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(To appear in IEEE Transactions on Neural Networks and Learning Systems, Vol.??, Issue ??, October 201?, pages ?–?. Copyright the authors
and IEEE, http://ieeexplore.ieee.org.)

Abstract—We consider the adaptive dynamic programming
technique called Dual Heuristic Programming (DHP), which is
designed to learn a critic function, when using learned model
functions of the environment. DHP is designed for optimising
control problems in large and continuous state spaces.

We extend DHP into a new algorithm that we call VGL(λ),
and prove equivalence of an instance of the new algorithm to
backpropagation through time for control with a greedy policy.
Not only does this equivalence provide a link between these
two different approaches, but it also enables our variant of
DHP to have guaranteed convergence, under certain smoothness
conditions and a greedy policy, when using a general smooth
non-linear function approximator for the critic.

We consider several experimental scenarios including some
which prove divergence of DHP under a greedy policy, which
contrasts against our proven-convergent algorithm.

Index Terms—Adaptive Dynamic Programming, Dual Heuris-
tic Programming, Value-Gradient Learning, Backpropagation
Through Time, Neural Networks

I. INTRODUCTION

ADAPTIVE Dynamic Programming (ADP) [1] is the study
of how an agent can learn actions that minimise a long-

term cost function. For example a typical scenario is an agent
moving in a state space, S ⊂ Rn, such that at time t it has
state vector ~xt. At each time t ∈ Z+ the agent chooses an
action ~ut from an action space A, which takes it to the next
state according to the environment’s model function

~xt+1 = f(~xt, ~ut), (1)

and gives it an immediate cost or utility, Ut, given by the
function Ut = U(~xt, ~ut). The agent keeps moving, forming a
trajectory of states (~x0, ~x1, . . .), which terminates if and when
a state from the set of terminal states T ⊂ S is reached. If
a terminal state ~xt ∈ T is reached then a final instantaneous
cost Ut = U(~xt) is given which is independent of any action.

An action network, A(~x, ~z), is the output of a smooth
approximated function, e.g. the output of a neural network
with parameter vector ~z. The action network, which is also
known as the actor or policy, assigns an action

~ut = A(~xt, ~z) (2)
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to take for any given state ~xt.
For a trajectory starting from ~x0 derived by following (1)

and (2), the total trajectory cost is given by the cost-to-go
function, or value function, which is

J(~x0, ~z) =

〈∑
t

γtU(~xt, ~ut)

〉
.

Here 〈〉 denotes expectation, and γ ∈ [0, 1] is a constant
discount factor that specifies the importance of long term costs
over short term ones. The objective of ADP is to train the
action network such that J(~x0, ~z) is minimised from any ~x0.

ADP also uses a second approximated function, the scalar
valued critic network, J̃(~x, ~w). This is the output of a smooth
general scalar function approximator, e.g. a neural network
with a single output node and weight vector ~w. The objective
of training the critic network is for it act as a good approxima-
tion of the cost-to-go function, i.e. so that J̃(~x, ~w) ≈ J(~x, ~z)
for all states ~x.

For any given critic network, the greedy policy is a policy
which always chooses actions that lead to states that the critic
function rates as best (whilst also taking into account the
immediate short term utility in getting there), i.e. a greedy
policy chooses actions according to

~u = arg min
~u∈A

〈
U(~x, ~u) + γJ̃(f(~x, ~u), ~w)

〉
∀~x. (3)

When a critic and action network are used together, the
objective is to train the action network to be greedy with
respect to the critic (i.e. the action network must choose
actions ~ut = A(~xt, ~z) that satisfy (3)), and to train the critic
to approximate the cost-to-go function for the current action
network. If these two objectives can be met simultaneously,
and exactly, for all states, then Bellman’s Optimality Condition
[2] will be satisfied, and the ADP objective of optimising the
cost-to-go function from any start state will be achieved.

We follow the methods of Dual Heuristic Programming
(DHP) and Globalized DHP (GDHP) [1], [3]–[6]. DHP and
GDHP work by explicitly learning the gradient of the cost-to-
go function with respect to the state vector, i.e. they learn ∂J

∂~x
instead of J directly. We refer to these methods collectively as
value-gradient learning (VGL), to distinguish them from the
usual direct updates to the values of the cost-to-go function,
which we refer to as value-learning methods.



2

We extend the VGL methods to include a bootstrapping
parameter λ to give the algorithm we call VGL(λ) [7], [8]. This
is directly analogous to how the reinforcement learning (RL)
algorithm TD(λ) is extended from TD(0) [9]. This extension
was desirable because, for example, choosing λ = 1 can
lead to increased stability in learning, and guaranteeing stably
convergent algorithms is a serious issue for all critic learning
algorithms. Also, setting a high value of λ can increase the
“look-ahead” of the training process for the critic, which can
lead to faster learning in long trajectories.

The VGL methods work very efficiently in continuous do-
mains such as autopilot landing [4], power system control [10],
simple control benchmark problems such as “pole balancing”
[11], and many others [1]. It turns out to be only necessary to
learn the value gradient along a single trajectory, while also
satisfying the greedy policy condition, for the trajectory to be
locally extremal, and often locally optimal. This is for reasons
closely related to Pontryagin’s minimum principle [12], as
proven by [13]. This is a significant efficiency gain for the
VGL methods and is their principal motivation. In contrast,
value-learning methods must learn the values all along the
trajectory and over all neighbouring trajectories too to achieve
the same level of assurance of local optimality [14].

All VGL methods are model-based methods. We assume the
functions f and U each consist of a differentiable part plus,
optionally, an additive noise part, and we assume they can be
learned by a separate “system identification” learning process,
for example as described by [15]. This system identification
process could have taken place prior to the main learning
process, or concurrently with it. From now on in this paper, we
assume f(~x, ~u) and U(~x, ~u) refer to the learned, differentiable
model functions; and it is with respect to these two learned
functions that we are seeking to find optimal solutions. Using
a neural network to learn these two functions would enforce
the required smoothness conditions onto these two functions.

Proving convergence of ADP algorithms is a challenging
problem. References [5], [16], [17] show the ADP process will
converge to optimal behaviour if the critic could be perfectly
learned over all of state space at each iteration. However in
reality we must work with a function approximator for the
critic with finite capabilities, so this assumption is not valid.
Variants of DHP are proven to converge by [18], [19], the first
of which uses a linear function approximator for the critic
which can be fully trained in a single step, and the second
of which is based on the Galerkin-based form of DHP [20],
[21]. We do not consider the Galerkin-based methods (which
are also known as residual-gradient methods by [21]) for
reasons given by [22] and [7, sec 2.3]. Working with a general
quadratic function approximator, [20, sec.7.7-7.8] proves the
general instability of DHP and GDHP. This analysis was for
a fixed action network, so with a greedy policy convergence
would presumably seem even less likely. In this paper, we
show a specific divergence example for DHP with a greedy
policy in Section IV.

One reason that the convergence of these methods is dif-
ficult to assure is that in the Bellman condition, there is an
interdependence between J(~x, ~z), A(~x, ~z) and J̃(~x, ~w). We
make an important insight into this difficulty by showing (in

Lemma 4) that the dependency of a greedy policy on the critic
is primarily through the value-gradient.

In this paper, using a method first described in our earlier
technical reports [7], [13], we show the VGL(λ) weight update,
with λ = 1 and some learning constants chosen carefully, is
identical to the application of backpropagation through time
(BPTT) [23] to a greedy policy. This makes a theoretical con-
nection between two seemingly different learning paradigms,
and provides a convergence proof for a critic learning ADP
method, with a general smooth function approximator and a
greedy policy.

In the rest of this paper, in Section II we define the VGL(λ)
algorithm, state its relationship to DHP, and give pseudocode
for it. Section III is the main contribution of this paper,
in which we describe BPTT and the circumstances of its
equivalence to VGL(λ) with a greedy policy, and we describe
how this equivalence forms a convergence proof for VGL(λ)
under these circumstances. In Section IV, we provide an
example ADP problem which we use to make a confirmation
of the equivalence proof, and which we also use to demonstrate
how critic learning methods with a greedy policy can be made
to diverge; in contrast to the proven convergent algorithm. In
Section V we describe two neural-network based experiments,
and give conclusions in Section VI.

II. THE VGL(λ) AND DHP ALGORITHMS

All VGL algorithms, including DHP, GDHP and VGL(λ),
attempt to learn the value-gradient, ∂J

∂~x . This gradient is
learned by a vector critic function G̃(~x, ~w) which has the
same dimension as dim(~x). In the case of DHP this function
is implemented by the output of a smooth vector function
approximator, and in GDHP it is implemented as G̃(~x, ~w) ≡
∂J̃(~x,~w)
∂~x , i.e. the actual gradient of the smooth approximated

scalar function J̃(~x, ~w). For the VGL(λ) algorithm, we can
use either of these two representations for G̃.

We assume the action network A(~x, ~z) is differentiable with
respect to all of its arguments, and similar differentiability
conditions apply to the model and cost functions.

Throughout this paper, subscripted t variables attached to
a function name indicates that all arguments of the function
are to be evaluated at time step t of a trajectory. This is what
we call trajectory shorthand notation. For example J̃t+1 ≡
J̃(~xt+1, ~w), Ut ≡ U(~xt, ~ut) and G̃t ≡ G̃(~xt, ~w).

A convention is also used that all defined vector quantities
are columns, whether they are coordinates, or derivatives with
respect to coordinates. For example, both ~xt and ∂J̃

∂~x are
columns. Also any vector function becomes transposed (be-
coming a row) if it appears in the numerator of a differential.
For example ∂f

∂~x is a matrix with element (i, j) equal to
∂f(~x,~u)j

∂~xi ; ∂G̃
∂ ~w is a matrix with element (i, j) equal to ∂G̃j

∂ ~wi ;
and

(
∂G̃
∂ ~w

)
t

is the matrix ∂G̃
∂ ~w evaluated at (~xt, ~w). This is the

transpose of the common convention for Jacobians.
Using the above notation and implied matrix products, the

VGL(λ) algorithm is defined to be a weight update of the
form:

∆~w = α
∑
t

(
∂G̃

∂ ~w

)
t

Ωt(G
′
t − G̃t) (4)
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where α is a small positive learning rate; Ωt is an arbitrary
positive definite matrix described further below; G̃t is the
output of the vector critic at time step t; and G′t is the “target
value gradient” defined recursively by:

G′t =

{(
DU
D~x

)
t

+ γ
(
Df
D~x

)
t

(
λG′t+1 + (1− λ)G̃t+1

)
if ~xt /∈ T(

∂U
∂~x

)
t

if ~xt ∈ T
(5)

where λ ∈ [0, 1] is a fixed constant, analogous to the λ used
in TD(λ); and where D

D~x is shorthand for

D

D~x
≡ ∂

∂~x
+
∂A

∂~x

∂

∂~u
; (6)

and where all of these derivatives are assumed to exist. All
terms of (5) are obtainable from knowledge of the model
functions and the action network. We ensure the recursion in
(5) converges by requiring that either γ < 1, or λ < 1, or
the environment is such that the agent is guaranteed to reach
a terminal state at some finite time (i.e. the environment is
“episodic”).

The objective of the weight update is to make the values
G̃t move towards the target values G′t. This weight update
needs to be done slowly because the targets G′ are heavily
dependent on ~w, so are moving targets. This dependency on
~w is especially great if the policy is greedy or if the action
network is concurrently trained to try to keep the trajectory
greedy, so that the policy is then also indirectly dependent on
~w. If the weight update succeeds in achieving G̃t = G′t, and
the greedy action condition (3), for all t along a trajectory,
then this will ensure the trajectory is locally extremal, and
often locally optimal (as proven by [13]).

The matrix Ωt was introduced by Werbos in the GDHP
algorithm (e.g. [20, eq.32]), and is included in our weight
update for full generality. This positive definite matrix can be
set as required by the experimenter since its presence ensures
every component of G̃t will move towards the corresponding
component of G′t (in any basis). For simplicity Ωt is often
just taken to be the identity matrix for all t, so effectively has
an optional presence. One use for making Ωt arbitrary could
be for the experimenter to be able to compensate explicitly for
any rescalings of the state space axes. We make use of it in
Section III, when proving how VGL(λ) can be equivalent to
BPTT.

Equations (4), (5) and (6) define the VGL(λ) algorithm.
Algorithm 1 gives pseudocode for it in a form that can be
applied to complete trajectories. This algorithm runs in time
O(dim(~w)) per time step of the trajectory. An on-line version
is also possible that can be applied to incomplete trajectories
[8].

The algorithm does not attempt to learn the value gradient at
the final time-step of a trajectory since it is prior knowledge
that the target value gradient is always ∂U

∂~x at any terminal
state. Hence we assume the function approximator for G̃(~x, ~w)
has been designed to explicitly return ∂U

∂~x for all terminal states
~x ∈ T.

A. Relationship of the VGL(λ) Algorithm to DHP and GDHP
The VGL(λ) algorithm is an extension of the DHP al-

gorithm, made by introducing a λ parameter as defined in

Algorithm 1 VGL(λ). Batch-mode implementation for
episodic environments.

1: t← 0
2: {Unroll trajectory...}
3: while not terminated(~xt) do
4: ~ut ← A(~xt, ~z)
5: ~xt+1 ← f(~xt, ~ut)
6: t← t+ 1
7: end while
8: tf ← t
9: ~p←

(
∂U
∂~x

)
t
, ∆~w ← ~0, ∆~z ← ~0

10: {Backwards pass...}
11: for t = tf − 1 to 0 step −1 do
12: G′t ←

(
∂U
∂~x

)
t

+ γ
(
∂f
∂~x

)
t
~p

+
(
∂A
∂~x

)
t

((
∂U
∂~u

)
t

+ γ
(
∂f
∂~u

)
t
~p
)

13: ∆~w ← ∆~w +
(
∂G̃
∂ ~w

)
t
Ωt

(
G′t − G̃t

)
14: ∆~z ← ∆~z −

(
∂A
∂~z

)
t

((
∂U
∂~u

)
t

+ γ
(
∂f
∂~u

)
t
G̃t+1

)
15: ~p← λG′t + (1− λ)G̃t
16: end for
17: ~w ← ~w + α∆~w
18: ~z ← ~z + β∆~z

(5). This λ parameter affects the exponential decay rate of
the look-ahead used in (5). In this equation, when λ = 0,
the target value gradient G′ becomes equivalent to the target
used in DHP. Hence when λ = 0, and when G̃(~x, ~w) is
implemented as the vector output of a function approximator,
VGL(λ) becomes identical to DHP.

When VGL(λ) is implemented with λ = 0 and G̃(~x, ~w) is
defined to be ∂J̃

∂~x , for a scalar function approximator J̃(~x, ~w),
it becomes equivalent to an instance of GDHP. GDHP is more
general than VGL(0) since its weight update is defined to also
include a value-learning component too, i.e. GDHP is a linear
combination of the VGL(0) weight update plus a Heuristic
Dynamic Programming ( [3], [4]) weight update.

B. Action Network Weight Update

To solve the ADP problem, the action network also needs
training. The objective of the action network’s weight update
is to make the actor more greedy, i.e. to behave more closely
to the following objective:

~u = arg min
~u∈A

(Q̃(~x, ~u, ~w)) ∀~x (7)

where we define the approximate Q Value function as

Q̃(~x, ~u, ~w) = U(~x, ~u) + γJ̃(f(~x, ~u), ~w), (8)

and which is consistent with (3).
Hence the actor weight update used most commonly in ADP

is gradient descent on the Q̃ function with respect to ~z. This is
implemented by lines 14 and 18 of Algorithm 1. Here β > 0
is a separate learning rate for the action network.

In practice the actor weight update can be done concurrently
with the critic weight update, as in Algorithm 1; or learning
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can consist of alternating phases of one or more actor weight
updates followed by one or more critic weight updates.

C. Greedy Policy

In some implementations the action network can be effi-
ciently replaced by a greedy policy, which is a function that
directly solves (7). Since the greedy policy (7) is dependent
on the weight vector ~w of the critic function, we will denote
it as π(~x, ~w) to distinguish it from a general action network
A(~x, ~z). When a greedy policy is used, all occurrences of
A(~x, ~z) in the VGL(λ) algorithm would be replaced by
π(~x, ~w), and the actor weight update equation lines 14 and
18 of Algorithm 1 would be removed.

A greedy policy is only possible when the right-hand side of
(7) is efficient to compute, which is possible in the continuous
time situations described by [24] or [7, section 2.2], and in the
“single network adaptive critic” described by [18]. We give an
example of this kind of greedy policy in Section V-B.

D. The Relationship of an Action Network to a Greedy Policy

The main results of this paper apply to a greedy policy:
convergence is proven for a greedy policy (in Section III),
and so is the divergence of other algorithms (in Section IV).
However in certain circumstances, these results can partially
apply to an action network too. Since the action network’s
weight update is gradient descent on (8), the intention of it is
to make the action network behave more like a greedy policy.
Hence when the action network is trained to completion in
between every single critic weight update (a situation known
as value-iteration), then the action network will be behaving
very much like a greedy policy. Hence, if the action network
has sufficient flexibility to learn the greedy policy accurately
enough, then the convergence/divergence results of this paper
would apply to it.

III. THE RELATIONSHIP OF VGL TO BPTT

We now prove that the VGL(λ) weight update of (4), with
λ = 1 and a carefully chosen Ωt matrix, is equivalent to
backpropagation through time (BPTT) on a greedy policy. First
we derive the equations for BPTT (in Section III-A), then
we describe some lemmas about a greedy policy (in Section
III-B), and then we demonstrate that when BPTT is applied
to a greedy policy, the weight update obtained is an instance
of VGL(λ) (in Section III-C). Finally, in Section III-D, we
discuss the consequences of the results and the convergence
properties.

A. Backpropagation Through Time for Control Problems

BPTT can be used to calculate the derivatives of any
differentiable scalar function with respect the weights of a
neural network. To apply BPTT in solving a control problem,
it can be used to find the derivatives of J(~x0, ~z) with respect
to ~z, so as to enable gradient descent on J .

Hence the gradient-descent weight update is ∆~z =
−α

(
∂J
∂~z

)
0

for some small positive learning rate α. Gradient
descent will naturally find local minima of J(~x0, ~z), and has

good convergence properties when the surface J(~x0, ~z) is
smooth with respect to ~z.

The total discounted cost for a trajectory J(~x0, ~z) =∑
t γ

tUt can be written recursively as

J(~x, ~z) = U(~x,A(~x, ~z)) + γJ(f(~x,A(~x, ~z)), ~z) (9)

with J(~x, ~z) = U(~x) at any terminal state ~x ∈ T.
To calculate the gradient of (9) with respect to ~z, we

differentiate using the chain rule, and substitute (1) and (2):(
∂J

∂~z

)
t

=

(
∂

∂~z
(U(~x,A(~x, ~z)) + γJ(f(~x,A(~x, ~z)), ~z))

)
t

=

(
∂A

∂~z

)
t

((
∂U

∂~u

)
t

+ γ

(
∂f

∂~u

)
t

(
∂J

∂~x

)
t+1

)
+ γ

(
∂J

∂~z

)
t+1

Expanding this recursion and substituting it into the
gradient-descent equation gives,

∆~z =− α
∑
t≥0

γt
(
∂A

∂~z

)
t

((
∂U

∂~u

)
t

+ γ

(
∂f

∂~u

)
t

(
∂J

∂~x

)
t+1

)
(10)

This weight update is BPTT with gradient-descent to min-
imise J(~x0, ~z) with respect to the weight vector ~z of an action
network A(~x, ~z). It refers to the quantity ∂J

∂~x which can be
found recursively by differentiating (9) and using the chain
rule, giving(

∂J

∂~x

)
t

=

{(
DU
D~x

)
t

+ γ
(
Df
D~x

)
t

(
∂J
∂~x

)
t+1

if ~xt /∈ T(
∂U
∂~x

)
t

if ~xt ∈ T.
(11)

Equation (11) can be understood to be backpropagating the
quantity

(
∂J
∂~x

)
t+1

through the action network, model and cost
functions to obtain

(
∂J
∂~x

)
t
, and giving the BPTT algorithm its

name.
By comparing (11) with (5), we note that

G′ ≡ ∂J

∂~x
, when λ = 1. (12)

B. Lemmas about a Greedy Policy and Greedy Actions

To prepare for the later analysis of BPTT applied to a greedy
policy, first we prove some lemmas about the greedy policy.
These lemmas apply when the action space, A, is equal to
Rdim(~u), which we will denote as A∗.

A greedy policy π(~x, ~w) is a policy that always selects
actions ~u that are the minimum of the smooth function
Q̃(~x, ~u, ~w) defined by (8). These minimising actions are what
we call greedy actions. In this case, since the minimum
of a smooth function is found from an unbound domain,
~u ∈ Rdim(~u), the following two consequences hold:

Lemma 1: For a greedy action ~u chosen from A∗, we have
∂Q̃
∂~u = ~0.

Lemma 2: For a greedy action ~u chosen from A∗, ∂2Q̃
∂~u∂~u is

a positive semi-definite matrix.
Note that the above two lemmas are multi-dimensional

analogues of the familiar minimum conditions for a one-
dimensional function q(u) : R→ R with an unbound domain,
which are q′(u) = 0 and q′′(u) ≥ 0, respectively.
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We now prove too less obvious lemmas about a greedy
policy:

Lemma 3: The greedy policy on A∗ implies
(
∂U
∂~u

)
t

=

−γ
(
∂f
∂~u

)
t
G̃t+1.

Proof: First, we note that differentiating (8) gives(
∂Q̃

∂~u

)
t

=

(
∂U

∂~u

)
t

+ γ

(
∂f

∂~u

)
t

G̃t+1 (13)

Substituting this into Lemma 1 and solving for ∂U
∂~u completes

the proof.

Lemma 4: When
(
∂π
∂ ~w

)
t

and
(
∂2Q̃
∂~u∂~u

)−1

t
exist, the greedy

policy on A∗ implies

(
∂π

∂ ~w

)
t

= −γ

(
∂G̃

∂ ~w

)
t+1

(
∂f

∂~u

)T
t

(
∂2Q̃

∂~u∂~u

)−1

t

Proof: We use implicit differentiation. The dependency
of ~ut = π(~xt, ~w) on ~w must be such that Lemma 1 is
always satisfied, since the policy is greedy. This means that(
∂Q̃
∂~u

)
t
≡ ~0, both before and after any infinitesimal change

to ~w. Therefore the greedy policy function π(~xt, ~w) must be
such that,

~0 =
∂

∂ ~w

(
∂Q̃(~xt, π(~xt, ~w), ~w)

∂~ut

)

=
∂

∂ ~w

(
∂Q̃(~xt, ~ut, ~w)

∂~ut

)
+

(
∂π

∂ ~w

)
t

∂

∂~ut

(
∂Q̃(~xt, ~ut, ~w)

∂~ut

)

=
∂

∂ ~w

((
∂U

∂~u

)
t

+ γ

(
∂f

∂~u

)
t

G̃t+1

)
+

(
∂π

∂ ~w

)
t

(
∂2Q̃

∂~u∂~u

)
t

=
∂

∂ ~w

((
∂U

∂~u

)
t

+ γ
∑
i

(
∂(f)i

∂~u

)
t

(G̃t+1)i

)

+

(
∂π

∂ ~w

)
t

(
∂2Q̃

∂~u∂~u

)
t

=γ
∑
i

(
∂(f)i

∂~u

)
t

∂(G̃t+1)i

∂ ~w
+

(
∂π

∂ ~w

)
t

(
∂2Q̃

∂~u∂~u

)
t

=γ

(
∂G̃

∂ ~w

)
t+1

(
∂f

∂~u

)T
t

+

(
∂π

∂ ~w

)
t

(
∂2Q̃

∂~u∂~u

)
t

In the above six lines of algebra, the sum of the two partial
derivatives in line 2 follows by the chain rule from the total
derivative in line 1, since ~w appears twice in line 1. This
step has also made use of ~ut = π(~xt, ~w). Also note that the
first term in line 2 is not zero, despite the greedy policy’s
requirement for ∂Q̃

∂~u ≡ 0, since in this term the ~u and ~w are
now treated as independent variables. Then in the remaining
lines, line 3 is by (13); line 4 just expands an inner product;
line 5 follows since ∂U

∂~u and ∂f
∂~u are not functions of ~w; and

line 6 just forms an inner product.
Then solving the final line for

(
∂π
∂ ~w

)
t

proves the lemma.

C. The equivalence of VGL(1) to BPTT

In Section III-A, the equation for gradient descent on
J(~x, ~z) was found for a general policy A(~x, ~z), using BPTT.
But BPTT can be applied to any policy, and so we now
consider what would happen if BPTT is applied to the greedy
policy π(~x, ~w), with actions chosen from A∗. The parameter
vector for the greedy policy is ~w. Hence we can do gradient
descent with respect to ~w instead of ~z (assuming the deriva-
tives ∂π

∂ ~w and ∂J
∂ ~w exist). We should emphasise that with the

greedy policy, it is the same weight vector that appears in the
critic, ~w, as appears in the greedy policy π(~x, ~w).

Consequently, for the gradient-descent equation in BPTT
for control (10), we now change all instances of A and ~z to
π and ~w, respectively, giving the new weight update:

∆~w =− α
∑
t≥0

γt
(
∂π

∂ ~w

)
t

((
∂U

∂~u

)
t

+ γ

(
∂f

∂~u

)
t

(
∂J

∂~x

)
t+1

)

Substituting Lemmas 3 and 4, and
(
∂J
∂~x

)
t
≡ G′t with λ = 1

(by (12)), into this gives:

∆~w =− α
∑
t≥0

γt

−γ2

(
∂G̃

∂ ~w

)
t+1

(
∂f

∂~u

)T
t

(
∂2Q̃

∂~u∂~u

)−1

t(
∂f

∂~u

)
t

(−G̃t+1 +G′t+1)

]
=α

∑
t≥0

γt+1

(
∂G̃

∂ ~w

)
t

Ωt(G
′
t − G̃t) (14)

where

Ωt =


(
∂f
∂~u

)T
t−1

(
∂2Q̃
∂~u∂~u

)−1

t−1

(
∂f
∂~u

)
t−1

for t > 0

0 for t = 0
, (15)

and is positive semi-definite, by the greedy policy (Lemma 2).
Equation (14) is identical to a VGL weight update equation

(4), with a carefully chosen matrix for Ωt, and γ = λ = 1,

provided
(
∂π
∂ ~w

)
t

and
(
∂2Q̃
∂~u∂~u

)−1

t
exist for all t. If

(
∂π
∂ ~w

)
t

does

not exist, then ∂J
∂ ~w is not defined either.

This completes the demonstration of the equivalence of a
critic learning algorithm (VGL(1), with the conditions stated
above) to BPTT (with a greedy policy with actions chosen
from A∗, and when ∂J

∂ ~w exists).
Furthermore, the presence of the γt factor in (14) could be

removed if we changed the BPTT gradient-descent equation by
removing the γt factor from (10). This would make the BPTT
weight update more accurately follow the spirit and intention
of the on-line critic weight update; and then the equivalence
of VGL(1) to BPTT would hold for any γ too.

D. Discussion

BPTT is gradient descent on a function which is bounded
below. Therefore, assuming the surface of J(~x, ~z) in ~z-space
is sufficiently smooth and the step-size for gradient descent is
sufficiently small, convergence of BPTT is guaranteed.

If the ADP problem is such that ∂π
∂ ~w always exists for a

greedy policy, then the equivalence proof above shows that the
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good convergence guarantees of BPTT will apply to VGL(1)
(when used with the special choice of Ωt by (15)). In this
case, this particular VGL algorithm will achieve monotonic
progress with respect to J , and so will have guaranteed
convergence, provided it is operating within a smooth region of
the surface of the function J . Significantly, the requirement for
∂π
∂ ~w to always exist is satisfied when a value-gradient greedy-
policy, of the kind used in our experiments in Section V-B,
is used. The requirement for the surface of J in ~z-space to
be sufficiently smooth cannot so easily be guaranteed, but this
situation is no different than the requirement for BPTT.

This equivalence result was surprising to the authors be-
cause it was thought that the VGL weight updates (equation
(4), and DHP and GDHP) were based on gradient descent on
an error function E =

∑
t(G
′
t − G̃t)TΩt(G

′
t − G̃t). But as

[21] showed, the TD(λ) weight update is not true gradient
descent on its intended error function, and furthermore it is
not gradient descent on any error function [25]. Similarly,
nor is the VGL(λ) weight update true gradient descent on
E (unless both the policy is fixed and λ = 1). Our proof
shows that when a greedy policy is used, VGL(1) is closer to
true gradient descent on J than the gradient on E. It was also
surprising to learn that BPTT and critic weight updates are not
as fundamentally different to each other as we first thought.

For a fuller discussion of the Ωt matrix defined by (15),
including methods for its computation and a discussion of its
purpose and effectiveness, see reference [26].

IV. EXAMPLE ANALYTICAL PROBLEM

In this section we define an ADP problem which is simple
enough to analyse algebraically. We define this problem and
derive the VGL(λ) weight update algebraically for it in sec-
tions IV-A to IV-F. Then in Section IV-G we show that when
the Ωt matrix of (15) is used, we do get exact equivalence
of VGL(1) to BPTT in the example problem, thus confirming
the theoretical result of Section III. We also use the example
problem to derive divergence instances for DHP and VGL(λ)
without the special Ωt matrices (in sections IV-H to IV-I), thus
emphasising the value of the BPTT equivalence proof.

A. Environment Definition

We define an environment with state x ∈ R and action
u ∈ R, and with model and cost functions:

f(xt, t, ut) = xt + ut for t ∈ {0, 1} (16a)

U(xt, t, ut) = k(ut)
2 for t ∈ {0, 1} (16b)

where k > 0 is a constant. Each trajectory is defined to
terminate immediately on arriving at time step t = 2, when a
final terminal cost of

U(xt) = (xt)
2 (17)

is given, so that exactly three costs are received by the agent
over the full trajectory duration. The termination condition is
dependent on t, so strictly speaking t should be included in
the state vector, but we have omitted this for brevity.

A whole trajectory is completely parametrised by x0, u0

and u1, and the total cost is

J = k(u0)2 + k(u1)2 + (x0 + u0 + u1)2. (18)

The examples we derive below consider a trajectory which
starts at x0 = 0. From this start point, the optimal actions are
those that minimise J , i.e. u0 = u1 = 0.

B. Critic Definition

A critic function is defined using a weight vector with just
two weights, ~w = (w1, w2)T :

J̃(xt, t, ~w) =


0 if t = 0

c1(x1)2 − w1x1 if t = 1

c2(x2)2 − w2x2 if t = 2

(19)

where c1 and c2 are positive constants. These two constants
are not to be treated as weights. We included them so that
we could consider a greater range of function approximators
for the critic when we searched for a divergence example, as
described in Section IV-H. Also to ease the finding of that
divergence example, we chose this simplified critic structure
(as opposed to a neural network) since it is linear in ~w, and
its weight vector has just two components.

Hence the critic gradient function, G̃ ≡ ∂J̃
∂x , is given by:

G̃(xt, t, ~w) =

{
0 if t = 0

2ctxt − wt if t ∈ {1, 2}
(20)

We note that this implies(
∂G̃

∂wk

)
t

=

{
−1 if t ∈ {1, 2} and t = k

0 otherwise
(21)

C. Unrolling a greedy trajectory
A greedy trajectory is a trajectory that is found by following

greedy actions only. Greedy actions are ~u values that minimise
Q̃(~x, ~u, ~w).

Substituting the model functions (16) and the critic defini-
tion (19) into the Q̃ function definition (8) gives, with γ = 1,

Q̃(xt, t, ut, ~w)

= U(xt, t, ut) + γJ̃(f(xt, t, ut), t+ 1, ~w) by (8)

= k(ut)
2 + J̃(xt + ut, t+ 1, ~w), for t ∈ {0, 1} by (16)

=

{
k(u0)2 + c1(x0 + u0)2 − w1(x0 + u0) if t = 0

k(u1)2 + c2(x1 + u1)2 − w2(x1 + u1) if t = 1
by (19)

= k(ut)
2 + ct+1(xt + ut)

2 − wt+1(xt + ut), for t ∈ {0, 1}.

In order to minimise this with respect to ut and get greedy
actions, we first differentiate to get,(

∂Q̃

∂u

)
t

= 2kut + 2ct+1(xt + ut)− wt+1 for t ∈ {0, 1}

= 2ut(ct+1 + k)− wt+1 + 2ct+1xt for t ∈ {0, 1}
(22)

Hence the greedy actions are found by solving
(
∂Q̃
∂u

)
t

= 0,
to obtain,

u0 ≡
w1 − 2c1x0

2(c1 + k)
(23)
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u1 ≡
w2 − 2c2x1

2(c2 + k)
(24)

and these two equations define the greedy policy function
π(~x, ~w) for this environment and critic function.

Since the optimal actions are u0 = u1 = 0 from a start state
of x0 = 0, the optimal weights are w1 = w2 = 0.

Following the greedy actions along a trajectory starting at
x0 = 0, and using the recursion xt+1 = f(xt, ut) with the
model functions (16) gives

x1 = x0 + u0 by (16a)

=
w1

2(c1 + k)
by (23) & x0 = 0, (25)

and,

x2 = x1 + u1 by (16a)

=
w2(c1 + k) + kw1

2(c2 + k)(c1 + k)
. by (24) & (25). (26)

Substituting x1 (25) back into the equation for u1 (24) gives
u1 purely in terms of the weights and constants:

u1 ≡
w2(c1 + k)− c2w1

2(c2 + k)(c1 + k)
(27)

D. Evaluation of value-gradients along the greedy trajectory

We can now evaluate the G̃ values by substituting the greedy
trajectory’s state vectors (eqs. (25)-(26)) into (20), giving:

G̃1 = 2c1x1 − w1 by (20)

=
c1w1

(c1 + k)
− w1 by (25)

=
−w1k

(c1 + k)
(28)

and

G̃2 = 2c2x2 − w2 by (20)

=
w2(c1 + k)c2 + kw1c2

(c2 + k)(c1 + k)
− w2 by (26)

=
kw1c2 − w2k(c1 + k)

(c2 + k)(c1 + k)
. (29)

The greedy actions of equations (23) and (24) both satisfy(
∂π

∂x

)
t

=
−ct+1

ct+1 + k
for t ∈ {0, 1} (30)

Substituting (30) and (16a) into the definition for
(
Df
Dx

)
t

given
by (6), gives,(

Df

Dx

)
t

=

(
∂f

∂x

)
t

+

(
∂π

∂x

)
t

(
∂f

∂u

)
t

by (6)

=

(
∂x+ u

∂x

)
t

+

(
∂π

∂x

)
t

(
∂x+ u

∂u

)
t

by (16a)

= 1− ct+1

ct+1 + k
, for t ∈ {0, 1} by (30)

=
k

ct+1 + k
, for t ∈ {0, 1}. (31)

Similarly, the expression for
(
DU
Dx

)
t

is found by:(
DU

Dx

)
t

=

(
∂U

∂x

)
t

+

(
∂π

∂x

)
t

(
∂U

∂u

)
t

by (6)

=

(
∂k(u)2

∂x

)
t

+

(
∂π

∂x

)
t

(
∂k(u)2

∂u

)
t

by (16b)

= 0− ct+1

ct+1 + k
(2kut), for t ∈ {0, 1} by (30)

=
−2kct+1ut
ct+1 + k

, for t ∈ {0, 1}. (32)

E. Backwards pass along trajectory

We do a backwards pass along the trajectory calculating the
target gradients using (5) with γ = 1:

G′2 =

(
∂U

∂x

)
2

by (5) with x2 ∈ T

=2x2 by (17)

=
w2(c1 + k) + kw1

(c2 + k)(c1 + k)
by (26) (33)

Similarly,

G′1 =

(
DU

Dx

)
1

+

(
Df

Dx

)
1

(
λG′2 + (1− λ)G̃2

)
by (5)

=
−2kc2u1

c2 + k
+

k

c2 + k

(
λG′2 + (1− λ)G̃2

)
by (32),(31)

=
−kc2(w2(c1 + k)− c2w1)

(c1 + k)(c2 + k)2
by (27)

+
k

c2 + k

(
λ
w2(c1 + k) + kw1

(c2 + k)(c1 + k)
by (33)

+(1− λ)
kw1c2 − w2k(c1 + k)

(c2 + k)(c1 + k)

)
by (29)

=
w1k(kλ+ (c2)2 + k(1− λ)c2)

(c1 + k)(c2 + k)2

− w2k(c2 − λ+ k(1− λ))

(c2 + k)2
(34)

F. Analysis of weight update equation

We now have the whole trajectory and the terms G̃ and G′

written algebraically, so that we can next analyse the VGL(λ)
weight update algebraically.

The VGL(λ) weight update (4) is comprised of∑
t

(
∂G̃

∂wi

)
t

Ωt(G
′
t − G̃t)

= −Ωi(G
′
i − G̃i) (for i ∈ {1, 2}, by (21)).

Switching to vector notation for ~w, this is∑
t

(
∂G̃

∂ ~w

)
t

Ωt(G
′
t − G̃t) = −

(
Ω1(G′1 − G̃1)

Ω2(G′2 − G̃2)

)

= −
(

Ω1 0
0 Ω2

)(
G′1 − G̃1

G′2 − G̃2

)
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= DB~w (35)

where

D =

(
Ω1 0
0 Ω2

)
(36)

and B is a 2 × 2 matrix with elements found by subtracting
equations (28) and (29) from equations (34) and (33), respec-
tively, giving,

B =−

(
k(kλ+(c2)2+k(1−λ)c2)

(c1+k)(c2+k)2 + k
(c1+k)

−k(c2+k−λ(k+1))
(c2+k)2

k(1−c2)
(c2+k)(c1+k)

1+k
(c2+k)

)
(37)

By equations (4) and (35), ∆~w = αDB~w is the VGL(λ)
weight update written as a single dynamic system of ~w.

G. Equivalence of BPTT to VGLΩ(1) for this Example Prob-
lem

We define VGLΩ(λ) to be the VGL(λ) algorithm combined
with the Ωt matrix of (15). We now demonstrate that VGLΩ(1)
is identical to the BPTT equation derived for this example
problem. The purpose of this subsection is just to provide
a confirmation of the main equivalence proof of this paper
(Section III), in the context of our simple example problem.

To construct the Ωt matrix of (15), we differentiate (22) to
get (

∂2Q̃

∂u∂u

)
t

= 2(ct+1 + k) for t ∈ {0, 1}. (38)

and then substitute (38) and
(
∂f
∂u

)
t

= 1 (by (16a)) into (15),
to get

Ωt =

{
1/(2(ct + k)) for t ∈ {1, 2}
0 for t = 0.

Substituting these Ωt matrices into the D matrix of (36)
gives

D =

(
1

2(c1+k) 0

0 1
2(c2+k)

)
(39)

The VGLΩ(1) weight update, with α = 1, is

∆~w = DB~w by (4), (35)

= −D

(
k(k+(c2)2)

(c1+k)(c2+k)2 + k
(c1+k)

k(1−c2)
(c2+k)2

k(1−c2)
(c2+k)(c1+k)

1+k
(c2+k)

)
~w by (37), λ = 1

= −2D

(
k(k+(c2)2)

(c2+k)2 + k k(1−c2)
(c2+k)

k(1−c2)
(c2+k) 1 + k

)
D~w by (39)

(40)

We aim to show that this equation is identical to gradient
descent on J , i.e. ∆~w = − ∂J

∂ ~w . First we consider the equations
that determine how the actions u0 and u1 depend on ~w. By
equations (25) and (27), we have(

u0

u1

)
=

(
1

2(c1+k) 0
−c2

2(c2+k)(c1+k)
1

2(c2+k)

)
~w

= ED~w (41)

where D is given by (39) and

E =
(

1 0
−c2
c2+k 1

)
. (42)

Now we can consider the gradient descent equation as
follows:

− ∂J
∂ ~w

= −
∂
(
k(u0)2 + k(u1)2 + (x0 + u0 + u1)2

)
∂ ~w

by (18)

= −2ku0
∂u0

∂ ~w
− 2ku1

∂u1

∂ ~w
− 2(u0 + u1)

(
∂u0

∂ ~w
+
∂u1

∂ ~w

)
= −2((k + 1)u0 + u1)

∂u0

∂ ~w
− 2(u0 + (k + 1)u1)

∂u1

∂ ~w

= −2
∂u0

∂ ~w

(
k + 1 1

)(u0

u1

)
− 2

∂u1

∂ ~w

(
1 k + 1

)(u0

u1

)
= −2

(
∂u0
∂w1

∂u1
∂w1

∂u0
∂w2

∂u1
∂w2

)(
k + 1 1

1 k + 1

)(
u0

u1

)
= −2DET

(
k + 1 1

1 k + 1

)
ED~w by (41)

= −2DET

(
k + 1 1

1 k + 1

)(
1 0
−c2
c2+k

1

)
D~w by (42)

= −2D

(
1 −c2

c2+k

0 1

)(
k + k

c2+k
1

k(1−c2)
c2+k

k + 1

)
D~w by (42)

= −2D

(
k(k+(c2)

2)

(c2+k)2
+ k k(1−c2)

(c2+k)
k(1−c2)
(c2+k)

k + 1

)
D~w

This final line is identical to (40), which completes the proof
of exact equivalence of VGLΩ(1) to BPTT for this particular
problem.

H. Divergence Examples for VGL(0) and VGL(1)

We now show that unlike VGLΩ(1), the algorithms DHP
and VGL(1) can both be made to diverge with a greedy policy
in this problem domain.

To add further complexity to the system, in order to achieve
the desired divergence, we next define ~w to be a linear function
of two other weights, ~p = (p1, p2)T , such that ~w = F~p, where
F is a 2× 2 constant real matrix. The VGL(λ) weight update
equation can now be recalculated for these new weights, as
follows:

∆~p = α
∑
t

(
∂G̃

∂~p

)
t

Ωt(G
′
t − G̃t) by (4)

= α
∑
t

∂ ~w

∂~p

(
∂G̃

∂ ~w

)
t

Ωt(G
′
t − G̃t) by chain rule

= α
∂ ~w

∂~p

∑
t

(
∂G̃

∂ ~w

)
t

Ωt(G
′
t − G̃t) since independent of t

= α
∂ ~w

∂~p
DB~w by (35)

= α(FTDBF )~p. by ~w = F~p and
∂ ~w

∂~p
=
∂(F~p)

∂~p
= FT

(43)

Equation (43) represents the whole learning system, de-
scribed as a dynamical system of the weight vector ~p.

We consider the VGL(0) and VGL(1) algorithms with the Ωt
matrix equal to the identity matrix, which implies that D = I ,
the 2 × 2 identity matrix, and hence we can ignore D from
(43).
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The optimal actions u0 = u1 = 0 would be achieved by
~p = ~0. To produce a divergence example, we want to ensure
that ~p does not converge to ~0.

Taking α > 0 to be sufficiently small, then the weight vector
~p evolves according to a continuous-time linear dynamic
system (equation (43), with D ignored), and this system is
stable if and only if the matrix product FTBF is “stable”
(i.e. if the real part of every eigenvalue of this matrix product
is negative). The logic here is that if it is proven to diverge for
a continuous time system, i.e. in the limit of an infinitesimal
learning rate, then it would also diverge for any small finite
learning rate too.

Choosing λ = 0, with c1 = c2 = k = 0.01 gives
B =

( −0.75 0.5
−24.75 −50.5

)
(by (37)). Choosing F =

(
10 1
−1 −1

)
makes

FTBF =
(

117.0 −38.25
189.0 −27.0

)
which has eigenvalues 45± 45.22i.

Since the real parts of these eigenvalues are positive, (43) will
diverge for VGL(0) (i.e. DHP).

Also, perhaps surprisingly, it is possible to get instability
with VGL(1). Choosing c2 = k = 0.01, c1 = 0.99 gives
B =

(−0.2625 −24.75
−0.495 −50.5

)
. Choosing F =

(−1 −1
.2 .02

)
makes

FTBF =
(

2.7665 0.1295
4.4954 0.2222

)
which has two positive real eigen-

values. Therefore this VGL(1) system diverges.
Fig. 1 shows the divergences obtained for VGL(0) and

VGL(1) with a greedy policy.

1e-10
1e-08
1e-06

0.0001
0.01

1
100

10000

100 101 102 103 104 105 106 107

|~p
|

Iterations

VGL(0)/DHP
VGL(1)

VGLΩ(1)

Fig. 1. Diverging behaviour for VGL(0) (i.e. DHP) and VGL(1), using
the learning parameters described in Section IV-H and a learning rate of
α = 10−6); and converging behaviour on the same problem for VGLΩ(1),
as described in Section IV-I, with α = 10−3.

I. Results for VGLΩ(1) and VGLΩ(0)

VGLΩ(λ) is defined to be VGL(λ) with the Ωt matrix
defined by (15). As predicted by the convergence proof of
Section III, and the explicit demonstration of Section IV-G,
it was not possible to make the VGLΩ(1) weight update
diverge. An example of VGLΩ(1) converging under the same
conditions that caused VGL(1) to diverge is given in Fig.1.

Next, we considered VGLΩ(0). Substituting the same pa-
rameters that made VGL(0) diverge, i.e. c1 = c2 = k = 0.01,
into (39) gives D =

(
25 0
0 25

)
. Since D is a positive multiple

of the identity matrix, its presence in (43) will not affect the
stability of the product FTDBF , so the system for ~p will still
be unstable, and diverge, just as it did for VGL(0) (where D
was taken to be the identity matrix). So unfortunately using
the Ωt matrix of (15) does not force reliable convergence for
VGL(0) (i.e. DHP) with a greedy policy.

V. NEURAL-NETWORK EXPERIMENTS

To extend the experiments of the previous section that used
a quadratic function approximator for the critic, in this section
we consider two neural-network based critic experiments:
a vertical-spacecraft problem and the cart-pole benchmark
problem.

A. Vertical-Spacecraft Problem

A spacecraft of mass m is dropped in a uniform gravita-
tional field. The spacecraft is constrained to move in a vertical
line, and a single thruster is available to make upward acceler-
ations. The state vector of the spacecraft is ~x = (h, v, t)T and
has three components: height (h), velocity (v) and time step
(t). The action vector is one-dimensional (so that ~u ≡ u ∈ R)
producing accelerations u ∈ [0, 1]. The Euler method with
time-step ∆t is used to integrate the equation of motion, giving
the model function:

f((h, v, t)T , u) =(h+ v∆t, v + (u− kg)∆t, t+ 1)T

Here, kg = 0.2 is a constant giving the acceleration due to
gravity (which is less than the range of u; so the spacecraft
can overcome gravity easily). ∆t was chosen to be 0.4.

A trajectory is defined to last exactly 200 time steps. A final
impulse of cost equal to

U(~x) =
1

2
mv2 +m(kg)h (44)

is given on completion of the trajectory. This cost penalises the
total kinetic and potential energy that the spacecraft has at the
end of the trajectory. This means the task is for the spacecraft
to lose as much mechanical energy as possible throughout the
duration of the trajectory, to prepare for a gentle landing. The
optimal strategy for this task is to leave the thruster switched
off for as long as possible in the early stages of the journey,
so as to gain as much downward speed as possible and hence
lose as much potential energy as possible, and at the end of
the journey produce a burst of continuous maximum thrust to
reduce the kinetic energy as much as possible.

In addition to the cost received at termination by (44), a
cost is also given for each non-terminal step. This cost is

U(~x, u) =c

(
ln(2− 2u)− u ln

(
1− u
u

))
∆t (45)

where c = 0.01 is constant. This cost function is designed to
ensure that the actions chosen will satisfy u ∈ [0, 1], even if
a greedy policy is used. We explain how this cost function
was derived, and how it can be used in a greedy policy, in
Section V-B, but first we describe experiments that did not
use a greedy policy.

A DHP-style critic, G̃(~x, ~w), was provided by a fully
connected MLP with 3 input units, two hidden layers of 6
units each, and 3 units in the output layer. Additional short-
cut connections were present fully connecting all pairs of
layers. The weights were initially randomised uniformly in the
range [−.1, .1]. The activation functions were logistic sigmoid
functions in the hidden layers, and the identity function in
the output layer. To ensure suitably scaled inputs for the
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MLP, we used a rescaled state vector ~x′ defined to be
~x′ = (h/1600, v/40, t/200)

T . In our implementation, we also
used redefined model and cost functions that work directly
with the rescaled state vectors, i.e. we rescaled them so that
~x′t+1 = f(~x′t, ~ut) and Ut = U(~x′t, ~ut). By doing this we also
ensured that the output of the neural network, G̃, was also
suitably scaled.

The action network was identical in design to the critic,
except there was only one output node, and this had a logistic
sigmoid function as its activation function. The output of the
action network gave the spacecraft’s acceleration u directly.

The mass of the spacecraft used was m = 0.02. In all of
the experiments we made the trajectory always start from h =
1600, v = −2, and used discount factor γ = 1. The exact
derivatives of the functions f(~x, ~u) and U(~x, ~u) were made
available to the algorithms.

Results using the actor-critic architecture and Algorithm 1
are given in the left-hand graph of Fig. 2, comparing the
performance of VGL(1) and VGL(0) (DHP). Each curve shows
algorithm performance averaged over 40 trials.

The graphs show that the VGL(1) algorithm produces a
lower total cost J than the VGL(0) algorithm does, and does
it faster. It is thought that this is because in this problem
the major part of the cost comes as a final impulse, so it is
advantageous to have a long look-ahead (i.e. a high λ value)
for fast and stable learning.

For the actor-critic learning we chose the learning rate of
the actor to be high compared to the learning rate for the critic
(i.e. β > α). This was to make the results comparable to those
of a greedy policy which we try in the next section.
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Fig. 2. VGL(0) (i.e. DHP) and VGL(1): The left-hand graph shows Actor-
Critic performance, using learning rates α = 10−6 and β = 0.01 as described
in Section V-A; and the right-hand graph shows performance with a greedy
policy and α = 10−6 as described in Section V-B.

B. Vertical-Spacecraft Problem with Greedy Policy
The cost function of (45) was derived to form an efficient

greedy policy, by following the method of [24]. This method
uses a continuous time approximation that allows the greedy
policy to be derived in the form of an arbitrary sigmoidal
function g(·). To achieve a range of u ∈ (0, 1), we chose g to
be the logistic function,

g(x) =
1

1 + e−x/c
. (46)

The choice of c affects the sharpness of this sigmoid function.
Using this chosen sigmoid function, the cost function based
on [24] is defined to be

U(~x, u) = ∆t

∫
g−1(u)du. (47)

Note that solving this integral gives (45). Then to derive the
greedy policy for this cost function, we make a first order
Taylor series expansion of the Q̃(~x, ~u, ~w) function (8) about
the point ~x:

Q̃(~x, ~u, ~w) ≈ U(~x, ~u) + γ

(∂J̃
∂~x

)T

(f(~x, ~u)− ~x) + J̃(~x, ~w)


= U(~x, ~u) + γ

(
G̃(~x, ~w)

)T
(f(~x, ~u)− ~x) + γJ̃(~x, ~w)

(48)

This approximation becomes exact in continuous time, i.e. in
the limit as ∆t → 0. The greedy policy must minimise Q̃,
hence we differentiate (48) to get(

∂Q̃

∂u

)
t

=

(
∂U

∂u

)
t

+ γ

(
∂f

∂u

)
t

G̃t by (48)

= g−1(ut)∆t+ γ

(
∂f

∂u

)
t

G̃t by (47) (49)

For a minimum, we must have ∂Q̃
∂u = 0, which, since ∂f

∂u is
independent of u, gives the greedy policy as

π(~xt, ~w) = g

(
− γ

∆t

(
∂f

∂u

)
t

G̃t

)
. (50)

We note that this type of greedy policy is very similar to the
Single Network Adaptive Critic (SNAC) formulation proposed
by [18].

This is the sigmoidal form for the greedy policy that we
sought to derive. We used this greedy policy function (50) in
place of A(~x, ~z) in lines 4 and 12 of Algorithm 1. For the
occurrence of ∂A

∂~x in line 12, we differentiated (50) directly to
obtain(
∂π

∂~x

)
t

= g′
(
− γ

∆t

(
∂f

∂u

)
t

G̃t

)(
− γ

∆t

(
∂G̃

∂~x

)
t

(
∂f

∂u

)T
t

)
(51)

where g′(x) is the derivative of the function g(x) and where
we have used the fact that for these model functions ~u is one-
dimensional and ∂2f

∂~x∂u = 0. Lines 14 and 18 of the algorithm
were not used.

The results for experiments using the greedy policy are
shown in the right-hand graph of Fig. 2. Comparing the left-
hand and right-hand graphs we see the relative performance
between VGL(1) and VGL(0) is similar. This indicates that
in this experiment, the greedy policy derived can successfully
replace the action network, raising efficiency, and without any
apparent detriment.

Using a greedy policy, there are no longer two mutually
interacting neural networks whose training could be interfering
with each other. With the simpler architecture of just one neu-
ral network (the critic) to contend with, we attempt to speed up
learning using RPROP [27]. Results are shown in the two left-
hand graphs of Fig. 3. It seems the aggressive acceleration by
RPROP can cause large instability in the VGL(1) and DHP
(VGL(0)) algorithms. This is because neither of these two
algorithms is true gradient descent when used with a greedy
policy (e.g. as shown in Section IV).

However when the Ωt matrix defined by (15) is used
with λ = 1, giving the algorithm VGLΩ(1), we did obtain
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Fig. 3. Solution of the spacecraft problem by VGL(0), VGL(1) and VGLΩ(1),
with a greedy policy, using RPROP. Each graph shows the performance of a
learning algorithm for each of ten different weight initialisations; hence the
ensemble of curves in each graph gives some idea of an algorithm’s reliability
and volatility.

monotonic progress, as shown in the right-hand graph of Fig.
3, and as explained by the equivalence proof of Section III.

In this case, due to the continuous time approximations
made earlier, we modified Ωt from (15) into

Ωt =

(
∂f

∂u

)T
t

(
∂2Q̃

∂u∂u

)−1

t

(
∂f

∂u

)
t

,

with ∂2Q̃
∂u∂u found by differentiating (49), giving

(
∂2Q̃

∂u∂u

)
t

=
∂
(
g−1(ut)∆t+ γ

(
∂f
∂u

)
t
G̃t

)
∂ut

by (49)

=
∂g−1(ut)

∂ut
∆t (since

∂2f

∂u∂u
= 0 and

∂G̃t

∂ut
= 0)

=
1

g′ (g−1(ut))
∆t (differentiating an inverse)

=
1

g′
(
− γ

∆t

(
∂f
∂u

)
t
G̃t

)∆t by (50)

⇒ Ωt =
1

∆t

(
∂f

∂u

)T
t

g′
(
− γ

∆t

(
∂f

∂u

)
t

G̃t

)(
∂f

∂u

)
t

(52)

This equation for Ωt is advantageous to use over (15) in that
it is always defined to exist (i.e. there is no matrix to invert),
it is always positive semi-definite, and it is very efficient to
implement. Hence we use (52) in preference to (15) in our
experiments here. However (52) is only an approximation
to (15), hence the applicability of the equivalence to BPTT
proof of III-C will only be approximate; but the approximation
becomes exact in the limit ∆t → 0, and in practice the
empirical results are good with the finite ∆t value that we
used, as shown in the right-hand graph of Fig. 3. This graph
shows the minimum being reached stably and many times
quicker than the other algorithms considered.

Unfortunately, since the value of Ωt given by (52) is not
full rank, it does not make a good candidate for use in DHP,
or for any VGL(λ) algorithm with λ < 1. This is an area for
future research.

C. Cart-Pole Experiment

We applied the algorithm to the well known cart-pole
benchmark problem described in Fig. 4. The equation of

F

θ

x

Fig. 4. Cart-pole benchmark problem. A pole with a pivot at its base is
balancing on a cart. The objective is to apply a changing horizontal force F
to the cart which will move the cart backwards and forwards so as to balance
the pole vertically. State variables are pole angle, θ, and cart position, x, plus
their derivatives with respect to time, θ̇ and ẋ.

motion for this system ( [11], [28], [29]), in the absence of
friction, is:

θ̈ =
g sin θ − cos θ

[
F+mlθ̇2 sin θ

mc+m

]
l
[

4
3 −

m cos2 θ
mc+m

] (53)

ẍ =
F +ml

[
θ̇2 sin θ − θ̈ cos θ

]
mc +m

(54)

where gravitational acceleration, g = 9.8ms−2; cart’s mass,
mc = 1kg; pole’s mass, m = 0.1kg; half pole length,
l = 0.5m; F ∈ [−10, 10] is the force applied to the cart,
in Newtons; and θ is the pole angle, in radians. The motion
was integrated using the Euler method with a time constant
∆t = 0.02, which, for a state vector ~x ≡ (x, θ, ẋ, θ̇)T , gives
a model function f(~x, ~u) = ~x+ (ẋ, θ̇, ẍ, θ̈)T∆t.

To achieve the objective of balancing the pole and keeping
the cart close to the origin, x = 0, we used a cost function

U(~x, t, u) =γt
(
5x2 + 50θ2

+c

(
ln(2− 2u)− u ln

(
1− u
u

)))
∆t

(55)

applied at each time step, and the term with coefficient c is
there to enable an efficient greedy policy as in Section V-B,
but here with c = 10. Each trajectory was defined to last
exactly 300 timesteps, i.e. 6 seconds of real time, regardless of
whether the pole swung below the horizontal or not, and with
no constraint on the magnitude of x. This cost function and the
fixed duration trajectories is similar to that used by [11], [24],
but differs to the trajectory termination criterion used by [28]
which relies upon a non-differentiable step cost function, and
hence is not appropriate for VGL based methods. We used
γ = 0.96 as a discount factor in (55). This discount factor
is placed in the definition of U so that the sharp truncation
of trajectories terminating after 6 seconds is replaced by a
smooth decay. This is preferable to the way that Algorithm 1
implements discount factors, which effectively treats each time
step as creating a brand new cost-to-go function to minimise.

Following the same derivation as in Section V-B, a greedy
policy was given by (50), which we used to map u to F by
Ft ≡ 20ut − 10 (to achieve the desired range F ∈ [−10, 10]
when using using g(x) defined by (46)). Again, Ωt and ∂π

∂~x
were given by (52) and (51), respectively.

Training used a DHP style critic MLP network, with 4
inputs, a single hidden layer of 12 units and 4 output nodes,
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with extra shortcut connections from the input layer to the
output layer. The activation functions used were hyperbolic
tangent functions at all nodes except for the output layer which
used the identity function. Network weights were initially ran-
domised uniformly from the range [−0.1, 0.1]. To ensure the
state vector was suitably scaled for input to the MLP, we used
rescaled state vectors ~x′ defined by ~x′ = (0.16x, 4θ/π, ẋ, 4θ̇)T

throughout the implementation. As noted by [11], choosing
an appropriate state-space scaling was critical to success with
DHP on this problem.

Learning took place on 10 trajectories with fixed start points
randomly chosen with |x| < 2.4, |θ| < π/15, |ẋ| < 5,
|θ̇| < 5, which are similar to the starting conditions used by
[28]. The exact derivatives of the model and cost functions
were made available to the algorithms. Four algorithms were
tested and their results are shown in Fig. 5. Both VGL(1)
and VGL(0) performed badly when accelerated by RPROP.
The results again show that VGLΩ(1) had less volatility and
better performance than both VGL(1) and VGL(0), which
demonstrates the effectiveness of the Ωt matrix used. For com-
parison, we also show the results of an actor-only architecture
(i.e. with no critic) trained entirely by BPTT and RPROP.
This demonstrates that the minimum attained by the VGL
algorithms is suitably low. Also we observed that when this
minimum was reached, the pole was being balanced effectively
with the cart remaining close to x = 0.
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Fig. 5. Cart-pole solutions by VGL(0), VGL(1) and VGLΩ(1), with a greedy
policy, plus, for comparison, BPTT. All algorithms were used in conjunction
with RPROP. Each graph shows the performance of a learning algorithm for
each of ten different random weight initialisations; hence each ensemble of
curves gives some idea of an algorithm’s reliability and volatility.

The results show the cart-pole problem being solved effec-
tively. We have achieved largely monotonic progress (with the
brief non-monotonicity down to the aggressive acceleration of
RPROP and/or discontinuities in the cost-to-go function sur-
face in weight space) for a critic learning algorithm, replicating
the performance of BPTT by a critic with a greedy policy.

VI. CONCLUSIONS

We have found a strong theoretical equivalence between
BPTT and an ADP critic weight update (VGLΩ(1)), two

algorithms that on first sight appeared to be operating totally
differently. This provides a convergence proof for this VGL
algorithm under the conditions stated in Section III-D. This
analysis has been successful for a VGL learning system where
a greedy policy is used. Analytical and empirical confirmations
of the equivalence to BPTT have been provided in sections
IV-G and V, respectively. This contrasts to the demonstrated
divergence in Section IV of several other critic algorithms with
a greedy policy (DHP, VGL(1) and VGLΩ(0)).

In the experiments of Section V we have shown the effec-
tiveness of the algorithm and its ability to produce approximate
monotonic learning progress for a neural-network based critic
with a greedy policy, even when combined with an aggressive
learning accelerator such as RPROP.
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