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1 Introduction 
 
In this chapter the notion of agency in AI is presented..It has been argued that in order 
to behave rationally in prevalent software applications artificial entities would have to 
be autonomous and adaptive. Besides, rather than working with single, isolated 
systems the new trend in AI would need to focus on inherently social entities in the 
form of multi-agent systems. 
 
The chapter begins by introducing the notion of action in traditional AI systems, 
deliberative and reactive. Next, the idea of agency is presented as complementary to 
classical AI approaches to action as well as a key factor in the development of 
applications and services that currently rely on technologies where software systems 
execute instructions automatically. In particular, the chapter highlights the importance 
of developing theories of action and learning in multi-agent scenarios such as the 
Internet. This introduction shall conclude with some considerations about the research 
areas that need to be targeted if the agent paradigm is to become the standard in the 
design, specification and implementation of intelligent systems. 
 
2 Action in traditional AI 
 
Historically, the “physical symbol system hypothesis” in traditional AI (Newell and 
Simon 1976) has been embedded in so-called deliberative systems.  Such systems are 
characterized by containing symbolic models of the world, and decisions about which 
actions to perform are made via manipulation of these symbols. To get an AI system 
to “act” it is enough to give it a logical representation  of a theory of action (how 
systems make decisions and act accordingly) and “get it to do a bit of theorem 
proving”. 
 
This approach to action is perhaps best illustrated in the planning problem where 
systems use symbolic manipulation to reason about which actions to execute to 
achieve their goals, that is, to reason about how to behave efficiently. Typically (Fikes 
and Nilsson 1971), the system will be given a description of the state of the world it is 
in (the initial state) and of the desired state of the world (the final state or goal). The 
system will also be provided with a set of actions, each accompanied with a list of 
pre-conditions for the action to be executed and a list of effects that result from the 
action being executed –that is, such lists encode how the world changes when the 
action is completed, which predicates are deleted and which added to the description 
of the world. For example, imagine that the world consists of two blocks and a table 
and that the initial state of the world is “block B on table, block A on block B, nothing 
on block A” or, as formally, {OnTable(B), On(A, B), Clear(A)}; also 
imagine that the goal is to have “block B on table and block A on table”, that is, 
{OnTable(A),OnTable(B)} and that the system is able to execute two actions, 



UnStack(x, y) and PutDown(x). These actions are accompanied by the 
following lists of pre-conditions and effects, for UnStack(x, y) and 
PutDown(x) respectively: 
 
Pre {On(x, y), Clear(x)} 
Del {On(x, y)} 
Add {Holding(x), Clear(y)} 
 
Pre {Holding(x)} 
Del {Holding(x)} 
Add {OnTable(x)} 
 
Clearly, in this example the plan consisting of the sequence of actions 
{UnStack(A, B), PutDown(A)} will bring the world from its initial state to 
the goal. At each step, the system that executes the planning algorithm (the planner) 
tries to match the preconditions for various actions to the description of the actual 
world. For example, the planner may begin by attempting PutDown(A), but fail 
since the precondition for this action (holding A) does not obtain. On the other hand, 
the preconditions for the action UnStack(A, B) do hold (A is stacked on B), so 
this action can be executed. As a result of executing this second action in turn, the 
state of the world becomes {OnTable(A), Clear(B), Clear(A), 
OnTable(B)}, which satisfies the goal {OnTable(A), OnTable(B)}. 
 
Unfortunately, given the computational complexity of theorem proving in even very 
simple logics this approach to the design and implementation of rational systems has 
not been widely applied in real-life scenarios. It has been proved (Chapman 1987) 
that even refined techniques will ultimately turn out to be unusable in any time-
constrained system –as the extremely simple example above illustrates, it just takes 
too long to search through all possible combinations to deduce the goals (theorems) 
from a set of initial conditions (premises). These results had a profound influence on 
AI research, caused some researchers to question the symbolic AI paradigm and led to 
alternative approaches, reactive architectures particularly. 
 
A reactive system is a system that does not use a symbolic model of the world nor 
symbolic reasoning to decide what to do next. Reactive architectures are modeled as 
black boxes: they follow if-then rules that map directly inputs, information received 
from their sensors, into actions. Without a model of the world or the task at hand such 
systems are cognitively elementary –they (re)act more like caterpillars rather than as 
human beings. Perhaps the most paradigmatic example of this type of system is the 
subsumption architecture, which establishes a hierarchy of competing behaviours 
where lower layers have precedence over higher ones (Brooks 1986).  
 
For example, let’s imagine a reactive robot that picks up samples from, say, the 
surface of Mars. Suppose the robot is given the following (situation → action) rules: 
 

(1) If detect an obstacle then change direction. 
(2) If carrying samples and at the base then drop samples. 
(3) If carrying samples and not at the base then travel up gradient. 
(4) If detect a sample then pick sample up. 
(5) If true then move randomly. 



 
Such rules form a hierarchy that ensures that the robot will turn if it finds an obstacle; 
if it is at the base and carrying samples, then it will drop them provided there is no 
immediate danger of crashing, and so on. The highest behavior –a random walk– will 
only be carried out if the agent has nothing more urgent to do: its “If true” 
precondition is assumed to always fire. It is a way of guaranteeing that, if rules (1)-(4) 
don’t apply, the robot will still do something. 
 
The resulting systems are, computationally speaking, extremely simple, and yet they 
are able to execute complex tasks. In addition, reactive systems are situated in real-
life domains and able to display flexible behavior. In fact, actions are not planned 
ahead but are rather the emergent result of the system’s “embeddedness” in a 
particular situation. 
 
However interesting this approach may be, it presents several problems. Reactive 
systems learn procedures but no declarative knowledge; that is, they only learn values 
or attributes that are not easy to generalize to similar situations (or transmit to other 
systems). Besides, and perhaps more importantly, precisely because they show 
emergence properties there is no principled methodology for building such systems. 
 
Regardless of the many attempts to combine deliberative and reactive architectures in 
hybrid systems (Ferguson 1992, Müller 1997), it seems that at the end of the day one 
is left to choose between theoretically sound but impractical deliberative systems and 
efficient yet loosely designed reactive systems. This may reflect the fact that each 
type of AI system was designed to solve related yet different problems: symbolic AI 
resulted from the effort to formalize and mechanize reasoning that blossomed with the 
development of expert systems; reactive systems on the other hand were often 
motivated by efforts to solve numerical, non-linear problems such as those associated 
with connectionism and Artificial Life.  
 
Now, for the last couple of decades researchers have experienced the emergence of 
new technologies such as the Internet. These demand personal, continuously running 
systems for which older notions of action –those resulting from either cumbersome 
symbolic reasoning or ever-adaptive reflexes– may be insufficient. Indeed, many 
researchers believe that in the XXI century for AI systems to perform “intelligently” 
they must be able to behave in an autonomous, flexible manner in unpredictable, 
dynamic, typically social domains. In other words, they believe that the “new” AI 
should develop agents (Alonso 2002).  
 
In fact, it can be argued that current trends in web development and web design as 
well as new applications in electronic commerce (for instance, PayPal) and social 
software (for example, facebook) will be only fully developed if an agents’ 
perspective is adopted. 
 
 
3 The three principles of agent-centered AI 
 
This section examines in detail the main functionalities software systems would 
display in a social, agent-centered AI or, in other words, the principles of behavior of 
the “new” AI. 



 
3.1 Autonomous behavior 
By autonomy researchers mean the ability of the systems to make their own decisions 
and execute tasks on the designer's behalf. The idea of delegating some responsibility 
to the system to avoid tediously writing down code is certainly very attractive. 
Moreover, in scenarios where it is difficult to control directly the behavior of our 
systems, the ability of acting autonomously is essential. For example, space missions 
increasingly depend on their unmanned space-crafts and robots to make decisions on 
their own: this ability is paramount since the costs (in time and money) of 
communication between the space station and such systems can be prohibitive.  
 
It is precisely this autonomy that defines agents. Traditionally, software systems 
execute actions (so-called methods) automatically: Imagine that the web application 
in your computer, the user or client, requests access the contents of a webpage that is 
stored in another software system elsewhere, the server or host. The server cannot 
deny access to the content of the webpage; it must execute the “send” method 
whenever it is requested to do so. On the contrary, agents decide by themselves 
whether to execute their methods according to their beliefs, desires and intentions 
(Bratman et al. 1988). Paraphrasing (Jennings et al. 1998), “what traditional software 
systems do for free, agents do for money”. 
 
3.2 Adaptive behavior 
Secondly, agents must be flexible. When designing agent systems, it is impossible to 
foresee all the potential situations they may encounter and specify their behavior 
optimally in advance. For example, the components of interaction in the Internet 
(agents, protocols, languages) are not known a priori. Agents therefore have to learn 
from and adapt to their environment. This task is even more complex when Nature is 
not the only source of uncertainty, but the agent is situated in a multi-agent system 
(MAS) that contains other agents with potentially different capabilities, goals, and 
beliefs.  
 
Besides, the new systems must be general. An agent must have the competence to 
display an action repertoire general enough to preserve its autonomy in dynamic 
environments.  Certainly, an agent can hardly be called intelligent if it is not able to 
perform well when situated in an environment different from (yet in some ways 
similar to) the one it was originally designed for. 
 

Indeed, there is no need to learn anything in static, closed domains where agents have 
perfect knowledge of state-action transitions. Nonetheless, intelligence and learning are 
tightly tied in domains where autonomous agents must make decisions with partial or 
uncertain information, that is, in domains where agents learn without supervision and 
without the luxury of having a complete model of the world, that is when facing the so-
called reinforcement learning problem (Kaelbling et al. 1996). In such scenarios, each 
time an agent executes an action in a state it receives a numerical reward that indicates 
the immediate value of this state-action transition –how “good” it is. This produces a 
sequence of states, actions and rewards. The agent’s task is to learn a policy that 
maximizes the expected sum of rewards, typically with future rewards discounted 
exponentially by their delay. In other words, the more into the future the predictions 
are, the less likely the rewards will count, a sensible principle since more distant 
rewards are less probable. Unlike supervised learning such as pattern recognition or 



neural networks, the learner is not told which actions to take, but instead must discover 
which actions yield the most reward by exploiting and exploring their relationship with 
the environment. Actions may affect not only the immediate reward but also the next 
situation and, through that, all subsequent rewards. These two characteristics, trial and 
error search and delayed reward, are the two most important features of reinforcement 
learning.  

 
This method has been successfully applied to several organizational problems in 
robotics, control, operation research, games, human computer interaction, 
economics/finance, complex simulation, and marketing.  

 
3.3 Social behavior 
Agents also show a social attitude. In an environment populated by heterogeneous 
entities, agents would need the ability to recognize their opponents, and to form 
groups when it is profitable to do so. It is not a coincidence that most agent-based 
platforms incorporate multi-agent tools (Luck et al. 2005). Indeed, some authors do 
state that agent-oriented software engineering needs to be developed precisely 
because there is no notion of organizational structure in the traditional software 
systems (Etzioni and Weld, 2007).  
 
Generally speaking, the design and implementation of multi-agent systems is an 
attractive platform for the convergence of various AI technologies. That is the 
underlying philosophy of competitions such as RoboCup (http://www.robocup.org/) 
where teams of soccer agents must display their individual and collective skills in 
real-time. More importantly, multi-agent systems play several roles in IT and 
telecoms: for clients, they provide personalized, user-friendly interfaces; as 
middleware, they have been used extensively to implement electronic markets and 
electronic auctions.  
 
The reasons for this happy marriage between MAS and new technologies are various. 
When the domain involves a number of distinct software systems that are physically 
or logically distributed (in terms of their data, expertise or resources), an agent-based 
approach can often provide an effective solution. Relatedly, when the domain is large, 
sophisticated, or unpredictable, the overall problem can indeed be partitioned into a 
number of smaller and simpler components, which are easier to develop and maintain, 
and which are specialized at solving the constituent problems. That is, in most real-
life applications (single) agents can grow “too big” to work well, and a divide and 
conquer strategy, where qualified agents work in parallel, seems more sensible. 
Examples include the geographical distribution of cameras in a traffic network or the 
integrated approach required to solve complex tasks, for instance the collaboration 
between experts (surgeons, anesthetists, nurses) in an operating room. 
 
To sum it up, it is widely accepted within the AI community that the “new” AI would 
need to design and implement multi-agent systems capable of acting and learning in a 
quick and efficient manner. The next two sections are dedicated to describing the 
basics of multi-agent behavior and multi-agent learning. 
 
4 Multi-agent behavior 
 



Approaches to multi-agent behavior differ mainly in regards to the degree of control 
that the designer should have over individual agents and over the social environment, 
i.e., over the interaction mechanisms (Bond and Gasser 1988, Durfee 1988, Weiss 
1999). In Distributed Problem Solving systems (DPS) a single designer is able to 
control (or even explicitly design) each individual agent in the domain –the task of 
solving a problem is distributed among different agents, hence the name; in MAS on 
the other hand, there are multiple designers and each is able to design only its agent 
and has no control over the internal design of other agents.  
 
The design of interaction protocols is also tightly coupled to the issue of agents' 
incentives. When agents are centrally designed they are assumed to have a common 
general goal. As long as agents have to co-exist and cooperate in a single system, 
there is some notion of global utility that each agent is trying to maximize. Agents 
form teams that jointly contribute towards the overall goal. By contrast, in MAS each 
agent will be individually motivated to achieve its own goal and to maximize its own 
utility. As a result, no assumptions can be made about agents working together 
cooperatively. On the contrary, agents will collaborate only when they can benefit 
from that cooperation. 
 
Research in DPS considers how work involved in solving a problem can be divided 
among several nodes so as to enhance the system’s performance, that is, the aim is to 
make independent nodes solve a global problem by working together coherently, 
while maintaining low levels of communication. MAS researchers are also concerned 
with the coherence of interaction, but must build agents without knowing how their 
opponents have been designed. The central research issue in MAS is how to have 
these autonomous agents identify common ground for cooperation, and choose and 
perform coherent actions. 
 
In particular, DPS researchers see negotiation as a mechanism for assigning tasks 
among agents and  for allocating resources, using automated contracting: since all 
agents have a common goal and are designed to help one another (following the so-
called benevolence assumption), there is no need to motivate an agent to agree to 
execute a set of actions. Alternatively, multi-agent planning is another DPS approach 
that avoids incoherent and inconsistent decisions by planning beforehand exactly how 
each agent will act and interact. Multi-agent planning has been formalized by 
extending single-agent planning languages and techniques to describe complex mental 
states –usually by defining social plans in terms of common beliefs and joint 
intentions (Rao et al. 1992). 
  
On the other hand, MAS researchers have autonomous agents use negotiation to share 
the work associated with carrying out a previously agreed plan (for the agents' mutual 
benefit), or to resolve outright conflict. In MAS systems, agents typically make pair-
wise agreements through negotiation about how they will co-ordinate, and there is no 
global control nor consistent knowledge nor shared goals or success criteria. So, the 
main purpose of this incentive contracting mechanism is to “convince” agents to 
reach reasonable agreements and do something in exchange for something else. In this 
case, AI researchers have followed the studies on bargaining with incomplete 
information developed in economics and game theory.  
 
4.1 Negotiation 



Since negotiation in MAS is probably the most common co-ordination technique, it is 
worth considering it in some detail (Rosenschein and Zlotkin 1994, Jennings et al. 
2001, Kraus 2001). 
 
In a MAS setting agents are given a negotiation mechanism consisting of a protocol 
and a set of strategies over a set of deals. Negotiation is defined as a process through 
which in each temporal point one agent proposes an agreement and the other agent 
either accepts the offer or does not. If the offer is accepted, then the negotiation ends 
with the implementation of the agreement. Otherwise, the second agent has to make a 
counteroffer, or reject its opponent's offer and abandon the process. So, the protocol 
specifies when and how to exchange offers (i.e., which actions the agents will execute 
or abstain from executing and when) –for example, an Offer(x, y, δi, t1) 
means that the negotiation process will start at time t1 with agent x offering agent y 
a deal δi from the set of potential deals (δi ∈ Δ), typically of the from “I will do 
action 1 in exchange for action 2” or {Do(x, a1), Do(y, a2)}; then, in the next 
negotiation step, agent y will counteroffer with Accept(y, δi, t2), in which 
case the negotiation episode ends with the implementation of the agreement, δi; or 
with Reject(y, δi, t2), so that negotiation fails. Or, alternatively, agent y can 
send a respond, Offer(y, x, δj, t2), with say δj = {Do(x, a3), Do(y, 
a2)}, “I would prefer you to execute action a3 rather than a1”, so that the negotiation 
progresses to the next stage in which the same routine applies.  
 
Which specific offers the agents make depend on their negotiation strategy. A 
negotiation strategy is a function from the history of the negotiation to the current 
offer that is consistent with the protocol. It determines what move an agent should 
make to maximize its own utility, given the protocol, the negotiation up to this point, 
and the agent’s beliefs and intentions. Such strategies also take into account how risk-
averse the agent might be, that is, how reluctant it is to accept a bargain with an 
uncertain outcome rather than another bargain with a more certain, but possibly 
lower, outcome.  
 
Usually strategies are demanded to be in what is called Nash-equilibrium: that is, no 
agent should have an incentive to deviate from agreed-upon strategies. Once a 
strategy is adopted, under the assumption that agent x uses it, agent y cannot do better 
by using a different strategy. Imagine the so-called Prisoners’ Dilemma: two suspects 
are arrested by the police. The police have insufficient evidence for a conviction, and, 
having separated both prisoners, visit each of them to offer the same deal. If one 
testifies (defects from the other) and the other remains silent, the betrayer goes free 
and the silent accomplice receives the full 10-year sentence. If both remain silent, 
both prisoners are sentenced to only six months in jail for a minor charge. If each 
betrays the other, each receives a five-year sentence. Each prisoner must choose to 
betray the other or to remain silent. Obviously, the suspects cannot talk to each other 
or to reach an agreement. In this case, the Nash-equilibrium is that both testify. Each 
suspect knows that if one chose to remain silent the other one would do better by 
testifying, thus breaking the “remain silent equilibrium”. Nash-equilibrium is a 
particularly important attribute, because it is seen as the only sustainable outcome of 
rational negotiation in the absence of externally enforceable agreements. Yet, this 
solution presents serious drawbacks:  
 



Firstly, there are situations in which there is no Nash equilibrium. For instance, 
Matching Pennies is an example of games where one player's gain is exactly equal to 
the other player's loss.  
 
There are other situations in which there are several pure Nash equilibria. In a 
simplified example, assume that two drivers meet on a narrow road. Both have to 
swerve in order to avoid a head-on collision. If both swerve to the same side they will 
manage to pass each other, but if they choose different sides they will collide. In this 
case there are two pure Nash equilibria: either both swerve to the left, or both swerve 
to the right. In this example, it doesn't matter which side both players pick, as long as 
they both pick the same. Since both strategies are equally good, one could just toss a 
coin to choose between the two alternatives. There are other situations, however, in 
which one would not have that choice: in the game Battle of the Sexes both players 
prefer engaging in the same activity over going alone, but their preferences differ over 
which activity they should engage in. Player 1 prefers that they both party while 
player 2 prefers that they both stay at home. In this case, there are two pure Nash 
equlibria but no agreement is reached. 
 
Finally, accepting a Nash equilibrium solution both agents may lose more profitable 
agreements. This is the case of the Prisoner’s Dilemma: the Nash-equilibrium for this 
game is a sub-optimal solution, the one that leads the two players to both play defect, 
even though each player's individual reward would be greater if they both played 
cooperatively and remained silent. 
 
Thus, instead of Nash-equilibrium constraints and in order to prevent irrational 
attitudes the following assumptions about social rationality are typically made: 
(1) Sincerity: no agent will attempt to have another believe a proposition that it either 
knows or believes to be false or a proposition it wants to be false. For example, agents 
cannot commit themselves to execute actions that they are not able to perform; (2) 
Honesty: agents have to act according to their beliefs; (3) Fair play: agents must abide 
by the agreed deals; (4) Sociability: in case of indifference, agents must accept others’ 
offers. In any case, deals must always be individually rational. 
 
 
4.2 Argumentation 
The assumptions about social rationality required to make the previous approach work 
are not intuitive, and in any case, many real agents calculate their options individually 
in terms of self-interest, ignoring negotiations and agreed commitments. In response, 
many members of the MAS community have adopted alternative approaches to MAS 
co-ordination. In particular, several studies on argumentation-based negotiation have 
been presented as a powerful technique for cooperating and solving conflict situations 
(Rahwan et al. 2003). In this type of negotiation agents open up the agreement space 
by exchanging not only proposals and counterproposals but also reasons supporting 
them. Besides, agents commit themselves to accept the results of the argumentation, 
which follows strict rules regarding the validity and acceptability of the arguments 
and their ordering in argumentative types.  
 
For instance, imagine the following situation: agent 1 has a hammer, a screw, a 
screwdriver and a picture it intends to hang by using the “plan” {hammer + nail 
+ picture}; agent 2 on the other hand owns a mirror and a nail, its goal is to hang 



the mirror and plans to execute {hammer + nail + mirror}. Now, agent 1 
knows agent 2 has a nail and asks for it. Obviously, agent 2 cannot agree to such a 
request since it needs the nail to hang the mirror. Using a negotiation protocol, agent 
2’s rejection will end the episode and neither agent will achieve their respective goals. 
However, since they are allowed now to argue agent 2 can explain why it is rejecting 
agent’s 1 offer (“I need it to hang my mirror”); with this information, agent 1 can 
persuade agent 2 that in fact there is another way to hang its mirror, a new plan that 
uses a screw and a screwdriver instead of a nail. Now, if agent 2 does not find a flaw 
in agent 1’s argument it is forced to accept it. Since this seems to be the case, the 
agents agree to exchange the nail for the screw and the screwdriver and, as a 
consequence, both achieve their objectives.  
 
This completes our account of the main issues and techniques in multi-agent behavior. 
Now, as introduced in section 3.3, behaving in complex dynamic scenarios such as 
MAS is not a one-shot task but a process of refinement through which agents adapt 
their strategies to each other’s. Hence, dealing with multi-agent learning is paramount 
when studying multi-agent behavior. 
 
5 Multi-agent learning 
 
Machine learning has been mostly independent of agent research and only recently 
has it received attention in connection with agents and multi-agent systems (Stone and 
Veloso 2000, Alonso et al. 2001, Vohra and Wellman 2007). This is in some ways 
surprising because the ability to learn and adapt is arguably one of the most important 
features of intelligence. As discussed above, intelligence implies a certain degree of 
autonomy that in turn requires the ability to learn to make independent decisions in 
dynamic, unpredictable domains such as those in which agents co-exist.  
 
Perhaps the two more important issues in multi-agent learning relate to which family 
of techniques should be used and, indeed, what multi-agent learning is. 
 
At one level, agents and multi-agent systems can be viewed as yet another application 
domain for machine learning systems, admittedly with its own challenges. Research 
taking this view is mostly reduced to applying existing single-agent learning 
algorithms more or less directly to MAS, so that multi-agent learning is only seen as 
an emergent property. Even though this could be interesting from a MAS point of 
view, it does not seem overly interesting for machine learning research. Nevertheless, 
this is the direction most learning research for MAS has been following.  
 
Existing learning algorithms have been developed for single agents learning separate 
and independent tasks. Alternatively, multi-agent systems pose the problem of 
distributed learning, that is, many agents learning separately to acquire a joint task. 
Once the learning process is distributed amongst several learning agents, such 
learning algorithms require extensive modification, or completely new algorithms 
need to be developed. In distributed learning, agents need to cooperate and 
communicate in order to learn effectively; these issues are being investigated 
extensively by MAS researchers but, to date, they have received little attention in the 
areas of learning. 
 



Regarding learning techniques, supervised learning methods are not easily applied to 
multi-agent scenarios since they typically assume that the agents can be provided with 
the correct behaviour for a given situation. Thus most researchers have used 
reinforcement learning methods, to the point that the multi-agent learning problem 
can be re-defined as the reinforcement learning problem for multi-agent systems 
(Busoniu et al. 2008). 
 
Specifically, the simplest way to extend single-agent learning algorithms to multi-
agent problems is just to make each agent learn independently. Agents learn as if they 
were alone (Weiss and Dillenbourg, 1999). Communication or explicit co-ordination 
is not an issue therefore –co-operation and competition are not tasks to be solved but 
just properties of the environment. Likewise, agents do not have models of other 
agents’ mental states or try to build models of other agents’ behaviors. However 
simple this approach to multi-agent learning may be, the assumption that agents can 
learn efficient policies in a MAS setting independently of the actions selected by other 
agents is implausible. Intuitively, the most appealing alternative is to have the agents 
learn Nash-equilibrium strategies. However, as described in section 4.1 the concept of 
Nash equilibrium is problematic, and the methods formulated using such approach 
suffer from a plethora of technical difficulties that make their application rather 
restricted.  
 
6 Challenges 
 
Agent-based applications have enjoyed considerable success in manufacturing, 
process control, telecommunications systems, air traffic control, traffic and 
transportation management, information filtering and gathering, electronic commerce, 
business process management, entertainment and medical care (Jennings and 
Wooldridge 1998).  
 
Nonetheless, one of the key problems has been the divide between theoretical and 
practical work, which have, to a large extent, developed along different paths. As a 
consequence, designers lack a systematic methodology for clearly specifying and 
structuring their applications as (multi-)agent systems. Most agent-based applications 
have been designed in an ad hoc manner either by borrowing a methodology from 
more traditional approaches or by designing the system on intuition and (necessarily 
limited) experience. At any rate, if agents and multi-agent systems are to become the 
standard in the development of emerging web-based application -- as their advocates 
believe they should -- then some important developments in agent-oriented 
methodologies and technologies will be needed.  
 
First, an agent modeling language to specify, visualize, modify, construct and 
document (multi-)agent systems would have to be built. Agent developers still 
characterize their systems as extensions of traditional systems and thus UML is the 
facto standard language in the design and specification of agents and multi-agent 
systems. This drawback extends to the lack of proper verification methods and 
techniques for agent systems.  

 
Second, while some programming features such as abstraction, inheritance and 
modularity make it easier to manage increasingly more complex systems, Java and 
other programming languages cannot provide a direct solution to agent 



implementation. So far agent-oriented programs have been used mainly to test ideas 
rather than for developing any realistic systems –but see (Bordini et al. 2005) for a 
survey of multi-agent programming, languages, platforms and applications.  
 
Third, standards for interoperability between agents will need to be established. The 
debate should not be focused exclusively on the pros and cons of different agent 
communication languages and protocols but also on ontologies, that is, on which 
types of entities and concepts define an agent domain and what are their properties 
and relations. Currently, ontologies are often specified informally or implicit in the 
agent implementation. For true interoperation, agents will need explicitly encoded, 
sharable ontologies. 
 
A fourth issue is reusability. If multi-agents systems are to be sustainable, it will be 
necessary to develop techniques for specifying and maintaining reusable models and 
software for multi-agent systems, agents, and agent components. Reusability is also 
needed for mobility. If agents are to roam wide area networks such as the WWW, 
then they must be capable of being continuously reused in different scenarios. 
 
Finally, if people are to be comfortable with the idea of delegating tasks to agents, 
then issues relating to trust will have be addressed. These include authentication, 
privacy of communication and user's personal profile information, auditing, 
accountability, and defense against malicious or incompetent agents. 
 
All in all, although there is a need to keep theory and practice at the same pace agent-
centered AI has already brought mature and integrative techniques and procedures 
that are ripe for exploitation. It can be claimed that the agent paradigm has served as a 
bridge between traditional AI systems and the software applications that have 
emerged in the last couple of decades. When on the occasion of AI Magazine’s 
twenty-fifth anniversary experts were asked about AI’s state of the art, the shared 
feeling was that AI needed to get back to building intelligent systems of general 
competence (Leake 2005). It seems that agents and multi-agent systems may provide 
us with the concepts, methodologies and techniques necessary to realize AI’s original 
goal in the services and applications that the Internet offers. 
 
 
6 Conclusions 
 
AI systems have to make intelligent decisions. But, most importantly, they must show 
that they do so by behaving accordingly. This chapter has focused on the role of 
agents in the analysis of the behavior of AI systems. After all, that is what agents do: 
they act. Hence, the study of behavior and action in AI does necessarily talk about 
agents. In fact, there are strong reasons for thinking that agents are the paradigm that 
will embody the “new” AI. More precisely, in the era of the Internet and web 
services, AI will come to focus on how collections of autonomous agents co-ordinate 
their behavior (multi-agent behavior) and on how they learn to do so (multi-agent 
learning). 
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Further Reading 
 
The best on-line references for further reading on agents are the AI Topics/Agents 



web-page hosted by the Association for the Advancement of Artificial Intelligence 
(http://www.aaai.org/), the UMBC AgentWeb (http://agents.umbc.edu/), and 
AgentLink III, the European Co-ordination Action for Agent-Based Computing 
(http://www.agentlink.org/).  
 
For those wishing to investigate agents and multi-agent systems further, the following 
two books are easy to read and full of useful references to specialized topics:   
 
• Russell, Stuart and Norvig, Peter 2010. Artificial Intelligence: A Modern 

Approach. Upper Saddle River, NJ: Prentice Hall. The 3rd edition of first AI 
handbook that shamelessly introduced AI from an agent’s perspective. See in 
particular the second chapter on Intelligent Agents. 

 
• Wooldridge, Michael 2009. An Introduction to Multiagent Systems. Chichester, 

England: John Wiley & Sons. 2nd edition of an ideal introductory text on the 
agents and multi-agent systems, despite being somewhat limited in its coverage of 
learning. 

 
 
Glossary terms 
 
Agent: An agent is a software entity that acts autonomously, that is, that makes its 
own decisions on behalf of the designer –typically in dynamic environments from 
which it learns and to which it adapts. When applied to the development of new 
Internet technologies agents need also to show a social attitude. 
 
Multi-agent system: A Multi-agent system is a collection of autonomous agents that 
need to get coordinated in order to achieve their individual goals. Coordination is 
achieved through negotiation or argumentation and, in most applications, requires that 
the agents learn to adapt to each other’s strategies.  
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