk = kpwmπ(~xk, ~x
∗
k − ~xk, ~w) + W0~xk + ~c (9)
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Figure 6: The motion which would occur from the equation ∂~x
∂k = A~x+B(~u−~c) if ~u−~c ≡ ~0.

In this case the motion simplifies to ∂~x
∂k = A~x.

where

W0 = −B−1(A− I) (10)

is the constant “stabilization matrix”, and π(~x, ~x∗−~x, ~w) is the output of the
neural network. W0 acts like an extra weight matrix in the neural network
that connects the input layer directly to the output layer. By the phrase “the
stabilization matrix”, we mean both the W0 and ~c terms in Eq. (9). This
combination can be justified since ~c could be included into the stabilization
matrix as a bias term, as is conventional in neural networks.

The stabilization matrix effectively is a hand-picked weight matrix which
helps the neural network do its job more easily. It aims to give the controller
a default behavior of being able to hold the system-state steady. This should
minimize the on-going cascade of changes that was described in the previ-
ous subsection as making training the action network difficult. Hence the
stabilization matrix aims to smooth out the crinkles of the J(~x, ~w) surface;
making the surface more like Fig.5(b) than Fig. 5(a).

Results for the stabilization-matrix method are shown in Table 1. The
results corresponding to the middle row of this table are displayed graphically
as the solid curves in Fig. 3.

When training with the stabilization matrix, we had to ignore the con-
straint of Eq. (6) since the stabilized actions (9) naturally have a different
range. We couldn’t simply force the constraint (6) through truncation, since
truncation would make the learning gradients vanish. The second row of Ta-
ble 1 shows these results when ignoring the constraint of Eq. (6). However
in the actual plant, the actions must obey that constraint, so the trajectory
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costs using this constraint are given in the third row of the table. In this
case, the same fully-trained neural networks created for row 2 of the table
were used again, but in reporting the final trajectory costs, the trajectories
were generated while enforcing Eq. (6) through direct truncation of each
component of ~uk.

Comparing the results using the stabilization matrix in the third row of
the table, to the results without the stabilization matrix (given in the first
row of the same table) we can see that using the stabilization matrix has
produced consistently lower J values (ignoring the single extreme outlier).
This is thought to be for the reasons given above. Further results also showing
the effectiveness of the stabilization matrix are presented in Section 4.2.

The stabilization-matrix method has improved learning performance, and
it was designed to do this by making the optimization surface smoother and
therefore easier to navigate. Of course more sophisticated learning optimizers
might be able to navigate a crinkly surface better than RPROP did (such as
the multi-stream extended Kalman filter algorithm (Feldkamp and Puskorius,
1998), or conjugate gradient descent), but it would be expected that the
stabilization-matrix method would assist these second-order algorithms to
achieve better RNNs than they otherwise would.

4. Producing Adaptive Behaviour: Learning off-line to be adaptive
on-line

The previous results are valid for a fixed inductance constant, L, and fixed
grid voltage ~c. However, when L or ~c vary, the A and B matrices in Eq. (4)
will also change, and so the fixed behavior learned by the action network will
no longer be optimal, and not solve the tracking problem correctly. Fig. 7
shows the resulting constant tracking error in several cases when L differs
from the L = 2mH value used in training. In this section we describe how
to remedy this, by creating a neural network that can adapt to changing
unknown A and B matrices.

4.1. Adaptive control with variable L

We note that L is not a variable that can be read– it is unknown to the
controller, as are the matrices A and B (since they depend on L in Eq. (2)),
but we want the controller to adapt to such circumstances and to optimize
the plant behavior nonetheless. With this aim in mind, we propose to train
one flexible action network that can adapt in real time without any need for
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(a) d-axis current (b) q-axis current

Figure 7: Constant tracking-error problem. The curves are all meant to lie on top of
the “reference” curve (the tracking target). However only the L = 2mH curve does this
properly; the L = 2.6mH and L = 1.4mH curves show a constant tracking error, especially
noticeable in the q-axis. This problem is caused by the action network’s inability to adapt
to the unknown and changing value of the constant L.

retraining, unlike traditional ACD methods which require continuous on-line
training. Hence we are training the controller off-line to be adaptive on-line,
following Prokhorov et al. (2002).

In this experiment, to train an adaptive controller, we regularly cycle
the L values through a sequence, such as L = 2mH, L = 2.6mH, and L =
1.4mH, changing every 0.1 seconds, so the controller can learn to adapt to
a standard range of conditions. Since the L value depends on the time step
k, we can denote the time dependent L value as Lk, and the corresponding
time dependent A and B matrix values as Ak and Bk.

The adaptive behavior tracking problem would easily be solved if we
were allowed to define the action network as π(~xk, ~x

∗
k, Lk, ~w), but the value

of Lk is hard to observe in reality and thus the neural network must deduce
it for itself. In addition, we must not change the W0 stabilization matrix
depending on Lk; since Lk is unknown to the neural controller, W0 must
remain constant.

Summarizing, when we switch to variable Lk, the problem of control-
ling the neural-network output function π(~x, ~x∗−~x, ~w) becomes significantly
harder, as can be seen in the first row of Table 2. Comparing these results
to those previously shown for the equivalent non-adaptive problem (in the
second row of Table 1), we see that they are much worse. This worsening of
results manifests itself an inability to control the plant as intended, as shown
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by a constant tracking error in Fig. 7.

Table 2: Results for adaptive behavior controllers. All are using the fixed stabilization
matrix, ignoring constraint (6), with changing unknown Ak and Bk matrices.

Results showing different J values for different learning
trials from 10 different initial weight randomizations.

With no adaptive behavior 28.14 25.40 28.31 28.39 28.24
π(~xk, ~x

∗
k − ~xk, ~w) 28.53 421.08 27.33 25.10 27.29

With extra input ~xk − x̂k 17.04 17.90 16.21 20.45 22.52
14.45 13.96 17.35 14.32 15.75

With extra inputs ~xk − x̂k 13.52 12.03 12.14 13.14 11.78
and ~sk 13.18 13.46 12.77 705.66 13.33

To make the neural network become adaptive, it needs to have some idea
on how the actual plant behavior is differing from its expected behavior,
so that the controller can recalibrate its behavior intelligently during run
time, and try to eliminate the constant tracking error shown in Fig. 7.
For example, if we consider the situation of the controller representing a
marksman shooting at a target under strong cross-wind conditions, then by
observing the deflection the wind causes to the first shot, the marksman can
make a compensatory adjustment to the subsequent shooting angle to try to
cancel out the effect of the wind. Hence we give the neural network an extra
input ~xk − x̂k which reflects the difference between the actual current state
(~xk) and the predicted current state (x̂k) calculated with the fixed model,
such that x̂k is defined by:

x̂k := Ā~xk−1 + B̄(~uk−1 − ~c), (11)

where Ā and B̄ are constant matrices of (4) chosen for the default L = 2mH
value. In the real plant, Lk often differs from this default value, and so the
Ak and Bk matrices will differ from Ā and B̄. Hence the difference ~xk − x̂k
will be non-zero, and it will give useful feedback for telling the controller how
to adapt to the dynamically changing plant conditions.

Adding this extra input ~xk − x̂k to the neural network changes the argu-
ments of its function π(~xk, ~x

∗
k − ~xk, ~w) into π(~xk, ~x

∗
k − ~xk, ~xk − x̂k, ~w). This

alteration causes the results to improve to those in the second row of Table
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2, which show a big improvement over the previous row. In this case, and
in the following experiments, the stabilization matrix is defined by the fixed
Ā and B̄ matrices, i.e. W0 := −B̄−1(Ā− I), since the changing Ak and Bk

matrices are not known to the controller. Also, the new input was rescaled
into tanh

(
~xk−x̂k
1000

)
and this extra vector input meant the neural-network ar-

chitecture needed modifying to now have 6 input units.
Theorem 1 in Appendix A proves that adding this as an extra input is

sufficient, in principle, to fix the constant tracking-error problem previously
seen, under any mild unknown perturbations to the system and control ma-
trices A and B, and under various tight assumptions stated in the theorem.
In practice good action-network performance holds under more liberal con-
ditions than those listed in the theorem, as the results in this section and
the experiments of Section 5 show. Furthermore, Theorem 2 in the appendix
shows that it is not possible to solve the problem if this extra input is re-
moved.

Finally, to enhance performance further, an extra neural input pair is
used to describe the previous action taken, ~uk−1. This allows the network
to observe whether this previous action led to the anticipated outcome in
~xk − x̂k, and if not, an appropriate adjustment could be made to the next
action, ~uk, to compensate for this unexpected behavior. This is explicitly
to handle the uncertainty in the Bk matrix. To ensure this new input was
rescaled suitably, and also to avoid the scrambling effect of the stabilization
matrix, we used the previous direct output of the neural-network function
π(·), instead of the output of Eq. (9). Lines 4, 5 and 8 of Alg. 2 give the
exact details of how this new input was calculated.

We stress that this input, which we denote ~sk, was not intended to act
as a general purpose “context” unit such as is conventionally used in RNN
architectures. Unlike a conventional context unit, our input ~sk is heavily con-
strained in that it also determines the action vector which controls the power
plant, so it cannot freely be used to retain arbitrary context information from
one time step to the next. This design decision was made deliberately to con-
strain the way the RNN can generate feedback; the intention being to simplify
the training process (since there are less possibilities of feedback mechanism
to explore) and also to make the final controller more robust by being less
likely to encounter a context that has never been seen before, possibly caus-
ing a malfunction at run-time (because the feedback space is reduced, this is
less likely to happen). These constraints did not hinder our controller from
producing very effective solutions, as the results in this section and the next
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show. If a more complicated plant was to be controlled then more elaborate
feedback units could be introduced, as and when required.

Combining all of these new features, i.e. the two extra neural input pairs
to allow adaptive behavior, plus the stabilization matrix, means a trajectory
can now be generated by lines 1-10 of Alg. 2. Adding these features changes
the results to those shown in the final row of Table 2, which shows a further
improvement over the previous row (ignoring the single extreme outlier re-
sult). Of course, the performance under changing L is always going to be a
bit worse than with fixed L (Table 1), since it is always going to take some
time for the neural network to make enough observations of the plant’s actual
behavior to deduce the values of the changing hidden matrices Ak and Bk.
However, we show in Section 5.2 that the neural controller is able to make
an almost instantaneous adaptation to the plant’s changing conditions, and
a virtual elimination of the constant tracking error previously shown.

The pseudocode in Alg. 2 gives the correct gradient calculation by BPTT,
which was again generated using the method of Werbos et al. (1992). With
both of the new extra neural input pairs, the final MLP has dimensions
8-6-6-2.

4.2. Effectiveness of the stabilization matrix in the adaptive control
All of the experiments in the previous subsection used the stabilization-

matrix method to enhance neural training– without it the results deteriorate
significantly, as can be seen in Table 3. This is further evidence that the
crinkly error surface is being smoothed out by the stabilization matrix.

Table 3: Effect of the stabilizing matrix on the adaptive behavior controllers. All are using
the extra inputs ~xk − x̂k and ~sk, for the vector-control problem with changing unknown
Ak and Bk matrices.

Results showing different J values for different learning
trials from 10 different initial weight randomizations.

With stabilizing matrix, 14.48 13.61 13.81 13.97 13.32
and action truncation by (6) 14.28 14.38 14.10 1446.4 14.23
Without stabilizing matrix 35.46 39.32 39.96 52.47 65.92

31.50 87.58 19.89 37.58 32.01

Of course the stabilization matrix W0 was only calculated for the constant
L = 2mH value, so it would not provide full stabilization when L took on a
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Algorithm 2 Enhanced BPTT for tracking control problem, with time vary-
ing A and B matrices, using a stabilization matrix and adaptive controller

1: J ← 0, x̂0 ← ~x0, ~s0 ← ~0
2: {Unroll a full trajectory:}
3: for k = 0 to K − 1 do
4: ~yk ← π(~xk, ~x

∗
k − ~xk, ~xk − x̂k, ~sk, ~w) {Neural-network output}

5: ~uk ← kpwm~yk + W0~xk + ~c {Stabilized control action}
6: ~xk+1 ← Ak~xk + Bk (~uk − ~c) {Next state, using the time dependent Ak

and Bk matrices}
7: x̂k+1 ← Ā~xk + B̄ (~uk − ~c) {Predicted next state, according to the fixed

Ā and B̄ matrices}
8: ~sk+1 ← ~yk {Previous network output}
9: J ← J + γkU(~xk, ~x

∗
k, ~uk)

10: end for
11: {Backwards pass along trajectory:}
12: J ~w ← ~0
13: J ~xK ← ~0, J x̂K ← ~0, J ~sK ← ~0
14: for k = K − 1 to 0 step −1 do

15: J ~uk ← (Bk)
TJ ~xk+1 + B̄TJ x̂k+1 + γk

(
∂U(~xk,~x

∗
k,~uk)

∂~uk

)
16: J ~yk ← kpwmJ ~uk + J ~sk+1

17: J ~xk ←
(
dπ(~xk,~x

∗
k−~xk,~xk−x̂k,~sk, ~w)

d~xk

)
J ~yk + W0

TJ ~uk + (Ak)
TJ ~xk+1 +

ĀTJ x̂k+1 + γk
(
∂U(~xk,~x

∗
k,~uk)

∂~xk

)
18: J x̂k ←

(
∂π(~xk,~x

∗
k−~xk,~xk−x̂k,~sk, ~w)

∂x̂k

)
J ~yk

19: J ~sk ←
(
∂π(~xk,~x

∗
k−~xk,~xk−x̂k,~sk, ~w)

∂~sk

)
J ~yk

20: J ~w ← J ~w +
(
∂π(~xk,~x

∗
k−~xk,~xk−x̂k,~sk, ~w)

∂ ~w

)
J ~yk

21: end for
22: {On exit, J ~w holds ∂J

∂ ~w
for the whole trajectory.}
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different value. But it seems that the stabilization matrix was still effective
in improving results on this problem. It remains to be seen how different the
matrices A and B can become before the stabilization matrix stops working.

Fig. 8. shows the average cost per trajectory time step for successful
trainings of the action network corresponding to the four conditions shown
in Table 2 and 3, i.e., without stabilization matrix (case 1), with stabilization
matrix (case 2), with extra input ~xk − x̂k (case 3), and with extra inputs
~xk − x̂k and ~sk (case 4). As the figure indicates, without the stabilization
matrix, it is hard for the neural network to learn; but the overall average
cost dropped to a small number very quickly with the stabilization matrix
and the extra inputs ~xk − x̂k and ~sk.

Figure 8: Average cost per trajectory time step for training neural controller

5. Simulation Experiments

The simulation experiments conducted so far in this paper have shown a
systematic development of the stabilization-matrix method, and of the neural
inputs used for adaptive behaviour. These experiments were all conducted
on the training data-set, i.e. the fixed reference target curve given in Fig.
3. In this section we provide further simulation experiments for the GCC
controller. These are based on the final neural network developed in Section
4, and applied the action constraint of Eq. (6), and these experiments operate
out-of-sample from the training data. Also a non-GCC controller experiment
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is included which demonstrates how the stabilization matrix can also be used
when the B matrix is non-invertible.

5.1. Comparison of Neural Controller with Conventional Standard and DCC
Vector-Control Mechanisms

In this comparison study, the performance of the neural controller is com-
pared against standard PI controllers, under the same plant conditions as
described in Section 2.3 (i.e. no adaptation to changing plant behavior was
required). Fig. 9 shows the results. One of the result curves is for the neu-
ral controller, another is for a tuned PI conventional GCC controller (Luo
et al., 2009; Carrasco et al., 2006; Dannehl et al., 2009), and a third is for a
“direct-current vector control” structure (DCC, (Li et al., 2010, 2011)). The
PI controllers were tuned until the controller performance was acceptable (Li
et al., 2011). The reference currents are given a step-change at 0.5s into the
experiment, as shown in the figure.

(a) d-axis current (b) q-axis current

Figure 9: Comparison of two PI controllers (“conventional”, and “DCC”) with the neural
vector controller.

The figure indicates that among the three vector-control strategies, the
neural controller has the fastest response time, low overshoot, and best per-
formance in tracking the changing reference current. The contrast between
the tracking ability of the neural controller and the PI controllers is strik-
ing, with the neural controller solving the tracking problem almost perfectly,
whereas the PI controllers oscillate around the reference current noticeably
before settling down. This contrasts to published results for ACD designs,
where ACDs only make a marginal improvement over PIs (for example see
the results graphs of Qiao et al. (2008b, 2009a)).
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5.2. Control Evaluation under Variable Parameters of GCC System

The previous experiment was for fixed A and B matrices. We now see
how the controller can adapt when these matrices drift from their original
values. Fig. 10 compares how the neural controller is affected when there is
an increase or a decrease of inductance L by 30% from its nominal value. For
all the cases, a disturbance voltage

[
∆vd
∆vq

]
is also added to the grid voltage,

and Eq. (9) is used to compute the final control voltage applied to the system.
The results of Fig. 10 show a virtual elimination of the constant tracking

error previously seen in Fig. 7, and the neural controller successfully making
almost-instantaneous adaptation (with almost zero rise time and settling
time) to the changing L, Ak and Bk system variables, with an adequate
overshoot. The results show successful tracking over a larger (and therefore
more challenging) range of reference current values (i∗d ∈ [−400, 100], i∗q ∈
[−100, 0]) than was attempted in Fig. 7.

This experiment shows the RNN is successfully making adaptation to the
changing plant behavior, while maintaining the tight tracking of the reference
current that was seen in the previous experiment.

(a) L = 2.6mH, ∆vd = −0.3 ∗ vd,
∆vq = −0.1 ∗ vd

(b) L = 1.4mH, ∆vd = −0.3 ∗ vd,
∆vq = −0.1 ∗ vd

Figure 10: Performance of neural vector controller under variable grid-filter inductance
and PCC voltage conditions.

5.3. Ability to Track Fluctuating Reference Current

GCCs are typically used to connect wind turbines and solar photovoltaic
(PV) arrays to the grid. Due to variable weather conditions, the power trans-
ferred from a wind turbine or a PV array changes rapidly, making the GCC
reference current (the target state) vary constantly over time. To represent
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such conditions, a variable d-axis reference current is generated while the
q-axis reference current is set at zero (i.e., zero reactive power), with the
standard fixed inductance value, L = 2mH. Fig. 11 shows that the neural
network, with the stabilization matrix, predictive error signal ~xk − x̂k, and
control action history ~sk, performs a near perfect match to the rapidly chang-
ing reference current. This kind of rapid close tracking would not be possible
by PI controllers, as indicated by their sluggish performance in the previous
experiments (e.g. Fig. 9).

Figure 11: Performance of neural vector controller under a variable reference current
condition.

5.4. Experiment with Non-invertible Control Matrix

We now present an experiment where the matrix B is rectangular and
non-invertible. The system considered here is taken from (Kirk, 2004, Ex.5.2-
3):

∂~x

∂t
=

[
0 1
2 −1

]
~x+

[
0
1

]
u, (12)

for a state vector ~x :=
[
x0

x1

]
and control u ∈ <. This equation was discretized

using a sampling time Ts = 0.01, producing matrices A and B analogous
to those used in Eq. (3). Since B is non-square here, and therefore non-
invertible, in order to use the stabilization matrix, we replaced the matrix
inverse operation in Eq. (10) by the Moore-Penrose pseudoinverse (Golub
and Van Loan, 1983) to obtain the results in the following experiment.

The problem is to optimize the cost-to-go function J (Eq. 7) for,

U(~xk, ~x
∗
k, ~uk) :=

(
x0(k)− 1

)2
+ 0.0025 (u(k))2 . (13)
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Optimizing this cost function will move the state vector towards x0 = 1 as
quickly as possible, while also penalizing excessively large actions u. Al-
though this cost function does not explicitly specify a target for the state
vector component x1, an implicit target for it is x1 = 0, since the only way
to obtain a fixed point of Eq. (12) is by achieving x1 = 0. Hence in this
problem, the reference state can be considered to be ~x∗ = [ 1

0 ].
The action network had a layered structure 4-6-1, with bias-weights for

each node, extra short-cut connections from the input to the output layer,
hyperbolic tangent activation functions at all network nodes, and weights
initially randomized in the range [−.1, .1]. The 4 inputs to the neural network
were tanh(~xk/10) and tanh(~x∗k−~xk). The output of the neural network y was
used to generate the action via the relationship u = 10y when no stabilization
matrix was used, and u = 10y+W0~x when the stabilization matrix was used.

The trajectory start state was always ~x = [ 2
1 ], and the trajectory duration

was 3 seconds (i.e. 300 time steps), with discount factor γ = 1. In this
problem no adaptive behaviour was required, since the A and B matrices are
fixed and known. Training took place for 800 iterations, from 10 different
random weight initializations, using BPTT with RPROP, both with and
without a stabilization matrix. The exact derivatives of Eq. (13) were made
available to the BPTT algorithm. Results are shown in Table 4 and Fig. 12
shows a trajectory generated with the stabilization matrix, i.e. effectively
solving the problem by following the reference state ~x∗.

Table 4: Results with and without the “stabilization matrix”, for the problem defined in
Sec. 5.4.

Results showing different J values for different learning
trials from 10 different initial weight randomizations.

Without stabilization matrix 0.2508 0.2508 0.2508 0.2506 0.2507
0.2507 0.2508 0.2507 0.2509 0.2508

With stabilization matrix 0.2030 0.2030 0.2030 0.2029 0.2029
0.2039 0.2029 0.2028 0.2029 0.2029

6. Conclusions

In this paper we have shown how a RNN could be used to control a
three-phase grid-connected rectifier/inverter for renewable, micro-grid and
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Figure 12: Trajectory after training with a stabilization matrix, for the problem defined
in Sec. 5.4.

electric power system applications. We described how conventional neural
controllers, which require on-line retraining to achieve their adaptation, can
have limitations in adaptation speed and convergence. In contrast, the con-
troller we have proposed does not need any on-line retraining, and can adapt
effectively and almost instantaneously to changing plant conditions and/or
changing reference commands. Compared to standard vector-control meth-
ods, including recently developed direct-current vector-control techniques,
the neural vector-control approach produces good response time, low over-
shoot, and in general, excellent performance.

We have proposed some novel RNN inputs that allow for rapid adap-
tation and have discussed the motivations for using these unusual inputs
as opposed to conventional generic context units. We have also introduced
the stabilization-matrix method to ease RNN training in these experiments.
The benefits of this method have been shown in numerical experiments, in
Sections 3 to 5, in the case-study GCC problem and in a different problem
domain demonstrating a situation with a non-invertible control matrix. It is
our contention that this RNN controller architecture can have generic control
applications to other kinds of plant, and produce a competitive alternative
method to ACD and PI controllers.

We also have tried to emphasise the importance of addressing the prob-
lem of “exploding” gradients in RNN training. The results of our exper-
iments show that the use of the stabilization matrix has correctly
addressed this significant issue, and the concept has been used to
attack the long-standing problem of efficiently training RNNs to
solve the tracking problem. Our approach contrasts to conventional
RNN research which tends to focus on the complementary problem known as
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“vanishing” gradients (Hochreiter and Schmidhuber, 1997), or superior opti-
mizers (Feldkamp and Puskorius, 1998). We have described how the method
we proposed can be used in conjunction with these more powerful optimizers.

In this research we have concentrated on situations where the A and B
matrices are fixed or changing with small deviations over time. In future
research, it will be necessary to investigate more problem domains including
situations where the A and B matrices are functions of both ~x and t.

Appendix A. Proof of sufficiency of the arguments chosen to solve
the adaptive tracking problem

In this appendix, in Theorem 1 we prove that a neural network with
inputs (~x∗k−~xk) and (~xk− x̂k) is theoretically capable of solving the tracking
problem, under mildly perturbed system and control matrices, A and B. In
Theorem 2 we show that it is not possible for a neural network with only the
inputs ~xk and ~x∗k to solve the same problem.

Theorem 1. A neural network of the form π(~xk, ~x
∗
k − ~xk, ~xk − x̂k, ~w) can

solve the tracking problem for some unknown constant system matrices A and
B, which are suitably close approximations to some known constant system
matrices Ā and B̄, if the following 4 conditions are all met:

1. The known constant matrices Ā and B̄ are sufficiently close approxi-
mations to the unknown constant matrices A and B.

2. The matrix B̄ is square and invertible.

3. The tracking target ~x∗ is sufficiently slowly moving such that it can be
treated as constant.

4. The discrete-time matrices Ā and B̄ were generated from an underlying
continuous-time process with sufficiently small sampling time.

Proof. The proof is split into two steps. Firstly, in “Proof Part-A”, it is
proven that we can simplify the situation to the case where both Ā and B̄
are equal to identity matrices. Secondly, in “Proof Part-B”, this simplified
situation is analysed and a choice of action, constructed only from the argu-
ments to the neural network, is proven to make the system state ~xk converge
to the tracking target ~x∗.

In both of these proof steps, we split the unknown matrices A and B into
known parts (Ā and B̄) and unknown parts (A∆ and B∆), respectively, such
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that A := Ā+A∆ and B := B̄+B∆. Under this notation, the state-evolution
equation (4) changes into

~xk+1 = (Ā + A∆)~xk + (B̄ + B∆)(~uk − ~c). (A.1)

Also, by Condition 3, we can assume the tracking target ~x∗k is fixed and
hence drop the k subscript and just use ~x∗.

The two main proof parts now follow:

Proof Part-A. We define a transformed control vector ~vk, which is related
to the original control vector ~uk by the relationship:

~uk = B̄−1
(
~vk − (Ā− I)~xk

)
+ ~c. (A.2)

Substituting this into (A.1) gives:

~xk+1 =(Ā + A∆)~xk + (B̄ + B∆)B̄−1
(
~vk − (Ā− I)~xk

)
(by (A.2))

=(Ā + A∆)~xk + (~vk − (Ā− I)~xk) + B∆B̄−1
(
~vk − (Ā− I)~xk

)
=(A∆)~xk + (~vk + ~xk) + B∆B̄−1

(
~vk − (Ā− I)~xk

)
=
(
I + A∆ −B∆B̄−1(Ā− I)

)
~xk +

(
I + B∆B̄−1

)
~vk

= (I + A′∆) ~xk + (I + B′∆)~vk (A.3)

where

A′∆ := A∆ −B∆B̄−1(Ā− I), (A.4)

and

B′∆ := B∆B̄−1. (A.5)

Therefore we only need consider control systems of the form (A.3). ~vk
is now the control vector. Next we must show that the two perturbation
matrices, A′∆ and B′∆, in (A.3) are both small.

The matrices Ā and B̄ were derived from an exact discrete-time system
of the form of Eq. (4), i.e.

~xk+1 = Ā~xk + B̄(~uk − ~c), (A.6)
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which itself was derived from an underlying continuous-time system, of the
form of Eq. (2),

∂~x(t)

∂t
= F~x(t) + G(~u(t)− ~c), (A.7)

with sampling time Ts.
Note that the discrete-time system (Eq. (A.6)) is related to the continuous-

time system (Eq. (A.7)) by a first-order Taylor-series expansion, as follows:

~xk+1 = ~xk +
∂~x

∂t
Ts + O

(
(Ts)

2
)

= ~xk + (F~xk + G(~uk − ~c))Ts + O
(
(Ts)

2
)

(by Eq. (A.7))

= (I + FTs)~xk + G(~uk − ~c)Ts + O
(
(Ts)

2
)

(A.8)

By comparing Eqs. (A.8) and (A.6), we can see that Ā = I + FTs +
O
(
(Ts)

2
)
, and B̄ = GTs + O

(
(Ts)

2
)
. Therefore as Ts → 0, we must have

Ā→ I and B̄→ 0. Therefore by Condition 4, we have

Ā− I ≈ 0 (A.9)

Also, by Conditions 1 and 2, we have,1

B∆B̄−1 ≈ 0. (A.10)

We can now see that A′∆ is small, since all of the terms in equation (A.4)
are small (by Eqs. (A.9) and (A.10) and Condition 1 which implies that both
A∆ and B∆ are small). Also, B′∆ is small too, by Eqs. (A.5) and (A.10).

So working with Eq. (A.3), we can relabel A′∆ to A∆ and B′∆ to B∆ and
~v to ~u, and therefore work with

~xk+1 = (I + A∆) ~xk + (I + B∆) ~uk, (A.11)

where both A∆ and B∆ are small. This equation is similar to (A.1), except
that we can now assume Ā and B̄ are both identity matrices.

1This equation takes a bit of consideration, since Ts → 0 implies both B∆ and B̄ have
magnitudes proportional to Ts, and this will make B̄−1 large, implying a possible violation
of Eq. (A.10). However when the product B∆B̄−1 is formed, the two proportionalities
to Ts cancel each other, and therefore Ts does not influence the final magnitude of this
product. Hence we only need consider Conditions 1 and 2 to justify Eq. (A.10).
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Proof Part-B. The simplified state-evolution equation is given by (A.11),
or equivalently,

~xk =(I + A∆)~xk−1 + (I + B∆)~uk−1. (A.12)

In this system (A.12), the “predicted” state defined by (11) simplifies
down into:

x̂k := ~xk−1 + ~uk−1. (A.13)

We now prove that it is possible to control the above system, assuming
sufficiently small perturbation matrices A∆ and B∆, by making our action
choice a function of the inputs of the neural network, as follows. Consider the
following choice of action, which is permitted because it is purely a function
of the arguments of π(~xk, ~x

∗
k − ~xk, ~xk − x̂k, ~w):

~uk =(~x∗ − ~xk)− (~xk − x̂k) (A.14)

=~x∗ − 2~xk + ~xk−1 + ~uk−1 (by (A.13))

=~x∗ − 2(~xk−1 + A∆~xk−1 + ~uk−1 + B∆~uk−1) + ~xk−1 + ~uk−1 (by (A.12))

=~x∗ − 2~xk−1 − 2A∆~xk−1 − 2~uk−1 − 2B∆~uk−1 + ~xk−1 + ~uk−1

=~x∗ − ~xk−1 − 2A∆~xk−1 − ~uk−1 − 2B∆~uk−1

=~x∗ − (I + 2A∆)~xk−1 − (I + 2B∆)~uk−1 (A.15)

Combining (A.12) and (A.15) into one discrete-time system gives:(
~xk
~uk

)
= E

(
~xk−1

~uk−1

)
+

(
0
~x∗

)
(A.16)

where

E :=

(
(I + A∆) (I + B∆)
−(I + 2A∆) −(I + 2B∆)

)
. (A.17)

We must prove that (A.16) converges. Note that a fixed point of this is(
~x∗ −(I + B∆)−1A∆~x

∗)T , because then(
~x∗

−(I + B∆)−1A∆~x
∗

)
= E

(
~x∗

−(I + B∆)−1A∆~x
∗

)
+

(
0
~x∗

)
(A.18)
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This fixed point satisfies ~xk = ~x∗, so it is a correct solution to the tracking
problem.

So we next must show that this fixed point is an attractor. Substituting
shifted coordinates ~xk := ~x′k +~x∗ and ~uk := ~u′k− (I+B∆)−1A∆~x

∗ into (A.16)
moves the fixed point to the origin:(

~x′k + ~x∗

~u′k − (I + B∆)−1A∆~x
∗

)
= E

(
~x′k−1 + ~x∗

~u′k−1 − (I + B∆)−1A∆~x
∗

)
+

(
0
~x∗

)
= E

(
~x′k−1

~u′k−1

)
+ E

(
~x∗

−(I + B∆)−1A∆~x
∗

)
+

(
0
~x∗

)
= E

(
~x′k−1

~u′k−1

)
+

(
~x∗

−(I + B∆)−1A∆~x
∗

)
(by Eq. (A.18))

⇒
(
~x′k
~u′k

)
= E

(
~x′k−1

~u′k−1

)
(A.19)

Hence we just need to prove that (A.19) converges to the origin.
We split the matrix E in (A.17) into two parts: a core matrix C :=(

I I
−I −I

)
and a small perturbation matrix P :=

(
A∆ B∆
−2A∆ −2B∆

)
, such that P +

C ≡ E, and also define ~yk :=
(
~x′k
~u′k

)
, so that (A.19) can be rewritten as

~yk = (C + P)~yk−1.

Applying two steps of this iteration, and noting that C2 =
(

I I
−I −I

) (
I I
−I −I

)
=

( 0 0
0 0 ), gives:

~yk = (CP + PC + P2)~yk−2. (A.20)

Since every term in this product has a factor of P, which is assumed
small, clearly this equation will converge to zero as k →∞. This completes
the proof that it is possible to solve the tracking problem using a function
of the form π(~xk, ~x

∗
k − ~xk, ~xk − x̂k, ~w), under the assumed conditions of the

theorem.

Remark. Note that this theorem proof does not attempt to show that the
action defined by Eq. (A.14) is in any way an optimal choice, or that deciding
to base control decisions using an arbitrary function of the form π(~xk, ~x

∗
k −
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~xk, ~xk− x̂k, ~w) is in any way optimal; just that this choice produces a possible
solution, which is guaranteed to converge to the tracking target, eventually,
and under the given assumptions. In fact, the results in the third row of
Table 2 show that additional inputs can improve tracking performance over
the basic function considered in Theorem 1. These experiments also show the
neural network can cope with fast-moving tracking targets (e.g. in Section
5.3), and finite Ts values, so the four strict conditions of this theorem may
be stretched, to a certain extent, in practical applications.

A key motivation of this proof has been to show that the disturbances to
the A and B matrices can be to all matrix components, and tracking will
still be possible provided those disturbances are sufficiently small.

Theorem 2. It is not possible for a feed-forward neural network with only
the inputs ~xk and ~x∗k to solve the tracking problem, when the system and
control matrices A and B have undergone a mild disturbance.

Proof. Suppose we had actions ~uk generated by a function ~uk := π(~xk, ~x
∗),

and suppose this control action was able to move the plant’s state vector
to the tracking target ~x∗ and hold it there, so that ~xk = ~x∗ for all k > k0,
for some constant k0. At this target state, i.e. at ~xk+1 = ~xk = ~x∗, the
state-evolution equation, in the simplified frame of reference given by (A.11),
becomes:

~x∗ = (I + A∆) ~x∗ + (I + B∆) ~uk

⇒ ~uk = − (I + B∆)−1 A∆~x
∗

This is the action required to hold the plant at the target state, once there.
So, when ~xk = ~x∗, we must have π(~xk, ~x

∗) equal to

π(~x∗, ~x∗) = − (I + B∆)−1 A∆~x
∗

The right-hand side (RHS) of this equation has a dependency on the pertur-
bation matrices, A∆ and B∆. This means, in different plants with different
perturbation matrices, the RHS will evaluate to different values. The left-
hand side (LHS) however is constant for the given ~x∗ vector. So this is a
contradiction; it is not possible for the constant LHS to equal the varying
possible RHS values. Consequently, it is not possible to solve this tracking
problem by choosing actions based only on ~xk and ~x∗.
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