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CHAPTER 7

APPROXIMATING OPTIMAL CONTROL
WITH VALUE GRADIENT LEARNING

Michael Fairbank1, Danil Prokhorov2 and Eduardo Alonso1

1City University London, London, UK

2Toyota Research Institute NA, Ann Arbor, Michigan

Abstract

In this chapter we extend the ADP algorithm, Dual Heuristic Programming (DHP), to

include a “bootstrapping” parameter λ, analogous to that used in the Reinforcement

Learning algorithm TD(λ). The resulting algorithm, which we call VGL(λ) for

value-gradient learning, is proven to produce a weight update that can be equivalent to

backpropagation through time (BPTT) applied to a greedy policy on a critic-function.

This provides a surprising connection between the two alternative methods of BPTT

and DHP. Under certain smoothness conditions, VGL(λ = 1) with a greedy policy

acquires strong convergence conditions of BPTT, while using a general function
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2 APPROXIMATING OPTIMAL CONTROL WITH VALUE GRADIENT LEARNING

approximator for the critic. We show that this can lead to increased stability in the

learning of control problems by a neural network.

7.1 INTRODUCTION

Adaptive Dynamic Programming (ADP) is the study of how an agent can learn actions

that maximise a long-term reward [13]. For example a typical scenario is an agent

wandering around in an environment, such that at time t it has state vector ~xt. At

each time t the agent chooses an action~at which takes it to the next state according to

the environment’s (possible stochastic) model function ~xt+1 = f(~xt,~at), and gives

it an immediate scalar reward rt, given by the reward function rt = r(~xt,~at). The

agent keeps moving, forming a trajectory of states (~x0, ~x1, . . .), which terminates if

and when a designated terminal state is reached. The ADP problem is for the agent

to learn how to choose actions so as to maximise the expectation of the total reward

received, 〈
∑
t γ

trt〉, where γ ∈ [0, 1] is a constant discount factor that specifies the

importance of long term rewards over short term ones. Specifically, the problem

is to find a policy function π(~x, ~z), where ~z is the parameter vector of a function

approximator, that calculates which action ~a = π(~x, ~z) to take for any given state ~x,

such that this total reward sum is maximised.

In this chapter we concentrate on the sub-problem of when the model functions

f(~x,~a) and r(~x,~a) are comprised of a twice-differentiable deterministic part, plus

optionally some additive noise. We assume that these functions are unchanging

and either already known analytically, or already learned beforehand by a system

identification process, for example by using a neural network as described by [17].

One paradigm of ADP is to learn a value function, V (~x), from Bellman’s Opti-

mality Principle [1], and then choose a policy function that is “greedy” on that value

function. A greedy policy is one that always chooses actions which lead to states with

the highest V value (whilst also taking into account the immediate short-term reward

in getting there). These methods use an approximated function (e.g. the output of a

neural network) to represent the learned V function, and this approximated function

is called the critic. We call this paradigm critic-learning. These critic-learning meth-
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INTRODUCTION 3

ods include Heuristic Dual Programming, Dual Heuristic Programming (DHP) and

Globalized Dual Heuristic Programming (GDHP) from the ADP literature [13, 16, 9],

and TD(λ) and Q-learning from the reinforcement learning (RL) literature [11, 14].

Critic learning methods can be very effective and computationally efficient, but

proving their convergence when a general function approximator is used for V is

challenging, and even more challenging when combined with a greedy policy.

One reason that convergence analysis is difficult with a greedy policy is that in

the Bellman condition, V depends on the policy π, which, being greedy, depends on

V ; so making progress in learning one of them can undo progress in learning the

other. We make an important insight into this difficulty by showing (in Lemma 4)

that the dependency of a greedy policy on a value function is through what we call the

value-gradient, which we define to be ∂V
∂~x . Hence a value-gradient analysis seems

necessary at some level to provide a theoretical gateway to analysing the convergence

properties of any critic weight update that uses a greedy policy in a continuous state

space. We refer to algorithms that specifically aim to learn the value-gradient ∂V
∂~x

as “value-gradient learning” (VGL) algorithms. The existing ADP algorithms DHP

and GDHP are examples of value-gradient learning algorithms.

We extend the DHP and GDHP algorithms into a new algorithm that we call

VGL(λ). This extension algorithm includes a constant parameterλ ∈ [0, 1] analogous

to that used in TD(λ), such that VGL(0) is equivalent to DHP. The motivation for

doing this extension is similar for the motivation for using TD(λ) in preference to

TD(0): By choosing λ carefully we might get faster and more stable learning.

An alternative paradigm of ADP is to use backpropagation through time (BPTT,

[15]), which is gradient ascent on the total long term reward with respect to the

policy’s parameter vector ~z. Since this is gradient ascent on a function that is bound

above, proving convergence is more straightforward.

In this chapter we demonstrate a theoretical connection between these two para-

digms of ADP (i.e. between critic learning and BPTT). We prove that, under certain

strict conditions, doing BPTT on a greedy policy function is equivalent to VGL(1)

with a carefully chosen learning parameter, “Ωt”, described below. This proof of

equivalence is interesting because it provides a way to ensure the same convergence
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4 APPROXIMATING OPTIMAL CONTROL WITH VALUE GRADIENT LEARNING

guarantees of BPTT will also apply to this critic learning method, with a greedy

policy, and a general function approximator for V . Hence we provide a convergence

proof for this instance of the algorithm in this chapter.

The convergence proof requires a particular choice of a learning parameter matrix,

Ωt. This was defined by Werbos for the algorithm GDHP (e.g. see [18, eq. 32]).

Previously there was little guidance on how to set this matrix, but our proof and

discussions (in sections 7.3.4 and 7.4.3) cast some new light on this problem.

Other convergence proofs do exist for critic learning methods, but they do not

generally apply to a greedy policy or a critic function implemented by a general

function approximator. For example the RL algorithm TD(λ) [11] has been proven

to converge [12] provided the function approximator for V is linear in its parameter

vector, and the policy is fixed (i.e. that excludes the greedy policy). This particular

algorithm is not proven to converge when a general function approximator is used

to represent the critic (e.g. a neural network) or when a greedy policy is used.

Divergence examples exist for a non-linear function approximator [12], and where

the function approximator for V is linear in its weight vector but where a greedy

policy is used (diverging for both λ = 0 and λ = 1; see [6]). A convergence proof

for general critic learning was given by [8], although this assumed the critic function

being used could always be made to exactly learn any given target values, and so this

is not realistic for a general function approximator. In the case of a general function

approximator and a greedy policy, popular ADP methods such as DHP and GDHP

can also be forced to diverge [6].

The structure of this chapter is as follows: We define the VGL(λ) and BPTT

algorithms in section 7.2. We prove their equivalence in section 7.3, and discuss

the conditions for convergence in section 7.3.3, and insights into the Ωt matrix in

sections 7.3.4 and 7.4.3. In section 7.4 we define a simple computer experiment and

demonstrate the improved convergence properties of the VGL algorithm over DHP.

We also define an efficient form for the greedy policy and Ωt matrix in section 7.4.2.

Finally, in section 7.5, we give conclusions.
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VALUE GRADIENT LEARNING AND BPTT ALGORITHMS 5

7.2 VALUE GRADIENT LEARNING AND BPTT ALGORITHMS

First we give some preliminary definitions and notation, and then follow with the

algorithm definitions.

7.2.1 Preliminary Definitions

Critic function: We define Ṽ (~x, ~w) to be the scalar output of a smooth function

approximator with weight vector ~w. This can also be known as the approximate

value function.

Critic gradient function: We define the critic gradient function to be G̃(~x, ~w) ≡
∂Ṽ (~x,~w)
∂~x . The VGL and DHP algorithms attempt to learn this quantity. The critic

gradient can also be known as the approximate value gradient.

Smooth policy function: We define a general smooth policy function π(~x, ~z) to

be the output of a smooth function approximator with output vector of dimension

dim(~a), and with parameter vector ~z. This is also referred to in the literature as an

“action network” or “actor”.

Approximate Q function: We define the function Q̃(~x,~a, ~w) to be

Q̃(~x,~a, ~w) = r(~x,~a) + γṼ (f(~x,~a), ~w) (7.1)

This function comes up often in this chapter in the greedy policy and its related

lemmas. It is related to, but not identical to, the Q-function defined by [14].

Matrix and vector notation used: We make a notational convention that all

vectors are columns, and differentiation of a scalar by a vector gives a column vector.

So for example G̃, ~x and ∂Ṽ
∂~x are all columns. We define differentiation of a vector

function by a vector as follows:1 ∂G̃
∂ ~w is a matrix with element (i, j) equal to ∂G̃(~x,~w)j

∂ ~wi .

Similarly, ∂f∂~x is the matrix with element
(
∂f
∂~x

)ij
= ∂f(~x,~a)j

∂~xi .

Trajectory Shorthand Notation: All subscripted “t” indices refer to the time-

step of a trajectory and provide corresponding arguments ~xt and~at where appropriate;

so that for example Ṽt+1 ≡ Ṽ (~xt+1, ~w), rt ≡ r(~xt,~at), G̃t ≡ G̃(~xt, ~w) and
(
∂Q̃
∂~a

)
t

1This is the transpose of a common convention.
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6 APPROXIMATING OPTIMAL CONTROL WITH VALUE GRADIENT LEARNING

is shorthand for the function ∂Q̃(~x,~a,~w)
∂~a evaluated at (~xt,~at, ~w). Similarly

(
∂G̃
∂ ~w

)
t
≡

∂G̃
∂ ~w

∣∣∣
(~xt, ~w)

.

7.2.2 VGL(λ) Algorithm

The VGL algorithm is an extension of the DHP algorithm [16] to include a constant

parameter λ analogous to that used in the algorithm TD(λ). The algorithm requires

the derivatives of f(~x,~a), r(~x,~a), π(~x, ~z) and Ṽ (~x, ~w) all to exist at every time-step

along a trajectory.

Using the notation conventions of section 7.2.1, and the implied matrix products,

the VGL(λ) algorithm is defined to be a critic weight update of the form:

∆~w = α
∑
t

(
∂G̃

∂ ~w

)
t

Ωt(G
′
t − G̃t) (7.2)

where α is a small positive constant; Ωt ∈ <dim(~x)×dim(~x) is an arbitrary positive

definite matrix described further below; G̃t is the critic gradient; andG′t is the “target

value gradient” defined recursively by:

G′t =

(
Dr

D~x

)
t

+ γ

(
Df

D~x

)
t

(
λG′t+1 + (1− λ)G̃t+1

)
(7.3)

with G′t = ~0 at any terminal state, and where λ ∈ [0, 1] is a fixed constant; and

where D
D~x is shorthand for

D

D~x
≡ ∂

∂~x
+
∂π

∂~x

∂

∂~a
; (7.4)

and where all of these derivatives are assumed to exist. We ensure the recursion in

equation 7.3 converges by requiring that either γλ < 1, or the environment is such

that the agent is guaranteed to reach a terminal state at some finite time (i.e. the

environment is “episodic”).

Equations 7.2, 7.3 and 7.4 define the VGL(λ) algorithm. These equations can be

implemented by unrolling a whole trajectory and then working backwards along it

applying the recursion of equation 7.3, as demonstrated in pseudocode of Algorithm

7.1, which runs in timeO(dim(~w)) per trajectory step. Alternatively, it is possible to

apply the weight update in an on-line manner as described by [7, Appendix B], but

this runs in a longer time of O(dim(~w) dim(~x)2) per trajectory step.
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VALUE GRADIENT LEARNING AND BPTT ALGORITHMS 7

When we choose the parameter λ = 0, then we get the VGL(0) algorithm which is

equivalent to DHP. Like DHP, the objective of the VGL(λ) weight update is to make

the values G̃t move towards the target values G′t.

Ωt was introduced by [18, eq. 32] for the GDHP algorithm, and is included in our

weight update for full generality. This positive definite matrix can be set as required

by the experimenter since its presence ensures every component of G̃t will move

towards the corresponding component ofG′t (in any basis). However choosing what

value to use for Ωt is not obvious, so it is often just taken to be the identity matrix

for all t. We make an insight into how to choose Ωt by finding an explicit formula

for it in section 7.3.2.

Algorithm 7.1

VGL(λ) algorithm {

t← 0, ∆~w ← ~0

while not terminated(~xt)

~at ← π(~xt, ~z)

~xt+1 ← f(~xt,~at)

t← t+ 1

end while

F ← t

~p← ~0

for t = F − 1 to 0 step −1

G′t ←
(

Dr
D~x

)
t

+ γ
(

Df
D~x

)
t
~p

∆~w ← ∆~w +
(

∂G̃
∂ ~w

)
t

Ωt

(
G′t − G̃t

)
~p← λG′t + (1− λ)G̃t

end for

~w ← ~w + α∆~w

}

The policy function π(~x, ~z) needs training concurrently with the VGL algorithm.

This could be achieved by the same weight update as used by the DHP algorithm’s
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8 APPROXIMATING OPTIMAL CONTROL WITH VALUE GRADIENT LEARNING

policy function weight update, i.e.

∆~z = β
∑
t

(
∂π

∂~z

)
t

((
∂r

∂~a

)
t

+ γ

(
∂f

∂~a

)
t

G̃t+1

)
. (7.5)

where β is a separate learning rate for the policy function.

There are a variety of schemes to do this concurrently with the critic training. For

example, the policy could be trained to completion in between every critic function

weight update (a process known as value-iteration), or the vice-versa arrangement

could be applied (a process known as policy-iteration). Or a simple concurrent

scheme of doing alternating iterations of each could be applied. A final option is to

use a greedy policy function, as described in section 7.3.1, which obviates the need

for training the policy, and can be viewed as an extreme form of value-iteration.

In Algorithm 7.1, the critic function G̃(~x, ~w) can be interpreted as either a synonym

for ∂Ṽ (~x,~w)
∂~x , which implies that ∂G̃

∂ ~w ≡
∂2Ṽ
∂ ~w∂~x , or alternatively G̃(~x, ~w) could be

implemented more simply as the output of a smooth vector function approximator of

dimension dim(~x). We call the first of these two options a “GDHP-style critic” and

the second a “DHP-style critic”. A GDHP-style critic is the harder of the two options

to implement, since it requires second order backpropagation to find ∂G̃
∂ ~w , while a

DHP-style critic only requires first-order backpropagation for this quantity. In the

experiments of section 7.4.4 we use a DHP-style critic, for simplicity.

7.2.3 BPTT Algorithm

We defineR(~x0, ~z) to be the total discounted reward encountered by an agent starting

at state ~x0 and then following a policy π(~x, ~z) until termination, so that R(~x0, ~z) =∑
t γ

trt. This function can be witten recursively as:

R(~x, ~z) = r(~x, π(~x, ~z)) + γR(f(~x, π(~x, ~z)), ~z) (7.6)

with R(~x, ~z) = 0 at any terminal state.

BPTT is gradient ascent on R(~x0, ~z) with respect to ~z, i.e. ∆~z = β
(
∂R
∂~z

)
0

for

some small positive constant β. Expanding the term
(
∂R
∂~z

)
t

gives:(
∂R

∂~z

)
t

=

(
∂

∂~z
(r(~x, π(~x, ~z)) + γR(f(~x, π(~x, ~z)), ~z))

)
t

by eq. 7.6
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A CONVERGENCE PROOF FOR VGL(1) FOR CONTROL WITH FUNCTION APPROXIMATION 9

=

(
∂π

∂~z

)
t

((
∂r

∂~a

)
t

+ γ

(
∂f

∂~a

)
t

(
∂R

∂~x

)
t+1

)
+ γ

(
∂R

∂~z

)
t+1

where we used the chain rule, trajectory shorthand notation, ~at = π(~xt, ~z) and

~xt+1 = f(~xt,~at). Expanding this recursion gives:(
∂R

∂~z

)
0

=
∑
t≥0

γt
(
∂π

∂~z

)
t

((
∂r

∂~a

)
t

+ γ

(
∂f

∂~a

)
t

(
∂R

∂~x

)
t+1

)

It is common practice to drop the γt factor in this equation. Combining this with

the gradient ascent equation, ∆~z = β
(
∂R
∂~z

)
0
, gives the BPTT weight update:

∆~z =β
∑
t≥0

(
∂π

∂~z

)
t

((
∂r

∂~a

)
t

+ γ

(
∂f

∂~a

)
t

(
∂R

∂~x

)
t+1

)
(7.7)

This equation is the BPTT weight update. It refers to the quantity ∂R
∂~x which can

be found recursively by differentiating equation 7.6 and using the chain rule, giving(
∂R

∂~x

)
t

=

(
Dr

D~x

)
t

+ γ

(
Df

D~x

)
t

(
∂R

∂~x

)
t+1

(7.8)

with ∂R
∂~x = ~0 at any terminal state.

Equation 7.8 can be understood to be backpropagating the quantity
(
∂R
∂~x

)
t+1

through the actor network, model and reward functions to obtain
(
∂R
∂~x

)
t
, and giving

the algorithm its name.

7.3 A CONVERGENCE PROOF FOR VGL(1) FOR CONTROL WITH

FUNCTION APPROXIMATION

In this section we define an equivalence proof between VGL(1) and BPTT applied to

a greedy policy. Since BPTT is gradient ascent on a function that is bound above, it

has relatively good convergence guarantees, and hence the equivalence proof can be

used to make a convergence guarantee for VGL(1).

First we describe the greedy policy with some useful lemmas, then we prove the

equivalence of BPTT to VGL(1), and then discuss the convergence conditions. For the

equivalence and convergence to hold we require a specifically chosen time-dependent

Ωt matrix, which is discussed in section 7.3.4.
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10 APPROXIMATING OPTIMAL CONTROL WITH VALUE GRADIENT LEARNING

7.3.1 Using a Greedy Policy with a Critic function

The greedy policy is defined to choose actions as follows:

~a = arg max
~a∈<n

(Q̃(~x,~a, ~w)) ∀~x (7.9)

where Q̃(~x,~a, ~w) is defined in equation 7.1.

For VGL, we required all of the constituent functions of equation 7.1 to be smooth,

therefore under this requirement, Q̃ is a smooth function with respect to all of its

parameters.

The greedy policy depends on Ṽ (~x, ~w), i.e. uses the weight vector ~w instead of

~z. This means the greedy policy is a function π(~x, ~w) (instead of the usual policy

dependency π(~x, ~z)). Hence from now on, when considering the greedy policy, it is

the same weight vector ~w that controls the policy as is used for the critic function, and

so we will write π(~x, ~w) to always specifically mean the greedy policy. Any change

to the critic function will immediately affect the greedy policy and move trajectories,

and we need to take this into account when proving convergence.

Greedy Actions: A greedy action is one that satisfies equation 7.9.

Since a greedy action selects a maximum with respect to ~a of the smooth function

Q̃(~x,~a, ~w), the following two consequences hold:

Lemma 1 For a greedy action ~a, ∂Q̃∂~a = ~0.

Lemma 2 For a greedy action ~a, ∂2Q̃
∂~a∂~a is a negative semi-definite matrix.

Furthermore, we prove three less obvious lemmas about greedy actions and a

greedy policy:

Lemma 3 The greedy policy implies
(
∂r
∂~a

)
t

= −γ
(
∂f
∂~a

)
t
G̃t+1.

Proof: First, we note that differentiating equation 7.1 gives(
∂Q̃

∂~a

)
t

=

(
∂r

∂~a

)
t

+ γ

(
∂f

∂~a

)
t

G̃t+1 (7.10)

Substituting this into Lemma 1 and solving for ∂r∂~a completes the proof.
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A CONVERGENCE PROOF FOR VGL(1) FOR CONTROL WITH FUNCTION APPROXIMATION 11

Lemma 4 When
(
∂π
∂ ~w

)
t

and
(
∂2Q̃
∂~a∂~a

)−1
t

exist for an action ~at, the greedy policy

implies (
∂π

∂ ~w

)
t

= −γ

(
∂G̃

∂ ~w

)
t+1

(
∂f

∂~a

)T
t

(
∂2Q̃

∂~a∂~a

)−1
t

Proof: We use implicit differentiation. The dependency of ~at = π(~xt, ~w) on ~w must

be such that Lemma 1 is always satisfied, since the policy is greedy. This means

that
(
∂Q̃
∂~a

)
t
≡ ~0, both before and after any infinitesimal change to ~w. Therefore the

function π(~xt, ~w) must be such that,

~0 =
∂

∂ ~w

(
∂Q̃(~xt, π(~xt, ~w), ~w)

∂~at

)

=
∂

∂ ~w

(
∂Q̃(~xt,~at, ~w)

∂~at

)
+

(
∂π

∂ ~w

)
t

∂

∂~at

(
∂Q̃(~xt,~at, ~w)

∂~at

)

=
∂

∂ ~w

((
∂r

∂~a

)
t

+ γ

(
∂f

∂~a

)
t

G̃t+1

)
+

(
∂π

∂ ~w

)
t

(
∂2Q̃

∂~a∂~a

)
t

=
∂

∂ ~w

((
∂r

∂~a

)
t

+ γ
∑
i

(
∂(f)i

∂~a

)
t

(G̃t+1)i

)
+

(
∂π

∂ ~w

)
t

(
∂2Q̃

∂~a∂~a

)
t

=γ
∑
i

(
∂(f)i

∂~a

)
t

∂(G̃t+1)i

∂ ~w
+

(
∂π

∂ ~w

)
t

(
∂2Q̃

∂~a∂~a

)
t

=γ

(
∂G̃

∂ ~w

)
t+1

(
∂f

∂~a

)T
t

+

(
∂π

∂ ~w

)
t

(
∂2Q̃

∂~a∂~a

)
t

In the above six lines of algebra, line 2 is by the chain rule and substitution of

~at = π(~xt, ~w); line 3 is by equation 7.10; line 4 just expands an inner product; line

5 follows since ∂r
∂~a and ∂f

∂~a are not functions of ~w; and line 6 just forms an inner

product.

Then solving the final line for
(
∂π
∂ ~w

)
t

proves the lemma.

Lemma 5 When
(
∂π
∂~x

)
t

and
(
∂2Q̃
∂~a∂~a

)−1
t

exist for an action ~at, the greedy policy

implies (
∂π

∂~x

)
t

= −γ

(
∂2Q̃

∂~x∂~a

)
t

(
∂2Q̃

∂~a∂~a

)−1
t
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12 APPROXIMATING OPTIMAL CONTROL WITH VALUE GRADIENT LEARNING

This lemma is useful because it provides the quantity
(
∂π
∂~x

)
t

which is used in the

VGL(λ) algorithm definition, in equation 7.4. This enables us to use the VGL(λ)

algorithm with a greedy policy.

Proof: The proof is virtually the same as that of Lemma 4, but with the start point

changed to ~0 = ∂
∂~x

(
∂Q̃(~xt,π(~xt, ~w), ~w)

∂~at

)
.

7.3.2 The Equivalence of VGL(1) to BPTT

BPTT can be defined on any smooth policy function π(~x, ~z). A greedy policy,

π(~x, ~w), can be defined on any critic function G̃(~x, ~w). In this section we apply

BPTT to the greedy policy function π(~x, ~w), and we observe the resulting combined

weight update that emerges. Surprisingly, we find that this weight update is identical

to the VGL(1) weight update, provided the Ωt matrix is chosen carefully. This proves

that the VGL(λ) weight update of equation 7.2, with λ = 1 and a carefully chosen

Ωt matrix, is equivalent to BPTT on a greedy policy.

First we note that by comparing equations 7.3 and 7.8, we see that

G′t ≡
(
∂R

∂~x

)
t

when λ = 1 (7.11)

The BPTT gradient ascent weight update, following on from equation 7.7, but

now using a greedy policy π(~x, ~w) instead of a general policy function π(~x, ~z), is

∆~w =β
∑
t≥0

(
∂π

∂ ~w

)
t

((
∂r

∂~a

)
t

+ γ

(
∂f

∂~a

)
t

(
∂R

∂~x

)
t+1

)
(eq. 7.7)

=β
∑
t≥0

(
∂π

∂ ~w

)
t

γ

(
∂f

∂~a

)
t

(
−G̃t+1 +

(
∂R

∂~x

)
t+1

)
by Lemma 3

=β
∑
t≥0

γ

(
∂π

∂ ~w

)
t

(
∂f

∂~a

)
t

(
G′t+1 − G̃t+1

)
by eq. 7.11

=β
∑
t≥0

−γ2

(
∂G̃

∂ ~w

)
t+1

(
∂f

∂~a

)T

t

(
∂2Q̃

∂~a∂~a

)−1

t

(
∂f

∂~a

)
t

(G′t+1 − G̃t+1) by Lemma 4

=β
∑
t≥0

γ2

(
∂G̃

∂ ~w

)
t

Ωt(G
′
t − G̃t) (7.12)
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where

Ωt =


−
(
∂f
∂~a

)T
t−1

(
∂2Q̃
∂~a∂~a

)−1
t−1

(
∂f
∂~a

)
t−1

if t > 0

0 if t = 0

, (7.13)

and is positive semi-definite, by the greedy policy (Lemma 2).

Equation 7.12 is identical to a VGL weight update equation (eq. 7.2), with a

carefully chosen matrix for Ωt, and λ = 1, provided
(
∂π
∂ ~w

)
t

and
(
∂2Q̃
∂~a∂~a

)−1
t

exist for

all t. If
(
∂π
∂ ~w

)
t

does not exist, then ∂R
∂ ~w is not defined either.

This completes the demonstration of the equivalence of a critic learning algorithm

(VGL(1), with the conditions stated above) to BPTT on a greedy policy π(~x, ~w)

(where ~w is the weight vector of a critic function G̃(~x, ~w) defined for Algorithm 7.1),

when ∂R
∂ ~w exists.

7.3.3 Convergence conditions

Good convergence conditions exist for BPTT since it is gradient ascent on a function

that is bound above, and therefore convergence is guaranteed if that surface is smooth

and the learning step size is sufficiently small. If the ADP problem is such that
∂π
∂ ~w always exists, and we choose Ωt by equation 7.13, then the above equivalence

proof shows that the good convergence guarantees of BPTT will apply to VGL(1).

Significantly ∂π
∂ ~w always does exist in a continuous time setting when a value-gradient

policy using the technique of section 7.4.2 is used.

In addition to smoothness of the policy, we also require smoothness of the func-

tions, r and f , for VGL to be defined; and also for the convergence of BPTT that

we have proved equivalence to, the weight vector for the policy must only traverse

smooth regions of the surface of R(~x, ~w).

If all of these conditions are satisfied, then this approximated-critic value-iteration

scheme will converge.

This has been a non-trivial accomplishment in proving convergence for a smoothly

approximated critic function with a greedy policy, even though it is only proven for

λ = 1. Other related algorithms with λ = 1, such as TD(1) and Sarsa(1), and VGL(1)

without the specially chosen Ωt matrix, can all be made to diverge under the same
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14 APPROXIMATING OPTIMAL CONTROL WITH VALUE GRADIENT LEARNING

conditions when a greedy policy is used [6]. Algorithms with λ = 0, such as TD(0),

Sarsa(0), DHP and GDHP are also shown to diverge with a greedy policy by [6].

While the smoothness of all functions is required for provable convergence, in

practice a sufficient condition appears to be piece-wise continuity, as BPTT has been

applied successfully to systems with friction and dead-zones.

7.3.4 Notes on the Ωt matrix

The Ωt matrix that we derived in equation 7.13 differs from the previous instances of

its use in the literature (e.g. [18, eq. 32]):

• Firstly, our Ωt matrix is time dependent, whereas previous usages of it have

not used a t subscript.

• Secondly, we have found an exact equation on how to choose it (i.e. equation

7.13). Previous guidance on how to choose it has been only intuitive.

• Thirdly, equation 7.13 often only produces a positive indefinite matrix which

is problematic for the case of λ < 1. If we have dim(~x) > dim(~a) then the

matrix ∂f
∂~a will be wider than it is tall, and so the matrix product in equation

7.13 will yield an Ωt matrix that is rank deficient (i.e. positive indefinite). It

seems that it is not a problem to have a rank-deficient Ωt matrix when λ = 1

(as section 7.3.2 effectively proves), but it is a problem when λ < 1. A

rank-deficient Ωt matrix will have some zero eigenvalues, and the components

of G̃ corresponding to these missing eigenvalues will not be learned at all by

equation 7.2. However in the case ofλ < 1, the definition ofG′t in equation 7.3

depends upon potentially all of the components of G̃t+1 via the multiplication

in equation 7.3 by
(
Df
D~x

)
t
. So if some of the components of G̃t+1 are missing,

then the target gradients G′t will be wrong, and so the VGL(λ) algorithm will

be badly defined.

This view that it is necessary for Ωt to be full-rank for λ < 1 is consistent with

the original positive-definite requirement made by Werbos for GDHP, which

is a λ = 0 algorithm [18].
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Consequently, our choice of Ωt matrix is best used for the situation of λ = 1 and

a greedy policy. But we feel it may provide some guidance in how to choose Ωt in

other situations, especially if working in a problem where dim(~x) ≤ dim(~a). And

even if the policy is not greedy, then equation 7.13 might still be a useful guiding

choice for Ωt, since it is the objective of the training algorithm for the actor network

to always try to make the policy greedy.

The Ωt matrix definition in equation 7.13 requires an inverse of the following

rather cumbersome looking matrix:(
∂2Q̃

∂~a∂~a

)
t

=
∂

∂~a

((
∂r

∂~a

)
t

+ γ

(
∂f

∂~a

)
t

G̃t+1

)
by eq. 7.10

⇒

(
∂2Q̃

∂~ai∂~aj

)
t

=

(
∂2r

∂~ai∂~aj

)
t

+ γ

(
∂2f

∂~ai∂~aj

)
t

G̃t+1 + γ

(
∂f

∂~ai

)
t

(
∂G̃

∂~x

)
t+1

(
∂f

∂~aj

)T

t

(7.14)

Hence to evaluate the Ωt matrix, we could require knowledge of the functions,

f and r, so that the first and second order derivatives in equations 7.13 and 7.14

could be manually computed. Computing equation 7.13 is no more challenging to

implement than computing ∂π
∂~x by Lemma 5, which is a necessary step to implement

the VGL(λ) algorithm with a greedy policy. In many cases, such as in section 7.4.2,

both of these computations simplify considerably, for example if the functions are

linear in ~a, or in a continuous time situation. Alternatively, if a neural network is

used to represent the functions f and r, then we would require first and second order

backpropagation through the neural network work to find these necessary derivatives.

We make further observations on the role of the Ωt matrix in section 7.4.3.

7.4 VERTICAL LANDER EXPERIMENT

We describe a simple computer experiment which shows VGL learning with a greedy

policy and demonstrates increased learning stability of VGL(1) compared to DHP

(VGL(0)). We also demonstrate the value of using the Ωt matrix as defined by

equation 7.13 which can make learning progress achieve consistent convergence to

local optimality with λ = 1.
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16 APPROXIMATING OPTIMAL CONTROL WITH VALUE GRADIENT LEARNING

After defining the problem in section 7.4.1, we derive an efficient formula for the

greedy policy and Ωt matrix (section 7.4.2), which provides some further insights into

the purpose of Ωt (section 7.4.3), before giving the experimental results in section

7.4.4.

7.4.1 Problem Definition

A spacecraft is dropped in a uniform gravitational field, and its objective is to make

a fuel-efficient gentle landing. The spacecraft is constrained to move in a vertical

line, and a single thruster is available to make upward accelerations. The state vector

~x = (h, v, u)T has three components: height (h), velocity (v), and fuel remaining (u).

The action vector is one-dimensional (so that ~a ≡ a ∈ <) producing accelerations

a ∈ [0, 1]. The Euler method with time-step ∆t is used to integrate the motion,

giving functions:

f((h, v, u)T , a) =(h+ v∆t, v + (a− kg)∆t, u− (ku)a∆t)T

r((h, v, u)T , a) =− (kf )a∆t+ rc(a)∆t (7.15)

Here, kg = 0.2 is a constant giving the acceleration due to gravity; the spacecraft

can produce greater acceleration than that due to gravity. kf = 1 is a constant giving

fuel penalty. ku = 1 is a unit conversion constant. ∆t was chosen to be 1. rc(a)

is an “action cost” function described further below that ensures the greedy policy

function chooses actions satisfying a ∈ [0, 1].

Trajectories terminate as soon as the spacecraft hits the ground (h = 0) or runs out

of fuel (u = 0). For correct gradient calculations, clipping is needed at the terminal

time-step, and differentiation of the functions needs to take account of this clipping.

Further details of clipping are given by [5, Appendix E.1].

In addition to the reward function r(~x, a) defined above, a final impulse of reward

equal to − 1
2mv

2 −m(kg)h is given as soon as the lander reaches a terminal state,

where m = 2 is the mass of the spacecraft. The terms in this final reward are cost

terms for the kinetic and potential energy respectively. The first cost term penalises

landing too quickly. The second term is a cost term equivalent to the kinetic energy

that the spacecraft would acquire by crashing to the ground under freefall.

D R A F T March 4, 2012, 9:32pm D R A F T



VERTICAL LANDER EXPERIMENT 17

A sample of ten optimal trajectories in state space is shown in figure 7.1.
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Optimal Trajectories

Figure 7.1 State space view of a sample of optimal trajectories in the Vertical Lander

problem. Each trajectory starts at the cross symbol, and ends at h = 0. The u-dimension

(fuel) of state space is not shown.

For the action cost function, we follow the method of [3], and choose

rc(a) = −
∫
g−1(a)da (7.16)

where g(x) is a chosen sigmoid function, as this will force a to be bound to the

range of the chosen function g(x), as illustrated in the following subsection. Hence

to ensure a ∈ [0, 1], we use

g(x) =
1

2
(tanh(x/c) + 1) (7.17)

where c = 0.2 is a sharpness constant, and therefore

rc(a) = c

(
a arctanh(1− 2a)− 1

2
ln(2− 2a)

)
.

7.4.2 Efficient evaluation of the greedy policy

The greedy policy π(~x, ~w) is defined to choose the maximum with respect to ~a of the

Q̃(~x,~a, ~w) function. This function has been defined to be smooth, so a numerical

solver could be used to maximise this function, while introducing some inefficiency.

A technical difficulty is that there might be multiple local maxima, and this means

D R A F T March 4, 2012, 9:32pm D R A F T



18 APPROXIMATING OPTIMAL CONTROL WITH VALUE GRADIENT LEARNING

that as ~w or ~x change, the global maximum could hop from one local maximum to

another, meaning the derivatives ∂π
∂~x and ∂π

∂ ~w would not be defined in these instances.

We can get around these problems, and derive a closed form solution to the greedy

policy, by following the method of [3]. This leads to a very efficient and practical

solution to using a greedy policy, and avoids the need to use an actor network

altogether. To achieve this though, we do have to transfer to a continuous time

analysis, i.e. we consider the case in the limit of ∆t → 0. The most important

benefit that this delivers is that it forces the greedy policy function to be always

differentiable, and hence for the VGL(λ) algorithm to be always defined.

We make a first order Taylor series expansion of the Q̃(~x,~a, ~w) function (eq. 7.1)

about the point ~x:

Q̃(~x,~a, ~w) ≈ r(~x,~a) + γ

(∂Ṽ
∂~x

)T
(f(~x,~a)− ~x) + Ṽ (~x, ~w)


= r(~x,~a) + γ

(
G̃(~x, ~w)

)T
(f(~x,~a)− ~x) + γṼ (~x, ~w) (7.18)

This approximation becomes exact in continuous time. We next define a greedy

policy that maximises equation 7.18. Differentiating equation 7.18 gives(
∂Q̃

∂a

)
t

=

(
∂r

∂a

)
t

+ γ

(
∂f

∂a

)
t

G̃t by eq. 7.18

= −(kf )∆t+

(
∂rc(a)∆t

∂a

)
t

+ γ∆t(0, 1,−1)G̃t by eq. 7.15

=
(
−(kf )− g−1(at) + γ(0, 1,−1)G̃t

)
∆t by eq. 7.16 (7.19)

For the greedy policy to satisfy equation 7.9, we must have ∂Q̃
∂a = 0. Therefore,

0 = −(kf )− g−1(at) + γ(0, 1,−1)G̃t by eq. 7.19

⇒ at = g
(
−(kf ) + γ(0, 1,−1)G̃t

)
(7.20)

This closed form greedy policy is efficient to calculate, bound to [0, 1], and most

importantly, always differentiable. This has achieved the objectives we aimed for by

moving to continuous time. Furthermore, we get a simplified expression for the Ωt

matrix in continuous time:
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Since dim(~a) = 1, ∂2Q̃
∂a∂a is a scalar:

(
∂2Q̃

∂a∂a

)
t

=
∂
(
−(kf )− g−1(at) + γ(0, 1,−1)G̃t

)
∂at

∆t by eq. 7.19

= −∂g
−1(at)

∂at
∆t

= − 1

g′ (g−1(at))
∆t differentiating an inverse

= − 1

g′
(
−(kf ) + γ(0, 1,−1)G̃t

)∆t by eq. 7.20

(7.21)

Here g′ is the derivative of the sigmoidal function g given by equation 7.17.

Substituting equation 7.21 into equation 7.13 gives,

Ωt = (0, 1,−1)T g′
(
−(kf ) + γ(0, 1,−1)G̃t

)
(0, 1,−1)∆t (7.22)

This is a much simpler version of the Ωt matrix than that described by equations

7.13 and 7.14. The simplicity arose because of the linearity with respect to a of the

function f(x, a) and because of the change to continuous time.

Since we have moved to continuous time for the sake of deriving this efficient and

always differentiable greedy policy, there are some consequential minor changes that

we should make to the VGL algorithm. Firstly, if we were to re-derive lemmas 3,

4 and 5 using the Q̃ function of equation 7.18, then the references in the lemmas to

G̃t+1 would change to G̃t. For example, Lemma 4 would change to:

(
∂π

∂ ~w

)
t

= −γ

(
∂G̃

∂ ~w

)
t

(
∂f

∂~a

)T
t

(
∂2Q̃

∂~a∂~a

)−1
t

(7.23)

The VGL(λ) weight update would be the same as equation 7.12, but we would use

Ωt as given by equation 7.22, and the greedy policy given by equation 7.20. Also ∂π
∂~x

(which is needed in the VGL(λ) algorithm in equation 7.4) is found most easily by

differentiating equation 7.20, as opposed to using Lemma 5.

We note that equation 7.23, when combined with equation 7.21, is consistent with

what is obtained by differentiating equation 7.20 directly.

D R A F T March 4, 2012, 9:32pm D R A F T



20 APPROXIMATING OPTIMAL CONTROL WITH VALUE GRADIENT LEARNING

7.4.3 Observations on the purpose of Ωt

Now that we have a simple expression for Ωt, we can make some observations on

its purpose. Substituting Ωt of equation 7.22 into the VGL weight update (eq. 7.2)

gives:

∆~w = αγ2(∆t)
∑
t≥0

(
∂G̃

∂ ~w

)
t

(0, 1,−1)T g′
(
−(kf ) + γ(0, 1,−1)G̃t

)
(0, 1,−1)(G′t−G̃t)

(7.24)

This has similarities in form to a weight update for the supervised learning neural

network problem. Consider a neural network output function y = g(s(~x, ~w)) with

sigmoidal activation function g, summation function s(~x, ~w), input vector ~x and

weight vector ~w. To make the neural network learn targets tp for input vectors ~xp

(where p is a “pattern” index), the gradient descent weight update would be:

∆~w = α
∑
p

∂yp
∂ ~w

(tp − yp)

= α
∑
p

∂s(~xp, ~w)

∂ ~w
g′ (s(~xp, ~w)) (tp − yp) (7.25)

The similarities in equations 7.24 and 7.25 give hints at the purpose of Ωt, since

it is the Ωt matrix that introduces the g′ term into the VGL weight update equation

(eq. 7.24). In neural network training, we would not omit the g′ term from a weight

update, and we would not treat it as a constant; and likewise we deduce that we

should not omit the Ωt matrix or treat it as fixed in the VGL learning algorithm.

In neural network training, some algorithms choose to give the g′ term an artificial

boost to help escape plateaus of the error surface in weight space (e.g. Fahlman’s

method [4] which replaces g′ by g′ + k, for a small constant k), but this comes at the

expense of the learning algorithm no longer being true gradient descent, and hence

it not being as stable. Choosing to set Ωt ≡ I , the identity matrix, is like doing

an extreme version of Fahlman’s method on the VGL algorithm. This can help the

learning algorithm escape plateaus of the R surface very effectively, but may lead to

divergence. Plateaus are a severe problem when c is small in equation 7.17, since

then g′ ≈ 0 which will make learning by equation 7.24 grind to a halt.
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Having made these deductions about the role of Ωt in VGL, we should make the

caveat that these deductions only strictly apply to VGL(1) with a greedy policy, as

that is the algorithm that Ωt was derived for.

7.4.4 Experimental Results for Vertical Lander Problem

A DHP-style critic, G̃(~x, ~w), was provided by a fully connected multi-layer percep-

tron (MLP) (see [2] for details). The MLP had 3 inputs, two hidden layers of 6

units each, and 3 units in the output layer. Additional short-cut connections were

present fully connecting all pairs of layers. The weights were initially randomised

uniformly in the range [−1, 1]. The activation functions were logistic sigmoid func-

tions in the hidden layers, and a linear function with slope 0.1 in the output layer.

The input to the MLP was a rescaling of the state vector, given by D(h, u, v)T ,

where D = diag(0.01, 0.1, 0.02), and the output of the MLP gave G̃ directly. In our

implementation, we also defined the function f(~x,~a) to input and output coordinates

rescaled by D, the intention being to ensure that the value gradients would be more

appropriately scaled too.

Three algorithms were tested: VGL(0) with Ωt = I , the identity matrix; VGL(1)

with Ωt = I; and VGL(1) with Ωt given by equation 7.13 (denoted by throughout by

“VGLΩ(1)”). Each algorithm was set the task of learning a group of 10 trajectories

with randomly chosen fixed start points (the 10 start points used in all experiments

are those shown in figure 7.1), and with initial fuel u = 30. In each iteration of the

learning algorithm, the weight update was first accumulated for all 10 trajectories,

and then this aggregate weight update was applied. In some experiments RPROP

was used to accelerate this aggregate weight update at each iteration, with its default

parameters defined by [10].

Figure 7.2 shows learning performance of the three algorithms, both with and

without RPROP. These graphs show the clear stability and performance advantages

of using λ = 1 and the chosen Ωt matrix.

The VGLΩ(1) algorithm shows near-to-monotonic progress in the later stages of

learning. The large kink in learning performance in the early iterations of RPROP is
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Figure 7.2 Results show learning progress for 5 typical random weight initialisations, for

the problem of trying to learn 10 different trajectories. Results show increasing effectiveness

(particularly in reduced volatility) for the three learning algorithms being considered, in the

order that the graphs appear from left to right. The top row of graphs are all using RPROP to

accelerate learning. The bottom row of graphs all use a fixed step-size parameter α.

present because RPROP causes the weight vector to traverse a significant disconti-

nuity in the value function that exists at h = 0, v = 0.

VGL(0) shows very far-from-monotonic behaviour in this problem.

7.5 CONCLUSIONS

We have defined the VGL(λ) algorithm, and proven its equivalence under certain

conditions to BPTT. VGL(1) with an Ωt matrix defined by 7.13 is thus a critic

learning algorithm that is proven to converge, under conditions stated in section

7.3.3, for a greedy policy and general smooth approximated critic. Although the

proof does not extend to VGL(0), i.e. DHP, we hope that it might provide a pointer
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for research in that direction, particularly with the publication of Lemma 4. This

convergence proof has also given us insights into how the Ωt matrix can be chosen

and what its purpose is, at least for the case of λ = 1 with a greedy policy, and we

speculate that similar choices could be valid for λ < 1 or non-greedy policies. In our

experiment, we used a simplified Ωt matrix that was analytically derived and easy to

compute; but this may not always be possible, so an approximation to equation 7.13

may be necessary.

Our experiment has been a simple one with known analytical functions, but it has

demonstrated effectively the convergence properties of VGL(1) with the chosen Ωt

matrix, and the relative ease with which it can be accelerated using RPROP. In this

experiment we found the convergence behaviour and optimality attained by VGL(1)

with the chosen Ωt matrix to be superior to VGL(1) with Ωt = I , which in turn has

proved superior to VGL(0) (DHP) with Ωt = I . The given experiment was quite

problematic for VGL(0) to learn and produce a stable solution, partly because in this

deceptively simple environment the major proportion of the total reward arrives in the

final time step, and partly because the low c value chosen for equation 7.17 makes the

function g into approximately a step-function, which implies that the surfaceR(~x, ~w)

will be riddled with flat plateaus separated by steep cliffs.

It was surprising to the authors that the VGL(1) weight update has been proven to

be equivalent to gradient ascent on R when previous research has always expected

DHP (and therefore presumably its variant, VGL(1)) to be gradient descent on E,

where E is the error function E =
∑
t

(
G′t − G̃t

)T
Ωt

(
G′t − G̃t

)
.
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