

City, University of London Institutional Repository

Citation: Gashi, I. & Popov, P. T. (2007). Uncertainty explicit assessment of off-the-shelf

software: Selection of an optimal diverse pair. Paper presented at the Sixth International
IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems, 26 Feb -
2 Mar 2007, Banff, Canada.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/519/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Uncertainty Explicit Assessment of Off-the-Shelf Software: Selection of an

Optimal Diverse Pair

Ilir Gashi, Peter Popov

Centre for Software Reliability, City University,

Northampton Square, London, EC1V 0HB

I.Gashi@city.ac.uk, ptp@csr.city.ac.uk

Abstract

Assessment of software COTS components is an

essential part of component-based software

development. Sub-optimal selection of components

may lead to solutions with low quality. The assessment

is based on incomplete knowledge about the COTS

components themselves and other aspects, which may

affect the choice such as the vendor’s credentials, etc.

We argue in favor of assessment methods in which

uncertainty is explicitly represented (‘uncertainty

explicit’ methods) using probability distributions. We

have adapted a model (developed elsewhere [17]) for

assessment of a pair of COTS components to take

account of the fault (bug) logs that might be available

for the COTS components being assessed. We also

provide empirical data from a study we have

conducted with off-the-shelf database servers, which

illustrate the use of the method.

1. Introduction

Commercial-off-the-shelf (COTS) components often

form an essential part in software development.

Benefits of their use are wide ranging: from the

incentive to cut-down on cost to reducing the

development time and improving quality by using tried

and tested components. An initial and essential part of

component based software development is the

assessment of available COTS components. There exist

a plethora of available methods for COTS assessment

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],

[13], [14]. An often overlooked aspect in the existing

assessment techniques is the inherent uncertainty in the

values of the parameters being assessed. This is

because the assessment is carried out with limited

resources of time and budget. Therefore the true values

of the assessed attributes will rarely be known with

certainty.

For solutions with very stringent dependability

requirements a single component may rarely be able to

meet the required dependability target. It has been

argued [15] that employing fault-tolerance in the form

of software design diversity (i.e. using more than one

component to perform the same function) is usually the

best guarantee of achieving higher levels of

dependability than what the available COTS

components can offer. But, employing software

diversity was seen in the past as an expensive method

for increasing dependability due to the need of building

more than one component. With off-the-shelf

components this problem is overcome: there may be

many different components that will have the required

functionality therefore bespoke development may not

be required
1
. Moreover many of these components are

free and open-source, thus the cost of procurement may

be non-existent. The problem of assessment though still

exists. If we were interested in building a 1-out-of-2
2

system, simply choosing the two best components that

exist in the market may not be enough. What is of

interest is how well the pair works together. The

optimal pair will be the one with the lowest probability

of coincident failures of both components of the pair.

The components that form the best pair may not

necessarily be the ones which are the best individually.

For further details on the subtleties of this problem the

interested reader is referred to a recent survey [16].

In this paper we will provide details of an adaptation

of the model in [17] which allows for an optimal

selection of a pair of components to be used in a fault-

1 Apart from ‘glue code’ (usually referred to as middleware)

which may be needed to ensure the components can be

deployed for a given system in a coordinated manner as

required by the particular system context.
2 In this configuration the system performs correctly as long

as 1 of the 2 components works correctly.

tolerant system. In this model the assessment results are

subject to uncertainty and we discuss how this may

impact the decisions about which pair of components

we choose. The model also enables representing the

dependencies that exists between uncertainties

associated with the values of each COTS component in

the pair.

The paper is structured as follows: section 2

contains a brief review of related work on COTS

assessment; in section 3 we describe the model of

assessment, in which model parameters are not known

with certainty and argue in favor of using probability

distributions as an adequate mechanism to capture this

uncertainty; in section 4 we provide details of an

empirical study with off-the-shelf database servers and

illustrate how our approach can be used to select the

optimal diverse pair; in section 5 we provide a

discussion of the method and finally section 6 contains

conclusions and provisions for further work.

2. Related work

There are a wide variety of COTS assessment

approaches available. All of them start with an initial

statement of requirements, which defines what is being

sought. It has been proposed that the requirements

initially should not be too stringent, since this would

discard potentially appropriate COTS candidates at a

very early stage [9], [18]. It has even been suggested

[18] that if the requirements are not flexible then the

COTS based development may not be appropriate and

bespoke development could be more cost-effective. So

initially [18] suggests distinguishing between essential

requirement and those that are negotiable. The

selection criteria are then based on the essential

requirements.

Off-the-shelf-option (OTSO) [2] is a multi-phase

approach to COTS selection. The phases are: the

search phase, the screening and evaluation phase and

the analysis phase. In the first phase COTS products

are identified. In the screening and evaluation phase the

products are further filtered using a set of evaluation

criteria (established from a number of sources,

including the requirements specification, the high level

design specification etc). In the analysis phase results

of the evaluation are analyzed, which lead to the final

selection of COTS products for inclusion in the system.

Procurement-oriented requirements engineering

(PORE) [1] is a process in which requirements are

defined in parallel with COTS component evaluation

and selection. [1] propose using prototypes to develop

knowledge concerning COTS products and their use

within the wider system.

Other assessment methods include: CISD (COTS-based

Integrated System Development) [4], STACE (Socio

Technical Approach to COTS Evaluation) [10],

CDSEM (Checklist Driven Software Evaluation

Methodology) [3], CRE-COTS-Based Requirements

Engineering Method [6], CEP (Comparative

Evaluation Process Activities) [7], CBA Process

Decision Framework [8], A Proactive Evaluation

Technique [19], CAP-COTS Acquisition Process

method [5], Storyboard Process [11], Combined

Selection of COTS Components [12], PECA Process

[13] or COTS-DSS [14].

3. Assessment of Diverse COTS Solutions:

Bayesian Approach

3.1 Uncertainty in the assessment

Any assessment is conducted with limited resources

and under various assumptions, which may not hold

true in real operation. Therefore the outcome of the

assessment is subject to uncertainty. For example,

deciding to rate a COTS component exactly 7 out of 10

according to a chosen scale may be difficult to justify.

The assessor may be certain that the values of the

attribute outside the range {6,7} are unreasonable but

be indifferent between the possible values inside this

interval. Software reliability is a typical example of an

attribute which is never known with certainty.

Probability of failure on a randomly chosen demand

(pfd) is unknown, but the assessor may be prepared to

state, with confidence 99%, that it is less than, say 10
-3
.

The assessor may be even more specific of their doubts

about the COTS pfd and state that the most likely range

of the pfd is between 10
-4
 and 10

-3
.

There are various methods for representing

uncertainty [20]. Bayesian approach to probabilistic

modeling is one of the best-known ones and used with

some success in reliability assessment [21]. It allows

one to combine, in a mathematically sound way, the

prior belief (which is ‘subjective’ and possibly

inaccurate) about the values of a parameter with the

(‘objective’) evidence from seeing the modeled artifact

(in this case a COTS component) in operation.

Combining the prior belief and the evidence from the

observations in a mathematically correct way leads to a

posterior belief about the values of the assessed

attribute. If the prior belief is represented as a

probability distribution rather than a single value, then

after seeing the observations we get a posterior

distribution (quantification of uncertainty) which takes

into account both the prior knowledge and the

empirical evidence.

3.2 Model for Assessment of 1 COTS

Component with one Attribute

In this section we illustrate how the Bayesian

approach to assessment is normally applied to assessing

a single attribute of a single COTS component. Assume

that the attribute of interest is the component’s

probability of failure on demand (pfd).

If the system is treated as a black box, i.e. we can

only distinguish between COTS component’s failures

or successes (Fig.1), the Bayesian assessment proceeds

as follows.

Fig. 1 - Black-box model of a COTS component
Let us denote the system pfd as p, with prior

distribution)(•pf , which characterizes the assessor’s

knowledge about the system pfd prior to observing the

COTS component in operation. Assume further that the

COTS component is subjected to n demands,

independently drawn from a ‘realistic’ operational

environment (profile), and r failures are observed. The

posterior distribution,),|(nrxf p , of p after the

observations will be:

)()|,(),|(xfxrnLnrxf pp ∝ (1)

where)|,(xrnL is the likelihood of observing r

failures in n demands if the pfd were exactly x, which in

this case of independent demands is given by the

binomial distribution:

rnr
xx

r

n
xrnL

−−







=)1()|,((2)

For any prior and any observation (r, n), including

(r=0), the posterior can be calculated. Thus it can be

applied to all the COTS components included in the

assessment. Now, the selection can be based on the

posterior distribution derived for the COTS

components using different criteria:

- for a given reliability target the COTS component

chosen will be the one which has the highest

probability of having a pfd lower than the given

target;

- for a predefined ‘mission’ of say, 1000 demands,

the COTS component chosen will be the one which

is most likely to survive the mission without a

failure.

3.3 Model for Assessment of a Fault-Tolerant

System Consisting of 2 COTS Components

The Bayesian assessment can also be applied to

choosing a pair of components. In what follows we will

describe how the assessment can be performed for a

system made up of two components. The mathematical

details can be found in [17] and Appendix A.

Let us assume that the attribute of interest is again

the pfd of the system: that is of simultaneous failure of

both components. Now assume that the system is

subjected to a series of independently selected

demands. On each demand the response received from

each of the COTS components is characterized as

correct/incorrect. Since we have two COTS

components clearly 4 combinations exist, which can be

observed on a demand, as shown in Table 1.

The four probabilities given in the last column of

Table 1 sum to unity (i.e. they sum to 1). So if the last

three probabilities are 0.2, 0.4 and 0.3 respectively then

the first one 10p = 1- (0.2 + 0.4 + 0.3) = 0.1. Thus, the

joint distribution of any three of these probabilities,

will give an exhaustive description of the COTS pair

behavior. In statistical terms, the model of the COTS

component pair has three degrees of freedom. Since we

have a three variate distribution we need to define three

prior distributions (not a single one as in the previous

section): the prior distributions for the pfd of each of

the components, and then the conditional prior

distribution for the pfd of both components

simultaneously. The details of this joint distribution are

given in [17, section 2] and Appendix A. From this

distribution we can then derive the marginal

distribution of common failures which will be used to

choose the best pair of components in a 1-out-of-2

setup.

3.4 Utilizing Multiple Sources of Data in the

Assessment

In some areas of software engineering, especially in

testing, the usefulness of partitioning the demand

space has been recognized [22], [23], [24]. The

Table 1 - The outcomes and their frequency and probabilities for each demand

Event COTS A Correct COTS B Correct Observations in n demands Probability

Α No Yes r1 10
p

Β Yes No r 2 01
p

Γ No No r 3 11
p

∆ Yes Yes r 4 00
p

COTS output
COTS

demands

demand space partitions typically represent different

types of demands, which may have different likelihoods

of occurring in realistic environment. Realistic testing,

thus, would require generating mixes of demands,

which take into account the likelihood of the types of

demands.

In our context, operating in a partitioned demand

space may imply that the uncertainty associated with

the attribute of interest may differ among the partitions,

e.g. as a result of different number of observations

being made for the different partitions.

If the demand space is partitioned into M partitions {S1,

S2, … SM}, then for each of these the assessment will

be performed as described above, e.g. with two COTS

components the description provided in section 3.3 will

apply. As a result M conditional distributions will be

associated with each pair of COTS components from

which the conditional uncertainty of interest will be

expressed, that characterizes the behavior of the

particular pair of COTS components in the specific

partition. Finally, in order to compare the competing

pairs of COTS components the unconditional

distribution of the probability of joint failure should be

derived for the particular profile defined over the set of

partitions, which represents the targeted operational

environment. In [25] we describe an approach of

combining the assessment in partitions under the

assumption of independence of uncertainties across the

sub-domains. Mathematical details can be found in [25,

section 3.3] and Appendix B.

4. Empirical Results from a Study with

Off-The-Shelf Databases

We have reported previously results of a study on

dependability of off-the-shelf database servers [26]. In

this paper we will use the data collected in that study to

demonstrate how the model explained in section 3.3

can be utilized to perform the selection of the best pair

of 2 servers. We note that the ideal selection of the best

pair is to perform statistical testing using the COTS

products. This, however, is problematic in practice due

to the lack of suitable middleware
3
 for diverse database

replication. Database replication is non-trivial as it

requires synchronizing the operation of the copies

while serving concurrent clients. Additionally the

software vendor of the middleware may like to make a

‘strategic’ choice of an SQL server pair for use in the

foreseeable future. The application(s), which may be

3 Some rudimentary solutions such as C-JDBC [27] only

allow for the use of a minimal subset of SQL with diverse

SQL servers.

developed by the users of the middleware in the future,

will be clearly unknown at the time of making the

selection, therefore performing statistical testing (which

is crucially dependent on knowing the operational

profile in the targeted environment) will be impossible.

Given these difficulties we can use alternative

options. We will describe in this paper one such option:

using stressful environments which increase the

likelihood of failures occurring. After all the fault-

tolerant solution with a pair of servers is intended to

cope with the difficult situations (demands) where the

individual channels are deficient. The set of bugs of a

particular COTS product (in our case SQL server)

defines one such stressful environment for a server. We

have collected known bug reports for four SQL servers,

namely PostgreSQL 7.0, Interbase 6.0, Oracle 8.0.5

and Microsoft SQL server 7 [26] (for the sake of

brevity we will use the abbreviations PG, IB, OR and

MS respectively throughout the rest of the text when

referring to these servers). The union of the bugs

reported for all the compared COTS products will form

a demand space, in which there will be a partition

stressing each of the products. The logs of the known

bugs are treated as a sample (without replacement
4
)

from the corresponding partition (representing the

server, for which the bug has been reported). We label

the partitions nameServerS . Partition XS is called an

‘own’ partition for server X and a ‘foreign’ partition

for any other server Y≠X. The servers are then
compared using the methodology described in sections

3.3 and 3.4.

4.1 Prior Distributions

The prior distributions used in this study are

explained next. The joint prior distribution was

constructed under the assumptions that the respective

pfds of a server A and a server B are independently

distributed; in the general case of the failures being

non-independent events, the conditional distributions of

the probability of coincident failure are specified for

every pair of values of the pfds of servers A and B.

The distributions were assumed to be identical for

4 Strictly, there might be a difference between sampling with

and without replacement. Our model is based on sampling

without replacement while the inference procedure described

in section 3.3 implies sampling with replacement. This is a

simplification, which in many cases is acceptable (e.g.

sampling from a large population of units, none of which

dominates the sampling process, which seems a plausible

assumption in our case of SQL servers being very complex

products and likely to contain many unknown bugs).

each of the four servers across both their ‘own’ and

‘foreign’ partitions respectively. This assumption was

made because we did not have reasons to believe

otherwise. We discuss other options of deriving more

accurate priors in the Conclusions section. A summary

of the distributions used is given in Table 2.

For ‘own’ partitions the prior distributions of pfds of

both A and B were defined as uniform in the range [L,

1], where L < 1 accounts for the chance that some of

the reported bugs might be Heisenbugs
5
 [28], i.e. we

expect most of the bugs that have been reported for a

particular server to cause failures when they are run on

that server (hence the probability of observing an

incorrect results failure is very close to 1) but, due to

Heisenbugs, not always so. As a source for L we used

the study by Chandra and Chen [29]. These authors

studied the fault reports for three off-the-shelf

products: MySQL database server, GNOME desktop

environment and the Apache web-server and reported

that 5%, 7% and 14%, respectively, of the reported

bugs were Heisenbugs. Given the variation between the

products we interpreted these findings by setting L = 1-

(2*0.14), that is twice the highest value of Heisenbugs

reported, i.e. allowing for even higher proportion of the

Heisenbugs than recorded in [29]. The prior, thus, is

expected to be within the range [0.72, 1]. Notice that

here the prior distribution for incorrect results is being

defined at a range close to 1 (i.e. high unreliability).

This is because of the unusual profile of the demands:

since we are using known bug reports as demands we

expect most of the bugs to cause failures when we run

them on the server for which they were reported.

For ‘foreign’ partitions, however, the prior

distributions for both pfds of A or B were defined as

uniform in the range [0, 1]. This is due to the absence

of any comparative study to guide our expectation

about the likely value. In passing we note that

theoretical work such as [30], [31] suggest that diverse

software versions will tend to fail coincidentally on

5 Gray defines two types of bugs [28]: “Bohrbugs” for bugs

that appear to be deterministic (they manifest themselves

each time the bug script is executed); and “Heisenbugs” for

those that are difficult to reproduce as they only cause

failures under special conditions (e.g., created by usage

pattern, other software and internal state)

‘difficult’ demands. Since all the bugs are ‘difficult’ –

they are known to be problematic at least for one of the

servers – we may consider them genuinely difficult,

hence assume as plausible that the other servers too, are

likely to fail on them. On the other hand, empirical

studies such as [32], [33], have shown that significant

gains can be had via design diversity – hence low

chances that a particular server will fail on bugs

reported for other servers are also plausible. In

summary, we are indifferent between the values of the

probability that a server will fail from a ‘foreign’ bug.

All conditional prior distributions for coincident

failures of the two servers for given values of the

components’ pfds were defined in the range [0, min

(value of pfd of A, value of pfd of B)] (since it cannot

be greater than the probability of either of the two

individually). This is again due to the rather unique

profile, under which we apply the inference and the

lack of comparable studies that would enable us to

define a more accurate prior, thus ‘indifference’.

For the comparison we use a distribution defined on

the partitions which does not favor any of the servers,

i.e. we assumed that probability of each partition is

0.25 in the study with 4 servers
6
.

4.2 Observations

The observations using the known bugs of four off-

the-shelf servers are given in Table 3 [26]. Since we

included 4 servers in our study and we are interested in

diverse pairs of servers, then we have a total of 6

different server pairs. We can see that the number of

bugs collected for each server was different, which

indicated that the empirical evidence differs between

the partitions. The reason for this was merely

differences in the reporting practices operated by the

vendors of the servers, e.g. unavailability in the public

domain of fully reproducible bug scripts for the

6 We could use the number of known bugs for each of the

partition to construct a profile consistent with the

observations. This is not acceptable for two reasons: i) it will

favour poor bug reporting practices, an ii) we would have

used the bugs twice – once in the inference procedure and

another time in defining the profile, which is theoretically

unsound.

Table 2 - The Prior distributions (identical for all four servers)

Partition Range Distribution

pfd of server A or B on ‘Own’ partitions 0.72 – 1 Uniform

pfd of server A or B on ‘Foreign’ partitions 0 – 1 Uniform

Conditional Distribution of ‘Coincident failures’ in

both A and B on either partition
0 – min (value of pfd of A, value of pfd of B) Uniform

commercial servers (especially OR). Therefore, the

sizes of the samples from the partitions on each server

are different
7
. Additionally, these servers are not

functionally identical: they offer different degrees of

compliance with the SQL standard(s) and even

proprietary extension to SQL. Bugs affecting one of

these extensions, thus, literally cannot exist in a server

that lacks the extension. We called these “dialect-

specific” bugs. Due to this, not all the bugs reported

for a server can be run on the other servers. Therefore

the number of ‘foreign’ bug reports varies between the

servers.

4.3 Posteriors

Table 4 shows the percentiles of the priors and

posteriors of the probability of a failure of a pair of

components assuming a 1-out-of-2 setup. The values in

the cells represent the confidence that the probability of

7 It may seem desirable to have a similar amount of data for

the different servers, but in reality there are different

reporting practices for each server. Such differences simply

translate into different amounts of empirical evidence

available for the servers, with which our method can cope

easily.

a coincident failure of both components of a pair on the

same randomly chosen demand is no greater than the

respective confidence level, e.g. for PG & IB the value

of 0.02 at the 50
th
 percentile can be interpreted as “we

are 50% confident that the probability of a coincident

failure of both PG & IB on a randomly chosen demand

is no greater than 0.02”.

We can see that universally the best pair across the

percentiles is the open-source server pair PG & IB.

There are some interesting remarks to note from the

results on Table 4, which highlight the value of

handling the uncertainty explicitly using probability

distributions, rather than using point estimates of

attribute values and the value of exploiting the

dependence in the failure behavior of the servers:

- It may seem surprising that the best server pair is

PG & IB given that results in Table 3 show that one

coincident failure (i.e. r3) was observed for this pair

and none for the commercial server pair OR & MS.

But, in Table 3 we also saw that there is a much

larger number of single channel failures (i.e. r1 and

r2) observed for the open-source server pair than for

the commercial server pair which increases our

confidence of a strong negative correlation in the

failure behavior of the open-source pair, i.e. we see

extensive evidence that diversity does work: when

one of the servers fails the other works correctly.

No such evidence is available for the commercial

servers.

- We cannot make a selection purely on the 50
th

percentile of the posterior distribution of the system

pfd since 3 of the server pairs give identical results.

Most of the conventional assessment techniques,

which rely on median values of the assessment

attributes would have also been unable to provide a

clear choice. However we can make a selection

from the 99
th
 percentile of the same setup.

We have also used the model described in section

3.1 to calculate the posteriors of single servers (using

the same prior definitions as for the pairs, the

observations for each individual server and utilizing the

Table 3 - The observations for the 6 diverse
server pairs on the bug reports of the

different partitions. In the partition column
the subscript indicates for which server
these bugs have been reported. N is the

total number of bugs run and r1, r2 and r3 are
as defined in Table 1.

S
er
v
er

P
ai
r

P
ar
ti
ti
o
n

N r1 r2 r3

S
er
v
er

P
ai
r

P
ar
ti
ti
o
n

N r1 r2 r3

PGS 24 21 0 0 PGS 18 0 0 0

IBS 28 0 23 1 IBS 31 25 0 0

ORS 3 0 0 0 ORS 4 0 3 0

PG

&

IB

MSS 9 0 0 0

IB

&

OR

MSS 10 1 0 0

PGS 30 27 0 0 PGS 21 0 1 0

IBS 24 1 0 0 IBS 35 27 0 2

ORS 4 0 2 1 ORS 4 0 0 0

PG

&

OR

MSS 7 0 0 0

IB

&

MS

MSS 12 0 6 1

PGS 33 28 0 2 PGS 27 0 2 0

IBS 25 1 2 0 IBS 30 0 2 0

ORS 3 0 0 0 ORS 4 3 0 0

PG

&

MS

MSS 18 1 7 5

OR

&

MS

MSS 12 0 7 0

Table 4 - The percentiles of the probability
of system failure for each server pair.

50
th
 percentile 99

th
 percentile

Server Pair
Prior Posterior Prior Posterior

PG & IB 0.02 0.12

PG & OR 0.07 0.19

PG & MS 0.09 0.20

IB & OR 0.02 0.14

IB & MS 0.04 0.14

OR & MS

0.3

0.02

0.61

0.14

partitions theory described in section 3.4). The

posteriors for each server are shown in Table 5. We

can see that even the worst pair from Table 4 on all

percentiles performs better than the best single server

in Table 5. This is hardly surprising given the fact that

coincident failures are very rare despite the choice of a

stressful demand profile (known bug reports). We can

also see that the differences in the pfd values of a single

server vs. a diverse pair of servers are quite significant.

The worst performing server pair has a pfd of no

worse than 0.20 with confidence 99% whereas the best

performing single server has a pfd of no worse than

0.32 with the same confidence level. These results

indicate that the use of a diverse server pair would

bring significant dependability gains: the best single

server may fail up to once in 3 demands while the

worst pair – up to once in 5 demands.

5. Discussion

The Bayesian model explained in sections 3.3 and

3.4 can be used for selection of an optimal pair of

COTS components, as was illustrated in section 4,

when the attribute of interest is the probability of

failure on demand. It is a common practice that COTS

components are assessed in terms of more than 2

attributes, usually many more. The obvious question,

therefore, is whether the proposed ‘uncertainty explicit’

assessment ‘scales up’ to:

- more than one attribute

- fault-tolerant configurations in which more than two

COTS components are used (for example, three

COTS components to enable majority voting on the

results)

In both of these cases, the question is how the

method applies if we have to define multivariate

distributions. Even though mathematically possible,

Bayesian inference with multivariate distributions is

difficult. The difficulty has two aspects:

- specifying a multivariate prior distribution becomes

problematic because many non-intuitive

dependencies between the attributes must be

defined and justified.

- manipulating a multivariate distribution is non-

trivial even using the most advanced math/statistical

tools. Calculating the posterior distribution is

impracticable with more than 3 variates and without

simplifying assumptions about the dependencies

between them.

For scenarios where the COTS components need to

be assessed in terms of more than one attribute, to

partially overcome these difficulties, a ‘divide-and-

conquer’ approach can be employed: first the attributes

can be grouped into smaller groups so that there are

dependencies within the groups, which the assessment

can capture, but the groups are assumed independent

(i.e. knowing the values of the attributes in one group

does not change the assessor’s knowledge (belief)

about the values of the attributes included in the other

group); then, due to the independence assumption, the

final distribution is the product of the distributions of

the individual groups. More details on this approach

can be found in [25, section 5.1].

The limitations we outlined in this section are not

specific to our assessment method; in fact they are

more serious for the conventional methods in which the

individual attributes are assessed separately. We have

shown in [25] that even when the assessment of single

COTS components is done using just two attributes,

ignoring the dependence between the values of the

attributes may lead to wrong decisions: a sub-optimal

component may wrongfully be chosen as the best one.

If this could be observed with only two attributes, then

it is bound to be much more pronounced with more

than two attributes, where many more dependencies

may exist between the values of the attributes.

The “divide and conquer” approach to attributes

also has its problems. It can only be applied if the

assessor can justify that assuming a set of independent

pairs is plausible. Despite this problem, however, using

small independent groups is still an improvement

compared with the extreme assumption used implicitly

in the existing assessment methods surveyed, that all of

the attributes are independent.

It is worth pointing out that many of the attributes,

such as ‘has the required functions’, various forms of

compliance, e.g. ‘complies with certain standards’,

‘Backward Compatibility’, etc. [34], do not require any

uncertainty attached to their values. Assessment with

respect to such attributes normally leads to a reduction

of the number of the COTS components (which satisfy

all these ‘binary’ attributes), for which the more

thorough assessment with respect to the remaining

‘non-binary’ attributes can proceed [35].

6. Conclusions

Software diversity is a well known and well studied

subject in the literature [36]. It is recognized that often

Table 5 - The percentiles of the probability of
failure on demand for each single server.

Posteriors PG IB OR MS

50
th
 percentile 0.41 0.30 0.26 0.30

99
th
 percentile 0.54 0.43 0.32 0.42

the only way of obtaining dependability assurances is

to employ software diversity [15]. With the plethora of

off-the-shelf components available fault tolerance

through software diversity becomes a much more

achievable and affordable solution especially since

many of the components are open-source and free. The

important questions for a given project is how much

dependability gains there will actually be from

employing diversity, or at least given a set of diverse

software alternatives which is the best for a given

application.

We applied methods of Bayesian assessment

developed elsewhere [17], [25]. We illustrated how our

model can be used with the collected evidence to

perform the assessment and choose the best server pair.

We then compared the results of the posteriors of

server pairs with those of single servers and we saw

that even the worst server pair still performs much

better than the best single server. This indicates that

significant dependability gains may be obtained from

using diverse off-the-shelf database servers. It is also

interesting to note that in our assessment the best single

server is a commercial server, namely Oracle, whereas

the best pair of components is the pair PostgreSQL &

Interbase both of which are free and open-source

components.

The prior definition in Bayesian assessment is

crucial. In our study we have assumed that prior

distributions for each component are the same. This

was due to the unavailability of other known evidence

that we could use to define more accurate priors.

However this problem can be remedied by utilizing

evidence from earlier versions of the servers and then

doing multiple steps of inference, i.e. if we want to

perform the assessment with later versions of the

servers in our study we can use the posteriors from this

step as priors for the later versions, collect the new

evidence for the later versions and then use the model

to derive the posteriors for each.

Future work that is desirable would be to enable

effective assessment with a higher number of COTS

components in a diverse setup (more than two

components may be desirable in a diverse setup to

enable majority voting on the results from the

components).

Acknowledgement

This work was supported by the UK Engineering and

Physical Sciences Research Council (EPSRC) under

the ‘Interdisciplinary Research Collaboration in

Dependability of Computer-Based Systems’ (DIRC)

project.

Bibliography

 1. Ncube, C. and N. Maiden. PORE:Procurement Oriented

Requirements Engineering Method for the Component-

Based Systems Engineering Development Paradigm. in

International Workshop on Component-Based Software

Engineering. 1999.

2. Kontio, J., et al. A COTS Selection Method and

Experiences of Its Use. in Twentieth Annual Software

Engineering Workshop,NASA Goddard Space Flight

Center. 1995. Greenbelt, Maryland.

3. Jeanrenaud, J. and P. Romanazzi. Software Product

Evaluation: A Methodological Approach. in Software

Quality Management II: Building Software into Quality.

1994 p. 55-69.

4. Tran, V. and D.-B. Liu. A Risk Mitigating Model for the

Development of Reliable and Maintainable Large-Scale

Commercial-Off-The-Shelf Integrated Software Systems.

in Proceedings of the 1997 Annual Reliability and

Maintainability Symposium (RAMS). 1997 p. 361-367.

5. Ochs, M., et al. A Method for Efficient Measurement-

based COTS Assessment and Selection -Method

Description and Evaluation Results. in Proceedings of

the 7th International Symposium on Software Metrics.

2001. London, England: IEEE Computer Society p. 285-

294.

6. Alves, C. and J. Castro. CRE: A Systematic Method for

COTS Components Selection. in XV Brazilian

Symposium on Software Engineering (SBES). 2001. Rio

de Janeiro, Brazil.

7. Phillips, B.C. and S.M. Polen, Add Decision Analysis to

Your COTS Selection Process. 2002,

http://www.stsc.hill.af.mil/crosstalk/2002/04/phillips.htm

l.

8. Boehm, B., et al. Composable Process Elements for

Developing COTS-Based Applications. in Proceedings

2003 International Symposium on Empirical Software

Engineering. ISESE'2003. 2003: ACM-IEEE p. 8-17.

9. Dean, J., An Evaluation Method for COTS Software

Products. 2000, http://www.stc-online.org/cd-

rom/cdrom2000/webpages/johndean/paper.pdf.

10. Kunda, D. and L. Brooks. Applying Social-Technical

Approach for COTS Selection. in Proceedings of the 4th

UKAIS Conference. 1999. University of York, England.

11. Gregor, S., J. Hutson, and C. Oresky. Storyboard Process

to Assist in Requirements Verification and Adaptation to

Capabilities Inherent in COTS. in ICCBSS 2002. 2002.

Florida, USA: Springer-Verlag p. 132-141.

12. Burgués, X., et al. Combined Selection of COTS

Components. in ICCBSS 2002. 2002. Florida, USA:

Springer-Verlag p. 54-64.

13. Comella-Dorda, S., et al. A Process for COTS Software

Product Evaluation. in ICCBSS 2002. 2002. Florida,

USA: Springer-Verlag p. 86-92.

14. Ruhe, G. Intelligent Support for Selection of COTS

Products. in Web, Web-Services, and Database Systems.

2003: Springer p. 34-45.

15. Littlewood, B. and L. Strigini, Validation of Ultra-High

Dependability for Software-based Systems.

Communications of the ACM, 1993. 36(11): p. 69-80.

16. Littlewood, B., Popov, P. and Strigini, L., Modelling

software design diversity - a review. ACM Computing

Surveys, 2001. 33(2): p. 177 - 208.

17. Littlewood, B., P. Popov, and L. Strigini. Assessment of

the Reliability of Fault-Tolerant Software: a Bayesian

Approach. in Proc. 19th International Conference on

Computer Safety, Reliability and Security,

SAFECOMP'2000. 2000. Rotterdam, the Netherlands:

Springer p. 294-308.

18. Lewis, P., et al., Lessons Learned in Developing

Commercial Off-The-Shelf (COTS) Intensive Software

Systems. 2000, Software Engineering Resource Center.

19. Dean, J. and M. Vidger. COTS Software Evaluation

Techniques. in Proceedings of The NATO Information

Systems Technology. Symposium on Commercial Off-the-

shelf Products in Defence Applications. 2000. Brussels,

Belgium.

20. Wright, D. and K.-Y. Cai, Representing Uncertainty for

Safety Critical Systems, PDCS2 Tech. Rep. 135. Center

for Software Reliability, City University, London,. 1994.

21. Littlewood, B. and D. Wright, Some conservative

stopping rules for the operational testing of safety-

critical software. IEEE Transactions on Software

Engineering, 1997. 23(11): p. 673-683.

22. Jeng, B. and E.J. Weyuker, Analyzing partition testing

strategies. IEEE Transactions on Software Engineering,

1991. 17(7): p. 703-711.

23. Hamlet, D. and R. Taylor, Partition testing does not

inspire confidence. IEEE Transactions on Software

Engineering, 1990. 16(12): p. 1402-1411.

24. Musa, J.D., Operational Profiles in Software-Reliability

Engineering. IEEE Software, 1993. March: p. 14-32.

25. Gashi, I., Popov, P., Stankovic, V., Uncertainty

Concious Assessment of Off-The-Shelf Software. 2006,

http://www.csr.city.ac.uk/people/ilir.gashi/COTS/.

26. Gashi, I., Popov, P., Strigini, L. Fault diversity among

off-the-shelf SQL database servers. in DSN'04

International Conference on Dependable Systems and

Networks. 2004. Florence, Italy: IEEE Computer Society

Press p. 389-398.

27. ObjectWeb, C-JDBC. 2006 http://c-jdbc.objectweb.org/.

28. Gray, J. Why do computers stop and what can be done

about it? in 6th International Conference on Reliability

and Distributed Databases. 1987.

29. Chandra, S. and P.M. Chen. Whither Generic Recovery

from Application Faults? A Fault Study using Open-

Source Software. in DSN 2000, International Conference

on Dependable Systems and Networks. 2000. NY, USA:

IEEE Computer Society Press p. 97-106.

30. Littlewood, B. and D.R. Miller, Conceptual Modelling of

Coincident Failures in Multi-Version Software. IEEE

Transactions on Software Engineering, 1989. SE-15(12):

p. 1596-1614.

31. Eckhardt, D.E. and L.D. Lee, A theoretical basis for the

analysis of multiversion software subject to coincident

errors. IEEE Transactions on Software Engineering,

1985. SE-11(12): p. 1511-1517.

32. Knight, J.C. and N.G. Leveson, An Experimental

Evaluation of the Assumption of Independence in Multi-

Version Programming. IEEE Transactions on Software

Engineering, 1986. SE-12(1): p. 96-109.

33. Eckhardt, D.E., et al., An experimental evaluation of

software redundancy as a strategy for improving

reliability. IEEE Transactions on Software Engineering,

1991. 17(7): p. 692-702.

34. Bertoa, M.F. and A. Vallecillo. Quality Attributes for

COTS Components in Proc. of the 6th ECOOP

Workshop on Quantitative Approaches in Object-

Oriented Software Engineering (QAOOSE 2002), 2002,

Málaga, Spain p. 54-66.

35. Ncube, C. and N. Maiden, Acquiring COTS Software

Selection Requirements, IEEE Software, 1998, 15(2), p.

46-56.

36. Anderson, T. and P.A. Lee, Fault Tolerance: Principles

and Practice (Dependable Computing and Fault

Tolerant Systems, Vol 3). 2nd Revised ed. 1990: Springer

Verlag.

Appendix A – Component-Pair Assessment

Assume that the attribute of interest is the

probability of failure on demand (pfd). Now assume

that the system is subjected to a series of independently

selected demands. On each demand the response

received from the COTS components is characterized

as correct/incorrect. But since we have two COTS

components clearly 4 combinations exist, which can be

observed on a randomly chosen demand, as shown in

Table 1 of section 3.

The four probabilities given in the last column of

Table 1 sum to unity (i.e. they sum to 1). This

constraint remains even if we treat the probabilities in

Table 1 as random variables: their sum will always be

1. Thus, the joint distribution of any three of these

probabilities, e.g.),,(
111001 ,, •••pppf , gives an

exhaustive description of the behavior of a COTS

components pair. In statistical terms, the model has

three degrees of freedom.

The probabilities of getting an incorrect response on

a random demand from COTS A, let’s denote it pA, or

COTS B, pB, respectively, can be expressed as:

1110 pppA += and 1101 pppB += .

p11 represents the probability of receiving an

incorrect response from both the COTS components.

Hence, a notation pAB ≡ p11 will capture better the
intuitive meaning of the event it is assigned to. Instead

of using),,(
111001 ,, •••pppf another distribution, which

can be derived from it through functional

transformation, can be used. We

use),,(,, •••
ABBA pppf . We define the joint prior

distribution as:

),,(,, •••
ABBA pppf =

),|(,| BAppp ppf
BAAB
•),(, ••

BA ppf (3)

under the assumption that pA and pB are

independently distributed, i.e.

),(, ••
BA ppf =)(•

Ap
f)(•

Bp
f (4)

It can be shown that for a given observation (r1, r2,

and r3 in N demands) the posterior joint distribution

can be calculated as:

is the multinomial likelihood of the observation (N ,

r1, r2, r3).

The marginal distribution)(•
ABpf , which is used

for comparison of the COTS component pairs, can be

derived from),,(,, •••
ABBA pppf by integrating out

pA and pB, i.e.

)(•

ABpf = BAppp
pp

dpdpf
ABBA

BA

),,(,, •••∫∫ (7)

Appendix B – Partitions Theory

If the demand space is partitioned into M partitions

{S1, S2, … SM}, then for each of these the assessment

will be performed as described in section 3.3, e.g. with

two COTS components the description provided in

section 3.3 (with details given in Appendix A) will

apply. As a result M conditional distributions will be

associated with each pair of COTS components, e.g.

using two components these can be denoted as

)|,,(,, ippp Sf
ABBA

••• , from which the

conditional uncertainty)|(ip Sf
AB

• will be

expressed. This distribution characterizes the

probability of failure, iAB SP | , of both components in

the specific partition. Finally, in order to compare the

competing COTS pairs the unconditional distribution

)(•
ABpf should be derived for the particular profile

defined over the set of partitions, which represents the

targeted operational environment.

Let us denote the profile of the targeted environment

as { () ()MSPSP ,...,1 }, and assume that these are known

with certainty. The marginal probability of failure of a

COTS component pair, according to the formula of full

probability is:

()∑
=

×=
M

i
iiABAB SPSPP

1

| (8)

The distribution of this random variable, ABP ,

depends on the joint distribution,

()••,...,|,...,| 1 MABAB SPSPf , i.e. of the conditional

probabilities of failure in sub-domains. In some setups

it may be plausible to assume that the conditional

probabilities of failure (in the partitions that is) are

independently distributed, i.e.:

() () ()∏
=

••=••
M

i
SPSPSPSP MABABMABAB

fff
1

|||,...,| ...,...,
11

 (9)

Such an assumption represents the assessor’s belief

that learning something about the probability of failure,

iAB SP | , of a particular COTS component pair in

partition i will not change their belief about the

probability of failure, jAB SP | , of the same COTS

component pair in another partition. The assumption is

consistent with applying inferences to the individual

partitions, i.e. conditional on the demands coming from

a particular partition.

Under (9) the unconditional probability of COTS

component pair failure (8) can be expressed as a

convolution of the distributions of the random variables

() ()iiABw SPSPiP ×= | , i.e.:

()iPP w
w
AB ⊗= (10)

The selection of the best COTS component pair, out

of the available alternatives, then will be based on the

marginal distributions,)(•w
ABp

f , associated with the

available COTS component pairs.

∫∫∫

=

ABBA

ABBA

ABBA

ABBA

ppp
ABBAppp

ABBAppp

ppp

dxdydzppprrrNLzyxf

ppprrrNLzyxf

rrrNzyxf

,,
321,,

321,,

321,,

),,|,,,(),,(

),,|,,,(),,(

),,,|,,(

 (5)

where

321321)1()()(
)!(!!!

!

),,|,,,(

321321

321

rrrN
BAAB

r
AB

r
ABB

r
ABA

ABBA

pppppppp
rrrNrrr

N

ppprrrNL

−−−−−+−−
−−−

=

 (6)

