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Chapter 13

Computational Models of 
Learning and Beyond:

Symmetries of Associative Learning

Eduardo Alonso
City University London, UK

Esther Mondragón
Centre for Computational and Animal Learning Research, UK

1. INTRODUCTION

The ability of animals to recognize and link differ-
ent patterns of stimuli to adapt to dynamic environ-
ments is essential for their survival. Associative 
learning studies how animals learn by connecting 
the relevant events in their environment (that is, 
how they acquire causal information) and behave 
(that is, how what has been learned is expressed 
in their behavior) and is, therefore, of paramount 
importance in Psychology. Indeed, models of as-
sociative learning have proved to be relevant to 
human learning both theoretically (judgment of 

causality and categorization, e.g., Shanks, 1995) 
and in practice (in such diverse areas as behav-
ioral therapy, drug addiction rehabilitation, or 
anticipatory nausea in cancer treatment to name 
just a few).

Of course, associative learning is not the only 
type of learning. There are learning phenomena 
such as habituation or sensitization that are tra-
ditionally considered as non-associative. Others 
such as spatial learning, perceptual learning and 
some forms of social learning seem to admit an 
associative account but such an interpretation is 
debatable. Besides, behavior – not even adaptive 
behavior – cannot be reduced to learned behavior. 
Some reflexes such sucking in babes or sexual 

ABSTRACT

The authors propose in this chapter to use abstract algebra to unify different models of theories of 
associative learning -- as complementary to current psychological, mathematical and computational 
models of associative learning phenomena and data. The idea is to compare recent research in asso-
ciative learning to identify the symmetries of behaviour. This approach, a common practice in Physics 
and Biology, would help us understand the structure of conditioning as opposed to the study of specific 
linguistic (either natural or formal) expressions that are inherently incomplete and often contradictory.
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patterns of behavior are indeed adaptive but not 
learned (although this is also controversial, see, 
e.g., Dickinson & Balleine, 2002). Finally, it must 
be stressed the difference between learning, the 
hypothetical psychological and physical changes 
in the brain (memory), and performance, the 
manifestation of such change in behavior (see, 
e.g., Bouton & Moody, 2004).

All this taken into account, it is commonly 
accepted that associative learning is at the basis 
of most learning phenomena and behavior.

2. PSYCHOLOGICAL MODELS 
OF ASSOCIATIVE LEARNING

The study of associative learning in Psychology 
has specialized in two sub-fields: Classical (Pav-
lovian) conditioning focuses on how “mental” 
representations of stimuli are linked whereas 
instrumental conditioning deals with response-
outcome associations. It is agreed though that, at 
the most general level, their associative structures 
are isomorphic (Hall, 2002). In both procedures, 
changes in behavior are considered the result of 
an association between two concurrent events and 
explained in terms of operations of a (conceptual) 
system that consists of nodes among which links 
can be formed. Since research in associative 
learning has predominantly focused on classical 
conditioning, we will use it as our leading example.

At the risk of over-simplification, we can 
identify the main trends in classical condition-
ing according to two dimensions, namely, the 
mechanisms of the learning process and the way 
in which the stimuli are represented by the learn-
ing system. The former fuels the debate between 
stimulus-processing theories vs. connectionist 
models, exemplified in the competitive model of 
(Rescorla & Wagner, 1972) and the Standard Op-
erating Procedures (SOP) theory (Wagner, 1981) 
respectively; the latter illustrates the distinction 
between elemental models (for instance, both 

Rescorla and Wagner’s and SOP) and configural 
approaches (e.g., Pearce, 1987).

Rescorla and Wagner’s model rests on a sum 
error term. The idea that all stimuli present in a 
trial compete for associative strength is at the heart 
of the model. It is precisely this characterizing 
feature that differentiates it from earlier models 
such as Hull’s (Hull, 1943). This assumption 
allows the model to explain phenomena such 
as blocking and conditioned inhibition, that 
is, phenomena that result from the interaction 
among different stimuli. Other assumptions of 
the model are path-independence (i.e., that the 
associative strength of a stimulus does not depend 
on its previous learning history), monotonicity 
(i.e., that learning and behavior are one and the 
same thing), that acquisition and extinction are 
opposite processes, and that the associability of 
the conditioned stimulus (CS) is fixed.

It has been argued, quite rightly, that Rescorla 
and Wagner made such assumptions not to reflect 
strong psychological principles but, rather, to 
express their main discovery (competitiveness 
among stimuli) in a general, abstract model. It 
should not come as a surprise, therefore, that 
many phenomena cannot be accounted for by 
their model (latent inhibition being, perhaps, the 
most paradigmatic) and that myriads of exten-
sions and truly innovative variants regarding the 
underlying psychological processes involved 
have been proposed (e.g., attentional approaches 
like Mackintosh, 1975 and Pearce & Hall, 1980). 
It remains the case however, that Rescorla and 
Wagner’s model is still the most influential theory 
of associative learning.

SOP, on the other hand, is a broader theoretical 
framework of stimulus processing and memory. 
Unlike Rescorla and Wagner’s model, SOP is 
not based on familiar theories of conditioning 
(although stochastic approaches used in SOP can 
be traced back to Estes, 1950) but instead borrows 
ideas from both information-processing theories 
and connectionism. It is beyond this proposal to 
give a detailed account of SOP. Suffice it to say 
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that, in SOP stimuli activate memory nodes for 
which transitional probabilities are dictated by 
decay functions (traces); that learning rules sepa-
rately account for excitatory and inhibitory links 
depending on the particular level of activation of 
the stimulus traces; and that behavior is explicitly 
dealt with through weighted response-generation 
rules. Regardless of its merits, it is difficult to 
assess the explanatory and predictive power of 
SOP due to its representational and algorithmic 
complexity.

Both Rescorla and Wagner’s model and SOP 
share the assumption that when two or more stimuli 
are presented at the same time of conditioning, 
each element may enter into an association with the 
reinforcer that follows (an unconditioned stimulus, 
US). In general, such elemental theories further 
assume that responding in the presence of the com-
pound is determined by the sum of the associative 
strengths of the constituents. As an alternative, 
configural theories are based on the assumption 
that conditioning with a compound results in a 
unitary representation of the compound enter-
ing into a single association with the reinforcer. 
Responding in the presence of the compound is 
then determined by its own associative strength, 
together with any associative strength that general-
izes to it from similar compounds that have also 
taken part in conditioning. Configural models have 
proved to be particularly useful when studying 
conditional associations where a stimulus comes 
to control responding to a CS in a manner that is 
independent of its direct association with the US 
(Honey and Watt, 1998) or forming a configural 
cue that becomes associated with the US (Wilson 
and Pearce, 1989, 1990). Contrarily, elemental ac-
counts tend to focus on the modulatory properties 
of the conditional cue over the CS-US association 
(Holland, 1983, Bonardi, 1991) or over the US 
representation (Rescorla, 1985).

Regardless of the individual merits of each 
model, research in associative learning suffers 
from various fundamental problems, namely:

1.  Incomplete theories: There is no model that 
satisfactorily accounts for all the phenomena 
under study. Each theory explains a set of 
particular phenomena. Latent inhibition, that 
the Pearce-Hall model predicts, cannot be 
explained in Rescorla and Wagner’s whereas 
over-expectation, on the other hand, can be 
explained by the latter but not by the former. 
Similarly, configural theories can account 
for feature discrimination effects but can-
not predict summation effects, exactly the 
opposite of what elemental theories are able 
to account for;

2.  Inconsistent theories: Different models 
make contradictory predictions under the 
same conditions. Mackintosh’s and Pearce 
and Hall’s models predict opposite changes 
in the associability of a stimulus as a 
consequence of the very same procedure. 
Likewise, elemental models predict that 
when two compounds (AB, CD) are trained 
their associative strength will be the same 
that the one observed when novel compounds 
(AC, BD) are tested. Contrarily, configural 
theories predict that the associative strengths 
of trained and novel compounds will differ. 
The problem is that evidence is not conclu-
sive in neither of these cases;

3.  Excluding paradigms: Certain theories are 
based on a priori excluding assumptions. For 
instance, although all stimulus processing 
models are cue competition models, Rescorla 
and Wagner’s refers to competition for US 
processing whereas Mackintosh’s model 
invokes competition between conditioned 
stimuli for a limited CS processing capacity. 
As another example, in configural theories 
like Pearce’s a compound AB is viewed as a 
unique configuration, distinct from its com-
ponent parts and from other stimuli. Each 
configuration develops associative strength 
through its own pairing with an US and also 
receives generalized associative strength 
from other configurations based on its simi-
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larity. Elemental theories, on the other hand, 
simply assume that the associative strength 
of an AB compound can be viewed as the 
sum of the strengths of the elements;

4.  Unaccounted phenomena: There are phe-
nomena that are still waiting for a model to 
be dealt with. For example, it is not obvious 
(at least not without making use of ad hoc 
arguments) how to explain spontaneous 
recovery.

3. MATHEMATICAL MODELS 
OF ASSOCIATIVE LEARNING

Associative theories of associative learning have 
been mathematically expressed as quantitative 
models in the form of (sets of) equations. In the 
traditional syntactic view of mathematical models, 
equations are taken as formal models in which 
variables and their relations explicitly denote the 
phenomena under study.

In particular, Rescorla and Wagner use a simple 
difference equation (the well-known delta rule) to 
express the change in associative strength across 
discrete trials. On the other hand, continuous 
(a.k.a. real-time) models like SOP are, at least in 
theory, useful when it comes to making accurate 
predictions about inter-stimulus intervals effects. 
Finally, Pearce’s model just adds a similarity 
function specified in terms of the proportion of 
elements that the stimuli share.

All in all, mathematical models of associa-
tive learning have so far been used as a means to 
make calculations through elementary algebra or 
differential analysis. The problem with adopting 
this narrow version of mathematical model is that 
it does not provide us with tools to address the 
above-mentioned limitations. For example, if the 
meaning of a mathematical model is in the linguis-
tic expression it takes (that is, if there is a unique 
isomorphism between phenomena and algorithms) 
then either (a) we cannot explain how a theory can 
be expressed in different sets of equations or (b) 

we will not be sure about the effect the addition 
or the removal of a simple parameter may have. 
Paraphrasing (Chakravartty, 2001), theories and 
models can be given linguistic formulations but 
theories and models should not be identified with 
such formulations.

4. COMPUTATIONAL MODELS 
OF ASSOCIATIVE LEARNING1

The use of computational models of associative 
learning has followed the connectionist trend and 
borrowed from computer science several tech-
niques, mainly Artificial Neural Networks (ANNs, 
for a review, Volge et al., 2004, and Balkenius & 
Morén, 1998). It is claimed that such models are 
adequate models of associative phenomena for 
four main reasons:

Firstly, computational models are considered 
material and/or formal analogue models of associa-
tive learning. The underlying reasoning is that (a) 
ANNs model by analogy natural neural networks 
and that (b) psychological processes, including 
associative learning, are ultimately embedded in 
natural neural networks; hence, indirectly, ANNs 
model associative learning.

However appealing this line of argumentation 
may be, it is widely acknowledged that ANNs 
do not resemble natural neural networks in any 
fundamental way (Enquist & Ghirlanda, 2005); 
besides, there is no strong evidence suggesting 
that electrical or chemical neural activity and as-
sociative learning are related (Morris, 1994) –or 
for that matter, that psychological processes can 
be localized in specific brain regions as recently 
exposed in (Vul et al., 2009), but already advanced 
in (Uttal, 2001). That a version of Dirac’s rule can 
be taken as a model of both neural plasticity and 
long-term potentiation effects –the Hebbian rule 
(Hebb, 1949) – and association formation –for 
example, Rescorla and Wagner’s rule– cannot be 
considered as proof of any common underlying 
structure and should not be used as an argument 
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to reduce psychological phenomena to their al-
leged neural substratum2. Likewise, that Rescorla 
and Wagner’s rule is essentially identical to the 
Widrow-Hoff rule (Widrow & Hoff, 1960) for 
training Adeline units and that, in turn, such a rule 
can be seen as a primitive form of the generalized 
delta rule for backpropagation only tells us that, 
computationally speaking, associative learning 
follows an error-correction algorithm. What a 
computational model does not tell us, however, 
is which underlying psychological processes (at-
tention, motivation, etc.) intervene in associative 
learning or how the physical characteristics of the 
units involved (e.g., the salience of the stimuli) 
affect such processes.

Clearly, sharing a common mathematical 
expression does not imply that the phenomena 
it describes are of the same nature: For instance, 
power functions can be used to express the rela-
tionship between (1) the magnitude of a stimulus 
and its perceived intensity (Stevens’ law), (2) the 
metabolic rate of a species and their body mass 
(Kleiber’s law), and (3) the orbital period of a 
planet and its orbital semi-major axis (Kepler’s 
third law).

Secondly, ANNs are connectionist models 
according to which information is not stored 
explicitly in symbols and rules but rather in the 
weights (strengths) of the connections; learning 
would consist of changes in such weights. It is 
claimed, rightly, that these are precisely the as-
sumptions associative learning models are based 
upon and hence, wrongly, that ANNs are an ideal 
candidate to model associative learning. This 
quite straightforward argument is, in fact, a fal-
lacy: As connectionists (at least implementational 
connectionists) themselves concede the way we 
represent learning, either as continuous changes of 
weighted connections or as the result of discrete 
symbolic processing, is a matter of convenience 
and therefore irrelevant to the study of the struc-
tures involved.

This brings us to the third argument. ANNs can 
be used, of course, not as models of phenomena but 

to solve problems that cannot be solved analyti-
cally –or when in silico experiments are needed. 
After all, ANNs are powerful statistical tools (with 
a misleading name) implemented in architectures 
that take advantage of massive computational 
parallelism – not surprisingly, Rumelhart’s et al. 
new connectionism landmark paper introduced the 
Parallel Distributed Processing paradigm in cogni-
tion (Rumelhart et al., 1986). Although they are 
certainly not the simplest, fastest or most efficient 
data mining techniques (see, e.g., Mitchie et al., 
1994), ANNs have proved useful when analytical 
methods fail and a bottom-up, data-driven ap-
proach is needed. Indeed, it is a common practice 
to use sheer computational power to simulate the 
dynamics of non-linear (chaotic or not) systems 
such as population growth or the weather. The 
point is, however, that associative learning does 
not seem to be one of such systems. In fact, the 
analytical solution of Rescorla and Wagner’s equa-
tion represents a linear discrete dynamical system 
of the 1st order; besides, associative learning is 
not so data intensive as other areas like genetics 
where there is an obvious need for statistical tools 
(see, for example, Hastings & Palmer, 2003). Of 
course, we could study associative learning from 
a behavioral regulation approach according to 
which animals adjust their long-term behavior 
so as to reach an optimal (bliss or equilibrium) 
point (Timberlake, 1980). However interesting this 
point of view may be, it does not by itself oblige 
us to adopt numerical tools as (Dank, 2003) and 
(Yamaguchi, 2006) have proved.

Relatedly, ANNs typically approximate solu-
tions by iteratively minimizing an error function. 
This can be understood as a type of learning that 
resembles learning by “trial and error” of which 
associative learning (and reinforcement learning) 
is an example. However, it is worth emphasizing 
that ANNs implement numerical methods whereas 
associative learning models such as Rescorla and 
Wagner’s express dynamic laws. Against public 
opinion, animals do not make predictions and 
iteratively update an associative value through 
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error minimization towards an optimal one. The 
associative value at a given time is the right associa-
tive value –that exactly describes to which extend 
the CS has become associated to the US. Let’s 
put it another way: There is nothing to indicate 
that the system is compelled to gain a maximum 
value. That the system described by Rescorla and 
Wagner’s rule is limited by an asymptote (λ, the 
reinforcing value of the US) does not confer any 
special status to such value –rather it just defines 
a constraint (limited capacity) of the system.

A final more general reason to explain the ap-
peal of computational models in psychology rests 
on the idea that both computers and the brain are 
information processing systems, instantiations of 
a universal Turing machine or any other model of 
computation. But this alone does not justify the 
support the “computer metaphor” enjoys. After 
all, any phenomena can be expressed in terms 
of some sort of computation3. If this is such a 
powerful metaphor is because it is deeply rooted 
in Western philosophy and the mechanization of 
(formal) reasoning, reformulated in the twentieth 
century in terms of computation. That computation 
has been effectively embedded in computers has 
reinforced the idea that so it is in the brain, that the 
study of the former will help understand the latter 
and, in a tour the force, that computers may be 
capable of displaying intelligence. Indeed, every 
scientific theory is shaped in the context of its 
age’s achievements and prejudices: Like Newton’s 
laws of mechanics strengthened the view of the 
Universe as a deterministic machine that worked 
as the sophisticated clocks so popular at the time 
our conception of the mind as an information 
processing machine has certainly been influenced 
by the development of computing technology.

To sum it up, although the need to get influx 
from ‘outsiders’ is recognized within the psychol-
ogy community (see Townsend, 2008) compu-
tational models of associative learning should 
be taken with caution. Computational models 
may provide us with complementary idealized 
models of psychological phenomena and with 

powerful statistical tools to construct models 
of psychological data but they alone are not the 
appropriate instruments to answer psychological 
questions. This is an obvious, hardly original, 
conclusion –and yet more often than not we read 
flamboyant news about robots that learn, think 
and experience emotions or ANNs that can do 
anything psychological models do only better.

Our contention is that what we are lacking in 
the field of associative learning and behavior is 
the identification of invariant structures that un-
derlie specific (psychological, mathematical and 
computational) models. That is, we need to study 
psychological symmetries. Crucially, symmetries 
can be formalized mathematically as operations 
satisfying the conditions for forming various al-
gebraic structures –typically groups. We propose 
to employ abstract algebra to explore models of 
psychological theories from a non-syntactical view 
(as Physics and Biology have done).

5. SYMMETRIES

Generally speaking, symmetries define invari-
ance, that is, impunity to possible alterations. 
They refer to the fact that parts of a whole are 
equivalent (interchangeable) under a group of 
operations. Interestingly, the fact that the parts that 
are related by means of an equivalence relation 
corresponds to the fact that the family of opera-
tions transforming the parts into each other while 
leaving the whole invariant satisfies the conditions 
for constituting a group (i.e., the existence of the 
identity and inverse operations, associativity and 
the closure of the product). Consequently, it has 
traditionally been assumed that group theory is 
the language of symmetries.

What is more important, in group theory the 
objects do not need to be mathematical objects 
or physical, biological or psychological objects. 
Objects and their elements can be any abstraction 
(shapes, phrases, laws, mathematical equations 
and even theories). And the transformations or 
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operations under which the whole remains invari-
ant can be any operation (from a rotation over an 
axis to a specific conditioning procedure). This is 
because groups act on operations not on elements 
or objects. This feature makes groups a power-
ful tool to study symmetries independently of a 
particular theory or expression.

The study of symmetries flourished in the 
XIX century, originally as an instrument to solve 
algebraic equations: It was the young E. Galois 
who first understood that groups opened a new 
general way of finding the (invariant) structures 
that underlie the number and form of the solu-
tions for equations of arbitrary degrees. This 
had an immediate effect in Physics: C. G. Jacobi 
developed a procedure for transforming step by 
step the Hamiltonian formulation of the dynami-
cal equations of mechanics into new ones that are 
simpler but perfectly equivalent. In geometry, F. 
Klein (Klein, 1872) proposed the Erlangen Pro-
gram to classify various geometries (Euclidean, 
affine, and projective) with respect to geometrical 
properties that are left invariant under rotations 
and reflections. It was also in Göttingen where 
E. Noether proved the connection between sym-
metries and conservation laws (Noether, 1918).

In fact, we can view the history of the theories 
of modern Physics in terms of their symmetries 
and groups. Newtonian classical mechanics was 
based on Galilei transformations formalized in 
the Galilei group; the special theory of relativ-
ity unified seemingly contradictory mechanical 
and electromagnetic phenomena of the hand of 
Lorentz transformations and their corresponding 
Lorentz groups; and the general theory of relativity 
explained gravity, the most symmetrical of field 
theories so far, under the group of all diffeomor-
phisms of a space-time.

It has been, however, with quantum mechanics 
when symmetry groups have become an indispens-
able tool in Physics (see Weyl, 1928, for a starter). 
Internal symmetries (i.e., those which act on fields 
while at the nuclear level and cannot be reduced 
to “classical” spatiotemporal symmetries), both 

global and gauge, can only be fully understood 
when studied through the groups their represen-
tations form. In particular, the Standard Model 
classifies all elementary particles and their inter-
actions according to their flavor, charge and color 
symmetries (the SU(3) ⊗ SU(2) ⊗ U(1) group), 
and, in so doing, unifies electromagnetism, QED 
and QCD and explains electroweak interactions 
through spontaneous symmetry breaking.

Why is it that symmetries take such a prominent 
part in Natural Sciences? As argued in (Brading 
& Castellani, 2003):

1.  First, we attribute symmetry properties to 
theories and laws (symmetry principles). It 
is natural to derive the laws of nature and to 
test their validity by means of the laws of 
invariance, rather than to derive the laws of 
invariance from what we believe to be the 
laws of nature;

2.  At the same time, we may derive specific 
consequences with regard to particular 
phenomena on the basis of their symmetry 
properties (symmetry arguments). Pierre 
Curie (Curie, 1894) postulated a necessary 
condition for a given phenomenon to happen, 
namely, that it is compatible with the sym-
metry conditions established by a principle.

More specifically, symmetries play several 
inter-related roles that we illustrate with an ex-
ample of the use of (point) groups in molecular 
biology (see e.g., Atkins & Friedman, 2005):

• Normative role: One the one hand, sym-
metries furnish a kind of selection rule. 
Given an initial situation with a specified 
symmetry, only certain phenomena are al-
lowed to happen; on the other side, it of-
fers a falsification criterion for (physical) 
theories: A violation of Curie’s principle 
may indicate that something is wrong with 
the (physical) description. That is, symme-
tries can be viewed as normative tools, as 
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constraints on theories –the requirement 
of invariance with respect to a transfor-
mation group imposes several restrictions 
on the form the theory may take, limiting 
the types of quantities that may appear in 
the theory as well as the form of its fun-
damental equations. For instance, the rule 
that determines whether or not two atomic 
orbitals can form a chemical bond (i.e., a 
molecule) is that they must belong to the 
same symmetry species within the point 
group of the molecule. The same applies to 
bonding in polyatomics;

• Unification role: Symmetries can be used 
as a heuristic to compare and unify theo-
ries, resulting from the possibility of unify-
ing different types of symmetries by means 
of a unification of the corresponding trans-
formation groups. Likewise, we can use 
symmetries to analyze whether or not 
different theories are, in fact, equivalent; 
and even if theories turn out to be incom-
parable (it seems, after all, that Rescorla 
and Wagner’s model and SOP correspond 
to different algebraic structures –Rescorla 
and Wagner’s model to groups, SOP to Lie 
groups) we will at least have a tool to for-
mally show that they are so. Following our 
example in molecular biology, the analy-
sis of symmetries and their corresponding 
groups provides us with a unifying ap-
proach to complex molecular behaviour 
such as molecular vibrations and vibra-
tional spectroscopy;

• Classificatory role: Classifications can be 
used to identify gaps in the theories but 
also to predict the existence of new phe-
nomena. This applies when new phenom-
ena can be predicted exclusively in terms 
of symmetry and when the predictions so 
postulated are coherent with those of ex-
isting models. All possible molecules can 
be classified according to symmetry op-
erations on five symmetry elements: the 

identity operation (doing nothing) on the 
identity element (the entire molecule); ro-
tation on the proper rotation axis; rotation 
on the improper rotation axis; reflection 
in the plane of symmetry; and inversion 
on the centre of symmetry. We can group 
together molecules that posses the same 
symmetry elements and classify molecules 
according to their symmetry: For example, 
water belongs to the C2v group which con-
tains the identity, a 2-fold axis of rotation 
and 2 vertical mirror planes. Interestingly, 
Dymethyl ether also belongs to such group 
no matter how different its composition 
and that of water’s may look – O(CH3)2 
and H2O respectively;

• Explanatory role: Symmetries are also 
explanatory in that phenomena can be 
explained as consequences of symmetry 
arguments. We know that the symmetry 
elements of the causes must be found in 
their effects and that the converse is not 
true. That is, the effects can be (and often 
are) more symmetric than their causes. In 
group-theoretic terms this means that the 
initial symmetry conditions are lowered 
into (more constrained) sub-groups: The 
symmetry has been broken. In biology, we 
know that for a molecule to have a per-
manent dipole moment it must have an 
asymmetric charge distribution. The point 
group of the molecule not only determines 
whether a molecule may have a dipole mo-
ment but also in which direction(s) it may 
point. The only groups compatible with a 
dipole moment are Cn, Cnv and Cs. Besides, 
in molecules belonging to Cn or Cnv the 
dipole must lie along the axis of rotation. 
Now, we can explain and predict, at least 
partially, how a molecule of water behaves;

Of course, organizing our knowledge using 
symmetries does not prove anything. Symmetries 
(and group theory) provide us with very powerful 
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abstract tools to analyze the structure of psycho-
logical models. But they are just abstract tools 
after all. In any empirical science, the ultimate 
proof rests on experimental evidence. Nonetheless, 
perhaps paradoxically, here it is precisely where 
the full strength of symmetries shows: Not from 
the models of theories built on symmetry prin-
ciples but from the intimate connection (through 
symmetry arguments) between such models and 
observed phenomena.

If we look back to the problems faced by psy-
chological models of associative learning as listed 
in section 2, we find that they relate to deficien-
cies that symmetry could be used to resolve. The 
first shortcoming, that no model accounts for all 
associative learning phenomena, refers to a lack 
of explanatory power in such models; the second 
one, that contradictory rules explain the same 
phenomena, claims for a normative approach; 
the third one, that models are partial, relates to 
the need for unifying principles where different 
theories that cover disjoint phenomena find com-
mon grounds and are made compatible; and the 
fourth one, that some phenomena remain unac-
counted for, identifies a classification problem. It 
seems, therefore, that symmetries may be useful 
in solving such problems. First we must find the 
psychological symmetries. This is the purpose 
of our research.

6. IN SEARCH OF PSYCHOLOGICAL 
SYMMETRIES

Although there is not a universally accepted ‘law 
of learning’, all psychological models coincide in 
assuming that learning takes place when a (rela-
tively permanent) change in behavior happens as 
a consequence of some experience. Now, we need 
to know whether such law establishes sufficient 
symmetry conditions for the occurrence of the 
observed phenomena –or, in other words, we have 
to investigate whether the observed phenomena 
describe necessary conditions for the law to hold 

(invariantly) true. Unfortunately, a glimpse at the 
literature suggests it does not:

1.  That the sensory and motivational features of 
the stimuli as well as their novelty and rel-
evance affect learning are well documented 
facts (Kamin and Schaub, 1963; Pavlov, 
1927; Jenkins and Moore, 1973; Randich 
and LoLordo, 1979; Lubow, 1989; Garcia 
and Koelling, 1966);

2.  Procedurally, the idea that learning is context-
specific is also gaining ground (Bouton, 
1993; Bouton and Swartzentruber, 1986; 
Hall and Mondragón, 1998); also, different 
results emerge depending on the order in 
which stimuli are presented during training 
and on the number (single or compound) and 
representation (elemental or configural) of 
the cues themselves (see, e.g., Pearce and 
Bouton, 2001 for a survey).

This first setback may not challenge our search 
for psychological symmetries though. It could we 
argued that, after all, we should expect that the 
parameters in (a) affected the pace of learning 
(accelerating or decelerating the learning process, 
i.e., strengthening or weakening the links between 
nodes/stimuli as time goes), defining, in the ex-
treme, explicit symmetry breaks. Unfortunately, 
the study of complex phenomena in (b) does 
not only tell us that the learning rate changes in 
different experimental conditions. What these 
results tell us is that the rules of learning them-
selves fluctuate depending on such factors and, 
consequently, that they do not reflect any genuine 
object of invariance.

Not surprisingly, a mathematical analysis of the 
above-mentioned issues reveals that each of them 
violates one of the conditions for group forma-
tion: Associativity. This is rather worrying since 
associativity is the key condition for symmetry. 
It tells us that the concatenation of two different 
operations gives the same result, and that gives us 
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much more information and reflects much more 
structure than commutativity4.

Let us illustrate this point with an example: 
Both elemental models and configural models 
of stimulus encoding anticipate that after con-
ditioning is given to two compounds (say, AB 
and CD) responding to them will be greater than 
responding to the constituent elements. However, 
they differ in their expectations for responding 
to different compounds formed with the same 
elements (for example, AD and BC); elemental 
theories expect it to be as large as that to the 
trained compounds whereas Pearce’s configural 
theory expects some generalization decrement 
and, as a consequence, responding should be as 
small as that to the elements. That is, elemental 
theories assume associative invariance under 
different compounds; Pearce’s theory, on the 
other hand, assumes invariance under elements 
per se and new configurations. Unfortunately, 
evidence suggests (see, e.g., Rescorla, 2003) that 
neither interpretation is complete: In agreement 
to Pearce’s theory, novel compounds perform 
less than original compounds but, in agreement 
to elemental theories, novel compounds perform 
better than their separate elements. Symmetries, 
therefore, are elusive.

Should we conclude, on this basis, that there 
are no symmetries in associative learning? Perhaps 
we can try a different approach and investigate 
this issue through a representative case study, a 
model that embodies the fundamental laws of 
associative learning. Few would disagree that 
Rescorla and Wagner’s model is such a model. 
Now, Rescorla and Wagner’s model is based on 
five basic assumptions (see Miller et al., 1995), 
namely:

1.  The associative strength of a stimulus de-
pends on the summed associative value of 
all the CSs present on a given trial;

2.  Excitation and inhibition are represented 
by opposite signs on a single dimension of 

associative strength and, consequently, are 
assumed to be mutually exclusive;

3.  Associability of a given stimulus (α) is 
constant, that is, associability is not subject 
to changes as function of experience;

4.  New learning is invariant to any prior as-
sociative history (path independence). Past 
associative status of a cue, per se, is assumed 
to influence neither behavior nor future 
changes in associative status;

5.  Differences in behavior reflect differences 
in associative strength, that is, there is a 
monotonically positive relationship between 
associative value and a relevant response.

A simple analysis of these five premises tells 
us that only the first one is asymmetric. It states 
that the associative strength of each CS present on 
a specific trial does not independently gravitate 
toward the asymptotic value of the US (λ). If it 
were so, then the associative strength of each 
CS would be invariant to the presence of other 
stimuli. This assumption (that is at the heart of cue 
competition) has proven to be the most innovative 
feature of Rescorla and Wagner’s model.

The rest of assumptions are, in fact, sym-
metry postulates: Symmetry between excitation 
and inhibition (2), invariance of associativity to 
experience (3) and to learning history (4), and 
symmetry between learning and performance (5). 
Sadly, countless observations refute in a consistent 
manner such assumptions5. The important point 
is that such failures do not come from Rescorla 
and Wagner’s disregard for parametric features. 
The disproving phenomena do not refer to specific 
values that the context, time/schedule or stimulus 
characteristics may take but rather are the result 
of fundamental assumptions on the structure of 
conditioning.

We can attribute this unsuccessful search for 
symmetries in associative learning to alternative 
causes:
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• Is it that the laws of associative learning 
are simply wrong? This does not seem to 
be the case. Despite the problems referred 
to in section 2, psychological models of 
associative learning have been confirmed 
experimentally so as not to doubt their 
general validity. As stated by S. Spreat and 
S.R. Spreat “much like the law of gravity, 
the laws of learning are always in effect” 
(from Bouton, 2006, pp. 3);

• Or is it that associative learning phenom-
ena (and the theories in which they are 
modeled) do not show any underlying 
structure, at least not in the form of sym-
metries? Again, this is dubious. As we have 
seen in the previous section, symmetry has 
proved to be just too powerful a principle 
in the study of Nature as not to be found in 
Psychology;

• Or is it that the formalization of symme-
tries in the notion of group is too constrain-
ing and that associative learning shows, to 
some extent, symmetries that should be 
expressed with a subtler concept? Is there 
any notion in abstract algebra that provides 
us with the required flexibility to represent 
associative learning phenomena and theo-
ries, and, at the same time, preserves the 
properties that have made groups so popu-
lar in Physics, Chemistry and Biology? 
Yes, there is: The notion of groupoid.

Indeed, it seems that groups do not provide us 
with the right ontology to deal with the type of 
symmetries that associative learning may show. 
Each associative learning theory could perhaps 
be modeled as a unidimensional single-object 
category, in other words, as a group. Yet, the 
problem is that groups (and the theories so mod-
eled) are not expressive or flexible enough and, 
consequently, are prompt to generate inherently 
limited classifications and contradictory explana-
tions. Besides, as groups are independent from 
each other and do not form more general structures 

there seems to be no need for a meta-syntax that 
would regulate the relations between different 
theories and, potentially, unify them.

7. CONCLUSION: GROUPOIDS?

We have seen that mathematicians (and physicists) 
tend to think of the notion of symmetry as being 
virtually synonymous with the theory of groups 
(symmetry groups). In fact, though groups are 
indeed sufficient to characterize homogeneous 
structures, there are plenty of objects which ex-
hibit what we clearly recognize as symmetry, but 
which admit few or no nontrivial automorphisms. 
It turns out that the symmetry, and hence much 
of the structure, of such objects can be character-
ized algebraically (and categorically) if we use 
groupoids and not just groups (see Brown, 1987, 
and Weinstein, 1996, for two formal introductions 
to groupoids).

Intuitively, a groupoid should be thought of as 
a group with many objects, or with many identi-
ties. A groupoid with an object is essentially just a 
group. So, the notion of groupoid is an extension 
of that of group. This apparently innocuous distinc-
tion between one-object structures (groups) and 
many-objects structures (groupoids) is actually 
crucial. The homomorphisms defined in groups 
are always automorphisms (homomorphisms of 
the object to itself). In other words, as groups 
are one-object categories, all morphisms can be 
composed with all other morphisms. From this, the 
algebraic conditions for the formation of groups 
(closure, unique identity, unique total inverse, and 
total associativity) follow directly. On the other 
hand, groupoids, can only compose morphisms 
(isomorphisms in their case) with the appropri-
ate domains and co-domains. Algebraically, a 
groupoid is a set with a partially defined binary 
operation (that is associative where defined) and 
a total inverse function.

What is important to get from this mathematical 
mumbo-jumbo is (a) that in groupoids associativ-



327

Computational Models of Learning and Beyond

ity is partially defined, allowing us to investigate 
variable symmetries (symmetry groupoids) and 
(b) that in groupoids isomorphisms are defined 
over sets of base points (fundamental groupoids), 
permitting us to study more symmetries. Indeed, 
groupoids show new structures that do not show 
at a group level –more specifically, in groupoids, 
the inverse relation, although total, is defined 
over paths; besides, groupoids lead to higher 
dimensional algebras and help us move between 
n-categories through natural transformations, 
limits and co-limits.

Summarizing, groupoids present three very 
useful properties: (1) Partial associativity, (2) path 
reversibility, and (3) hierarchism. How does this 
relate to our study of symmetries in associative 
learning?

1.  To start with, the very idea of associative 
learning can be nicely expressed as mor-
phisms (associations) defined over objects 
(stimuli or nodes), that is, as categories;

2.  Building iteratively up categories may allow 
us to gain knowledge about hierarchical 
processes –associative processes between 
associative processes (Bonardi, 2001; 
Mondragón, Bonardi and Hall, 2003), in 
particular, about the role of context and oc-
casion setters (Bouton, 1994);

3.  Also, the isomorphisms that define groupoids 
(unlike all or nothing equivalence relations 
that define groups) permit us to introduce 
partial symmetries that may explain results 
where novel compounds seem to elicit less 
response than the original trained compounds 
but more than each separate element;

4.  Finally, the ability to look at intermediate 
processes may be very useful in determining 
the causes for non-responding: Failure to 
express or failure to acquire (or to retrieve) 
information?

More generally, the theory of groupoids does 
not differ widely in spirit and aims from the 
theory of groups. The recognition of the utility 
of groupoids gives gains over the corresponding 
groups without any consequent loss. Our conten-
tion is that the above-described characteristics 
make groupoids an ideal candidate to fill in the 
symmetry roles that, we have argued, would help 
solve the problems outlined in section 2: Grou-
poids provide us with a multi-object language 
defined over paths along with rules of variance 
and rules of transformation with which to study 
both internal and external symmetries. In other 
words, the language of groupoids gives us the 
required expressiveness and flexibility to attack 
classification and explanation problems; and its 
syntax would allow us to solve normative and 
unification problems.

Admittedly, the debate over whether groupoids 
are useful or unmotivated abstractions is still going 
on (Corfield, 2003). Nevertheless, since they were 
introduced by H. Brandt in 1926 groupoids have 
been used in a wide area of mathematics as well as 
in theoretical physics, neurosciences, biodynam-
ics and networks, and logic and computer science 
(see, e.g., Ramsay & Renault, 1999).
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kEY TERMS AND DEFINITIONS

Associative Learning: An account of learning 
and the process by which animals learn by associat-
ing or linking experienced events: stimuli and/or 
responses, and adjust their behavior accordingly.

Symmetries: Symmetries define invariance: 
that is, impunity to transformations. They refer 
to the fact that parts of a whole are equivalent 
(interchangeable) under a group of operations.

Groups: An algebraic structure consisting of 
a set together with an operation that satisfy the 
existence of the identity and inverse operations: 
associativity and the closure of the product. 
Groups have been traditionally used to represent 
symmetries.

Groupoids: A groupoid should be thought 
of as a group with many objects: or with many 
identities. A groupoid with an object is essentially 
just a group. So the notion of groupoid is an exten-
sion of that of group. Algebraically, a groupoid 
is a set with a partially defined binary operation 
(that is associative where defined) and a total 
inverse function.

ENDNOTES

1  The very concept of computational model 
is controversial. If we refer to David Marr’s 
levels of analysis of information processing 
systems (Marr, 1982) then models such as 
Rescorla and Wagner’s are both computa-
tional and algorithmic --but allegedly not 
implementational, in that they analyse what 
the system does and how it does it. What 
we refer to as a computational model of 
(associative) learning however is the more 
mundane exercise of taking architectures 
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and techniques from machine learning and 
applying them to the modelling of psycho-
logical phenomena and data.

2  Even if it did, a neural analysis would not nec-
essarily be the right level to study associative 
learning phenomena. In the words of Burruhs 
F. Skinner “The analysis of behaviour need 
not wait until brain science has done its part. 
The behavioural facts will not be changed 
(…). Brain science may discover other kinds 
of variables affecting behaviour, but it will 
turn to a behavioural analysis for the clear-
est account of their effects” (Skinner, 1989, 
emphasis ours). Regardless of the antipathy 
that Skinner’s radical behaviorism provokes 
among neuroscientists such an statement 
does not contradict a version of reductionism 
that most of them would endorse, namely, 
Richard Dawkin’s hierarchical reductionism 
(Dawkins, 1986).

3  And precisely because of its generality the 
information processing model is not neces-
sary or sufficient: Working physicists do 
not model electrons, atoms or galaxies as 
information processing entities –be it in 
the form of a cellular automaton as envis-
aged in (Zuse, 1969) or as a participatory 
universe (Wheeler, 1990); on the other hand, 
neither (computational) physicists nor the 
public would presume that the simulation 
of a nuclear reaction generates real energy 
or that a flight simulator really flies. Of 

course, this does not preclude physicists from 
theorizing about what type of information 
is contained in a physical system (see, for 
example, literature on quantum entangle-
ment or black holes) or about exploring the 
physical limits of computers (pioneered by 
Richard Feynman (Hey & Allen, 2000) and 
followed up to contemporary theories of 
quantum computing (e.g., Vedral, 2006)).

4  Incidentally, associative learning has shown 
to be stubbornly non-Abelian: ‘Associative 
symmetry’ phenomena and the basic distinc-
tion between latent inhibition and extinction 
are just two examples of non-commutativity.

5  In defence of Rescorla and Wagner, it must 
be said that they themselves expressed their 
doubts about these four assumptions. For 
instance, it is hard to believe that Rescorla 
and Wagner really mistook extinction for 
unlearning or that they were ignorant of 
silent learning phenomena. It should also 
be noted that alternative models based on 
contingencies do not seem to improve the 
landscape. Although it has been proved that 
the non-pairings of CS and US influence 
behaviour as do pairing of CS and US we 
know that the four inter-event combinations 
do not contribute equally to the acquired 
behaviour (i.e., they have equal normative 
weights but not equal psychological weights, 
Wasserman & Miller, 1997).


