

City, University of London Institutional Repository

Citation: Bishop, P. G., Gashi, I., Littlewood, B. & Wright, D. (2007). Reliability modeling of

a 1-out-of-2 system: Research with diverse Off-the-shelf SQL database servers. Paper
presented at the The 18th IEEE International Symposium on Software Reliability (ISSRE
'07), 5 - 9 Nov 2007, Trollhättan, Sweden.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/520/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

 ᑨ睴诲 睸 睺�睺�Ơ�Ơ�Ơ ″Reliability Modeling of a 1-Out-Of-2 System: Research with Diverse Off-The-Shelf SQL Database Servers

Peter Bishop
1, 2

, Ilir Gashi
1
, Bev Littlewood

1
 and David Wright

1

1Centre for Software Reliability, City University, 2Adelard LLP

 �orthampton Square �orthampton Square

 London, EC1V 0HB London, EC1V 0HB

E-mail: pgb@adelard.com, i.gashi@city.ac.uk, {bl, d.r.wright}@csr.city.ac.uk

Abstract

Fault tolerance via design diversity is often the only

viable way of achieving sufficient dependability levels

when using off-the-shelf components. We have

reported previously on studies with bug reports of four

open-source and commercial off-the-shelf database

servers and later release of two of them. The results

were very promising for designers of fault-tolerant

solutions that wish to employ diverse servers: very few

bugs caused failures in more than one server and none

caused failure in more than two. In this paper we offer

details of two approaches we have studied to construct

reliability growth models for a 1-out-of-2 fault-tolerant

server which utilize the bug reports. The models

presented are of practical significance to system

designers wishing to employ diversity with off-the-shelf

components since often the bug reports are the only

direct dependability evidence available to them.

1. Introduction

Off-the-shelf (OTS) components are used

ubiquitously in software systems development due to

the perceived lower costs from their use (some of the

components may be open-source and/or freely

available), faster deployment and the multitude of

available options. There remain concerns, however,

about the dependability levels of the components: they

tend to be distributed without any assurances of their

dependability, with “use-as-is” labels often attached to

them by the vendors. As a result, the only viable way

available to users and system integrators of achieving

higher dependability is to use software fault tolerance.

Fault tolerance may take multiple forms, with examples

ranging from simple error detection and recovery add-

ons (e.g. “wrappers” [1]) to “diverse modular

redundancy” (e.g. “N-version programming”:

replication with diverse versions of components) [2].

The design decisions are well known from the

literature. But, questions remain about the

dependability gains that developers of systems using

OTS components can expect, the implementation

difficulties and the extra cost expected. We have

studied some of these issues with OTS database servers

or database management system (DBMS) products: a

complex category of OTS products. The architectural

solutions for implementing a fault-tolerant DBMS

using diverse OTS database products are given in [3].

With regard to the dependability of a fault tolerant

DBMS, we have reported previously on a study with

the publicly available fault reports of four OTS DBMS

products (both open-source and closed development)

[4] and later releases of two of them [3]. We found that

a high number of these faults would not be tolerated (or

even detected) by the existing non-diverse fault-

tolerant schemes but did not cause failures in any two

diverse DBMS products. We found the number of

faults that caused coincident failures to be very low.

These results seem to suggest that significant

dependability gains may be achieved if diverse modular

redundancy is employed with OTS DBMS products.

However they are not definitive evidence. The main

problem is that the available reports concern faults

(bugs) and not how many failures each caused, which

makes their use in reliability predictions difficult.

Complete failure logs would be much more useful as

statistical evidence, but they are not available. The only

direct dependability evidence available for these

products often are the fault reports.

It is the absence of failure data and the lack of

known approaches that can utilize existing fault reports

of OTS components in reliability assessment that has

motivated the research detailed in this paper. More

precisely, the question we attempt to answer is “how

 ᑨ� 睴诲 睸 睺�睺�Ơ4�Ơ ″can we incorporate existing evidence for off-the-shelf

products to evaluate the possible gains in reliability

achievable by a 1-out-of-2 diverse server?” To this end

we have studied two approaches which use fault reports

for obtaining dependability measures of a fault tolerant

server employing two diverse OTS DBMS products

For the sake of brevity, we shall refer to this fault

tolerant DBMS as a “FT-node”.

The two approaches presented in this paper for

estimating the reliability of a FT-node are:

1. An extension of a previous software reliability

growth model [5] for use in reliability growth modeling

of the FT-node.

2. An alternative “proportions” approach where the

observed reliability of a single server is scaled by a

factor to derive the expected reliability of the FT-node.

The first method requires information on actual

usage time. In closed development environments, it

should be feasible to derive usage time from dated fault

reports if the total population of the DBMS product is

known over time (e.g. from product registration).

However for open source products, information on the

product population over time is hard to obtain, and

hence the usage time is difficult to estimate.

We have therefore developed a second method

where information about usage time is not required and

statements about the reliability improvement

achievable by an FT-node can be made (under certain

assumptions about the underlying failure rate

distributions), based only on information derived from

reported product faults.

The paper is structured as follows: section 2

contains background on the studies we have conducted

with known fault reports of the DBMS products,

software reliability growth modeling and the

Littlewood [5] model; section 3 details the extensions

of the Littlewood model [5] for the reliability growth

modeling of the FT-node; section 4 contains details of

an alternative model in which fault counts alone are

used for reliability prediction of the FT-node; in the

same section we also provide empirical data to

illustrate the use of the method; section 5 contains a

discussion and verifications of the main modeling

assumptions made and finally section 6 contains a

discussions of the two modeling approaches,

conclusions and provisions for further work.

2. Background and related work

2.1 Analysis of faults in OTS DBMS products

We have conducted two studies with fault reports of

four OTS DBMS products and later releases of two of

them. We have fully described these studies and

provided analysis of the results in [4] and [3]. We will

be utilizing the results of those studies in this paper as

empirical evidence with one of the models, as well as

for verification of assumptions. Therefore, in what

follows we will provide a brief summary of the studies

and the main results.

A mixture of free open-source and commercial

closed development products were used in the studies.

In the first study we collected a total of 181 bugs

reported for the following DBMS products, of which

the first two are open-source and the last two are

commercial closed-development products (for the sake

of brevity, we will use the abbreviations detailed in

brackets next to each product when referring to these

products from this point forward):

- Interbase 6.0 (IB)

- PostgreSQL 7.0 (PG7.0)

- Oracle 8.0.5 (OR)

- Microsoft SQL Server 7 (MS).

We first ran the bug scripts (contained within the

bug reports) on the products for which they were

reported and then (when possible
1
) on the other

products. We found very few bugs that caused

coincident failures in more than one DBMS product,

and none which caused failure in more than two.

The results were encouraging, but they only

represented one snapshot in the evolution of these

products. Therefore we repeated the study for the later

releases of the two open-source products (due to

difficulties with data collection no new bug reports

were collected for the commercial products):

- Firebird 1.0 (FB) (this is the open-source

descendant of Interbase 6.0)

- PostgreSQL 7.2 (PG7.2)

We collected 92 new bugs reported for these two

products. The results of the second study substantially

confirmed those of the first: very few bug reports

caused coincident failures. This suggests that factors

that make diversity useful do not disappear as the

DBMS products evolve and is a further indication that

diversity with OTS products certainly deserves further

study.

2.2 Software reliability growth modeling

Software reliability growth modeling is a well

studied subject over the previous thirty years. A good

reference to the subject is [6]. Chapter three of [6]

1
 Even though all of these DBMS products are compliant

with the SQL language, each of them also implement their

own proprietary extensions. Therefore some faults could be

run on only one (or a subset of the four) DBMS products.

provides a comprehensive survey of the well known

models. In what follows we will provide details of one

of these models which has been extended in this paper.

2.3 Littlewood model

In what follows we will use the notation and

assumptions first described in the Littlewood model

[5]. In [5] (and in reliability growth modeling in

general), interest centers upon time-to-failure

distributions and the data is a sequence of successive

execution times between the failures t1, t2, … ti. The

following assumptions are made:

1. Each of the � (the number of faults that exist in the

OTS software product at its release) faults will

cause a failure after a time which is distributed

exponentially, and independently of other faults,

with rate Φi,

where Φ1, …, Φ� are independent identically

distributed (i.i.d.) random variables,

2. When a failure occurs, there is an instantaneous

removal of the fault which caused the failure,

3. If a total time τ has elapsed and i faults have been

removed and Φ1, … , Φ�-i are the failure rates of the

remaining (latent) faults, then the failure rate of the

program is the sum of the rates of these remaining

faults (the indices will require renumbering) Λ = Φ1

+ … + Φ�-i

4. When debugging starts each Φi has the probability

density function (pdf) b Γ (bφ; a), the Gamma

Distribution with parameters
2
 a and b, with φ being

the realization of the random variable Φi.

Following on from these assumptions it is shown in

[5] that the times, Ti, at which the faults show

themselves are i.i.d. random variables and they are

Pareto distributed:

 P(Ti < t) =
a

tb

b
)(1

+
− (1)

The motivation behind these assumption and the full

details of the model can be found in [5].

3. Extending the Littlewood model

In this section we discuss how the Littlewood model

can be extended for reliability growth modeling of a 1-

out-of-2 FT-node (i.e. the FT-node is assumed to fail

only if both of its components fail on a particular

demand).

2
 We defined the parameters of the gamma Distributions as a

(shape) and b (scale) instead of the conventional α and β

since we will define β for a different purpose in section 4.

The assumptions described in section 2.3 are

retained, but some additional assumptions are

necessary to make the analysis tractable. We assume

that:

1. The operational profiles (averaged over all users) of

the two different DBMS products are the same.

2. There are three different fault totals

ABBABA ��� ,, of faults initially present in the

software that cause failure in A-only, B-only or

both A and B. The times to discovery of these faults

will still be assumed to be conditionally

exponentially distributed random variables given

the failure rate distribution, but the failure rate may

be different for each fault.

3. Failure due to a specific fault is reported once only,

for each product version in which it occurs.

4. The failure rate distributions for each of the

ABBABA ΦΦΦ ,, (for the three different types of

failures that the faults cause) are assumed to be

drawn from the same gamma distribution (we will

discuss this assumption in more detail in section 5).

Based on these assumptions, an extended

Likelihood function of the Littlewood model has been

derived (see Appendix A). This model makes use of the

observed failure times of a given type in products A

and/or B.

Clearly to apply the model, it is necessary to have

data on the inter-failure times. If the DBMS suppliers

maintain detailed information about the calendar time

when the fault was reported (this is usually available)

and data on the number of installed versions over time,

then calendar time can be scaled to derive the total

product usage time between failures.

Knowledge of the installed base is only usually

known to “closed source” DBMS product vendors

where each instance of the software is licensed. Such

data is not usually publicly available, but in principle

inter-failure times can be estimated.

Quantifying the usage time for open-source OTS

software products is more difficult. A possible proxy

for the installed base is the number of downloads [7],

however there are many uncertainties including:

- Multiple download sites and/or mirrors exist for

each product

- OTS products are often distributed as part of

operating systems

- Downloaded products may not actually be used.

Due to these difficulties, we have not yet obtained the

data needed to apply the extended Littlewood model

(although it may be feasible in the future, especially for

closed source products).

4. The proportions approach

In this section we will explain a different approach

which attempts to get away from the need to quantify

actual usage time between failures. This alternative

approach is useful in applications where it may be

difficult to quantify the usage time, and hence difficult

to use the model described in Section 3.

The alternative approach to modeling the reliability

of a 1-out-of-2 FT node is to use:

- the counts of faults which are available from the

fault logs of each product. From it we can then

calculate the proportion of faults in product A that

are also found to cause failure in product B, βAB,

(from the ratio of common to non-common faults in

the fault history of A). Similarly we can also

calculate βBA for product B faults that are also found

to cause failure in A.

- the pfd (probability of failure on demand) of the

products A and/or B; estimates of these may exist

for a particular application based on actual failures

in operation for that application

This approach has the following underlying

assumptions:

- Common faults are drawn from the same failure rate

distribution as non common faults, i.e. a constant

proportion of faults in each failure rate band are

common to A and B.

- The failure rate distributions for A and B are the

same.

These assumptions are identical to those made for

the extension to the Littlewood model described in

section 3. Given these assumptions, we can estimate the

expected common mode failure rate as:

E(λAB) = βAB E(λA) or

E(λBA) = βBA E(λB)

Where E(λAB) and E(λBA) both represent common

mode failure rate estimates that should be, in principle,

equivalent. In what follows we will describe in more

detail how these two expressions were obtained.

4.1. The underlying theory of the proportions

approach

Fault density, h(φ), represents the number of faults

within a given failure rate interval that remain in a

component. So, component fault-count and failure rate

are given by ∫
∞

=
0

)(φφ dh� and ∫
∞

=
0

)(φφφλ dh

respectively.

We assume the fault density functions of the A, B

and AB fault classes are:

h(φ)Α = ΝΑ p(φ) (2)

h(φ)Β = ΝΒ p(φ) (3)

h(φ)ΑΒ = ΝΑΒ p(φ) (4)

where:

ΝΑ is the total number of faults in Product A

ΝΒ is the total number of faults in Product B

ΝΑΒ are faults common to Products A and B

p(φ) is the probability distribution3 of failure rate φ

for a fault in the product (assumed to be the same for

A, B and AB faults).

Note that �A and �B here are the total number of

faults in each product (i.e. ABBAA ��� += and

ABBAB ��� +=)

Under these assumptions, the expected number of

those faults nA,τΑ
 observed in product A during usage

until time τΑ is:

E(nA,τΑ
) = ΝΑ (1 − ∫

∞
−

0

)(φφ φτ
dep A) (5)

The expected value of the number of faults nAB,τΑ

observed in product A during usage until time τΑ that

are also common to product B is:

E(nAB, τΑ) = ΝΑΒ (1 − ∫
∞

−

0

)(φφ φτ
dep A) (6)

It can be seen that the assumption of a common

failure rate distribution means that the bracketed term

(the probability a fault is found after time τΑ) is

identical for E(nA) and E(nAB) and will cancel out if we

take the ratios. So knowledge of the actual usage time

τΑ and the failure rate distribution p(λ) is not required.

So we can estimate βΑΒ from the fault sequence

observed in product A up to τΑ, where some faults in

the sequence are labeled as being common to B (from a

knowledge of the B product faults). Given the observed

values, nA,τΑ and nAB,τΑ
:

βΑΒ = ΝΑΒ /ΝΑ ∼ nAB,τΑ
 / nA,τΑ (7)

Similarly, we can also estimate βΒΑ from the fault

sequence observed in product B up to τΒ

βΒΑ = ΝΑΒ /ΝΒ ∼ nBA,τΒ
 / nB,τΒ

 (8)
These β values need not necessarily be identical as

one product could contain more faults than another.

If we now consider the use of a product for a

particular application, the operational profile is likely

to differ from the average usage profile for the product

3
 We use λ for the failure rate of an entire program (i.e.

Product A, Product B or FT-node AB failure rate), and we

use φ for the failure rate of a randomly chosen fault.

which determines the average failure rate distribution

p(φ). For a different usage profile there will be a new

failure rate distribution p(φ)′. However if common

faults are randomly chosen from the set of available

faults, there is no reason to believe that the proportion

of common faults will change for any given failure rate

φ), i.e. we assume that:

h(φ)′Α = ΝΑ p(φ)′ (9)

h(φ)′ΑΒ = ΝΑΒ p(φ)′ (10)

So the expected failure rates are:

E(λΑ) = ΝΑ ∫
∞

′
0

)(φφφ dp (11)

E(λΑΒ) = ΝΑβ ∫
∞

′
0

)(φφφ dp (12)

and hence:

E(λΑΒ) = βΑΒ Ε(λ A) (13)

and similarly:

E(λ ΒΑ) = βΒΑ Ε(λ B) (14)

The estimates of the performance of each DBMS

product, E(λA) and E(λB) are derived from testing or

standalone operation for the actual application, and the

β values are estimated from the bug history.

In practice, the estimates E(λΑΒ) and E(λΒΑ) are

likely to differ due to uncertainties in the β and

λ values and, in this case, the most conservative

estimate should be used.

4.2 Empirical derivation of ββββ

In this section we will use the results of our previous

studies with the bugs [4], [3] (which we summarized in

section 2.1) to derive empirical estimates of β. The

results of the first study from running the DBMS

product faults that could be run on each pair and the

failures that they cause are given in Table 1:

- nA are faults reported in product A

- nAB are product A reported faults that also affect B

- nB are faults reported in product B

- nBA are product B reported faults that also affect A.

The results presented in Table 1 do not distinguish

between “Bohrbugs” and “Heisenbugs”
4
, i.e. we

assume the fault will always cause a failure in the

DBMS product for which it was reported (but not,

unless it does cause a failure, for other products) even

4
 Terms introduced by Gray [8], defining two types of bugs:

“Bohrbugs” appear to be deterministic (the failures they

cause are easy to reproduce in testing); “Heisenbugs”, are

difficult to reproduce as they only cause failures under

special conditions: "strange hardware conditions (rare or

transient device fault), limit conditions (out of storage,

counter overflow, lost interrupt, etc.) or race conditions"

if when we tested it in our setup we did not observe the

failure that was detailed in the bug report. The β values

obtained for this dataset are given in Table 2. The table

also contains 90% upper confidence bounds on the

estimates. The confidence bound is computed using:

Pr(β < p |n,x) = ∑ r=0,x..C(n,r)pr(1-p)n-r (15)

where x is the number of common faults in a sequence

of n faults.

Table 1 – The results of running the faults on

each DBMS product pair. First DBMS product

in the pair is labeled A and the second one B.
Pair:

 Failure in:
nA nAB nB nBA

IB-PG7.0 28 1 24 0

IB-OR 31 0 4 0

IB-MS 35 2 12 1

PG7.0-OR 30 0 4 1

PG7.0-MS 33 2 18 6

OR-MS 4 0 12 0

Table 2 – Estimates of β for each DBMS

product pair
Pair βΑΒ 90%

bound
βΒΑ 90%

bound

IB-PG7.0 0.036 0.132 0 0.092

IB-OR 0 0.072 0 0.436

IB-MS 0.057 0.145 0.083 0.288

PG7.0-OR 0 0.074 0.250 0.679

PG7.0-MS 0.061 0.153 0.333 0.511

OR-MS 0 0.436 0 0.175

Note that the number of faults for a product (like

IB) is not constant for different partners (like PG7.0

and MS) as it only includes the subset of faults that can

be run on the product pair.

The β values vary considerably for the different

product pairs but the number of common faults is low

(and sometimes zero) so the estimation errors are large.

From equations (7) and (8), it can be seen that the βΒΑ,

βΑΒ values need not be identical as they depend on the

number of residual faults, NA and NB, which can vary

with the quality of the development process. However

many of the βΒΑ, βΑΒ values for the DBMS product

pairs seem to be similar given the inherent sampling

errors. The main exceptions to this observation are the

PG7.0-MS and PG7.0-OR DBMS product pairs where

the βΒΑ value exceeds the 90% confidence bound

estimate for the βΑΒ value. The proportions theory

indicates that this would occur if PG7.0 had

significantly more residual faults than OR and MS.

Taking the data set as a whole, the results suggest

that for most diverse DBMS product pairs, β values of

0.1 (and possibly lower) are possible. This means that

using a 1-out-of-2 FT-node may reduce the failure rate

10 fold or more compared with a single DBMS

product.

We also compared β values for successive versions

of the same DBMS product pairs using the results from

our second study [3] (described in section 2.1). These

can be compared with the faults found in the earlier

releases. The results are given in Table 3.

Table 3 - The results for different releases
Pair:

 Failure in:
nA nAB nB nBA

IB-PG7.0 28 1 24 0

FB-PG7.2 30 1 18 1

The β factor estimates for earlier and later releases

of the products are given in Table 4.

Table 4 - β values for different releases
Pair βΑΒ 90% bound βΒΑ 90% bound

IB-PG7.0 0.036 0.132 0.000 0.092

FB-PG7.2 0.033 0.124 0.056 0.200

The β values seem relatively consistent between

different releases of the same product pair (around

0.035). This might indicate that the relative

improvement can be estimated from previous releases

of the DBMS product pairs (where more data may be

available). However it is difficult to draw any firm

conclusions due to the high uncertainty in the

estimations.

5. Validity of assumptions

The two underlying assumptions of both the

approaches that have been discussed in this paper are

that: the failure rate distributions for A and B are the

same; the failure rate distribution of AB-faults is also

the same as those of A and B. The following

subsections consider whether these assumptions are

credible, and present some statistical tests of the

underlying assumptions.

5.1 Similar failure rate distribution

assumption

There is some justification for believing the

assumption that the failure rate distributions for the

DBMS product pairs are the same. The research by

Adams [9] shows that there is remarkable consistency

in the failure rate distributions of different operating

systems from the same supplier. In addition, in

previous work by one of the authors of this paper [10],

it was argued that the failure rate distribution is

determined by the complexity of the program structure

and the failure rates are likely to have the same (log-

normal) distribution. This theory is consistent with the

empirical observations in Adams [9].

5.2 Conservatism of the common failure rate

assumption

It is also assumed that AB faults have the same

distribution as the A and B faults. This would be the

case if the AB faults are not “special” in any way (i.e.

the AB faults are chosen at random from the set of A

faults). For the empirical results presented in section

4.2, the AB faults chosen differed for each DBMS

product pair. So no faults were observed that were

common to three products (i.e. there are no “special”

AB faults that occur very frequently). This gives some

credence to the idea of random selection (as a bias

towards selecting the same common faults should make

triple common faults more likely).

We also note that an assumption of an identical

distribution of A and AB failure rates would be

conservative if there is a higher proportion of AB faults

at higher failure rates. In this case, the β factor

calculation based on the higher rate faults would

overestimate the β value of the remaining faults, and

hence overestimate the common failure rate using

equations (13) or (14).

Some empirical experiments [11] suggest that the β

factor decreases from a high value down to a “plateau”

as the higher failure rate faults are excluded from the

fault set. This might be expected if additional

coincident failures occur when dissimilar faults occupy

a large proportion of the input space (and hence are

more likely to overlap with other faults in the input

space). If this was generally true for product pairs, the

assumption of common failure rate distributions for A,

B and AB faults would be conservative (as the β factor

would be overestimated for the low failure rate faults

remaining in the two products).

5.3 Statistical tests of the “constant proportion

of common faults” assumption

The assumption of constant proportion of common

faults can be tested using the data taken from the fault

histories. Basically we would expect the sequence of

common faults, as execution time accumulates, to be

scaled to the sequence of all faults, as illustrated in Fig.

1.

We have used two methods to check whether the

steps are consistent with the linearity assumption for

the fault reports in our studies with the faults:

- We constructed a u-plot
5
 [12] for the DBMS

product pair PG7.0-MS on MS faults and checked

5
 U-plots can be used (in our case) to test for deviations of

the observations from the unit slope.

whether the Kolmogorov-Smirnov (KS) distance

value obtained is statistically significant.

- Divided the sample of fault reports for each DBMS

product in two equally sized groups and performed

the following tests to check whether there is a

difference in the number of common faults

observed between the two groups:

- Fisher’s Exact test [13]

- Binomial proportions test [14]

C
o
u

n
t

o
f

A
 f

au
lt

s
co

m
m

o
n
 t

o
 B

Count of reported faults in A

Expected
Gradient

NAB/NA

common

Fig. 1 – Illustration of constant proportions for

an FT-node AB as execution time accumulates

5.3.1 U-plots. In the earlier work [12] on prediction

analysis, u-plots were used to check for consistent

differences between the sequence of functions F^i(ti)

(the predictions) and ti (the actual values). The

sequence of numbers ui were calculated as

ui = F^i(ti) (16)

Each element of the sequence is P(Ti ≤ ti) (previous

predictive probability that the failure time will be lower

than its subsequently observed value).

With the fault reports we have actual values and not

predictions (here, the ui represent the relative distance

along the chronological fault sequence at which the i
th

coincident fault is observed). We want to check

whether the fault reports of DBMS product A which

were also found to cause a failure in DBMS product B

are equally likely to occur at any stage in the (ordered)

history of fault reports for A. If this is the case then the

step function depicted in the u-plot should not deviate

significantly from the unit-slope (which is the

cumulative uniform distribution function), i.e. using the

hypothesis testing terminology:
H0:The ui are uniformly distributed random variables

H1:The ui are not uniformly distributed random variables

We can produce u-plots for DBMS product pairs in

which coincident failures were observed. However, as

we saw in Tables 1 and 3, the number of coincident

failures observed is very small (≤ 2) for all but one pair

(the PG7.0-MS pair on MS faults). We will therefore

show only one of the u-plots: for the pair PG7.0-MS on

the MS faults. This u-plot is depicted in Fig 2.

The explanation of the u-plot follows: a total of 18

fault reports of MS could be run on the PG7.0 DBMS

product (we’ll call it n); of those 6 caused a coincident

failure in PG (we’ll call it r). Since there are 6

coincident failure faults there will be a total of six steps

in the u-plot function. The size of each step is 1/r. The

ui values on the x-axis will represent the point i/n, i.e.

the sequence in which the fault was reported in MS.

Therefore if the second fault of MS was found to cause

a coincident failure in PG7.0 this will be shown as the

point 2/18 (i.e. 1/9) on the x-axis. The KS distance for

this pair is 0.3889 with the p-value 0.5041. Since the p-

value is so large we do not have enough evidence to

reject H0 for this DBMS product pair: we do not have

enough evidence to reject the claim that ui are

uniformly distributed random variables. Therefore on

this dataset there is not enough evidence to reject the

assumption of constant proportion of common faults.

Fig. 2 - The u-plot computed for the coincident

failure causing faults in PG7.0 and MS by the

faults reported for MS.

5.3.2 Tests for equality of proportions. We can also

verify the assumption of constant proportions of

coincident failures by partitioning the sample of faults

observed and checking whether the proportion of

coincident faults differs significantly between the

partitions. Initially we have done this by partitioning

the samples in two.

To illustrate how this was done, we will again use

the MS faults that could also be run on the PG7.0

DBMS product. We have a total of 18 fault reports. We

split the sample in half chronologically and check

whether the proportion of MS faults reported earlier

that cause coincident failures in PG7.0 differs

significantly from the proportion of later MS faults. We

therefore have two partitions each with 9 fault reports

and the common faults found in each half is 1 and 5

respectively.

The full details for each pair of DBMS products on

each dataset are given in Table 5. The table also

contains the results of performing the Fisher’s Exact

test and the Binomial proportions test. The Fisher’s

Exact test used is the one for 2 X 2 tables. Fisher’s

exact test for 2 X 2 tables is used when members of

two independent groups can fall into mutually

exclusive categories. Quoting from [15]: “The test is

used to determine whether the proportions of those

falling into each category differ by group.” The

Binomial Proportions test (the last column of Table 5

contain the p-values of this test), is only an

approximation, whereas the Fisher’s exact test

calculates the exact probability. Note that the problem

of low sample sizes for coincident faults remains.

Whenever possible (i.e. when the number of coincident

failures is not 0) we have also tried to calculate the p-

values, but we warn the readers that, due to the small

sample sizes, these values should be taken with caution.

We can see in Table 5 that the p-values for the

Fisher’s exact test are not statistically significant at the

5% level. This is due to there being little difference

between the two partitions, or in the case of PG7.0-MS

on MS faults, the sample size being too small for the p-

value to be significant. For this latter pair the value is

statistically significant at the 10% level (on the MS

faults). For the Binomial Proportions test only the p-

value of PG-MS on MS faults is statistically significant

at the 5% significance level (the p-value is 0.0455);

none of the others are significant at the 5% or 10%

level.

6. Discussion and Conclusions

Two approaches to predicting the reliability of a 1-

out-of-2 FT-node were described in sections 3 and 4.

These methods are based on some strong assumptions

about the operational profile and failure rate

distributions which may not hold in real operation.

Ideally we would like to have detailed information

about failure counts and usage time. However vendors

discourage users from reporting already known faults

and detailed failure data are rarely available even to the

software vendors themselves. Also due to the various

non-restrictive license agreements of the open-source

DBMS products, a DBMS product may be downloaded

from a multitude of sources and then installed in many

different instances, which makes estimation of the

usage time of the DBMS products very difficult. Faced

with these difficult problems of data availability, it was

necessary to make these strong modeling assumptions

in order to make an initial estimate of the potential

benefits of fault tolerance with SQL DBMS products.

In section 5.2 we argued that assuming a common

failure rate distribution for A-, B- and AB-faults is

conservative. Also we have observed in earlier research

[4], [3] that AB-faults can fail in different ways in the

two DBMS products, and hence can be detected (and

potentially corrected [16]). As a result, the estimates

that we get using our models for the reliability benefits

of diversity will most probably be underestimates: the

true benefits may be higher. Despite this conservatism,

using the reported faults for the DBMS products in our

studies, we would expect an order of magnitude

increase in reliability when switching from a single

DBMS product to a 1-out-of-2 FT-node. This result

should however be treated with caution, due to the

small sample sizes and relatively high estimation

errors. There also appear to be variations in

dependability improvement between different DBMS

product pairs.

We used the reported faults from our studies to test

for statistical significance of empirical deviation from

the “constant proportion of common faults”

Table 5 - Results from performing the Fisher’s exact and Binomial proportions tests on the

data sets of the faults study (after the data sets were partitioned into two halves).
DBMS

product

pair

Faults reported

for DBMS

product

�1 AB1 �2 AB2

Fisher’s exact test Binomial Proportions:

Exact probability p-value p-value

IB-PG7.0 IB 14 1 14 0 0.5 0.5 0.309

IB-PG7.0 PG7.0 12 0 12 0 N/A N/A N/A

IB-OR IB 15 0 16 0 N/A N/A N/A

IB-OR OR 2 0 2 0 N/A N/A N/A

IB-MS IB 17 2 18 0 0.2286 0.2286 0.134

IB-MS MS 6 0 6 1 0.5 0.5 0.296

PG7.0-OR PG7.0 15 0 15 0 N/A N/A N/A

PG7.0-OR OR 2 1 2 0 0.5 0.5 0.248

PG7.0-MS PG7.0 16 1 17 1 0.5152 0.7728 0.965

PG7.0-MS MS 9 1 9 5 0.0611 0.0656 0.0455

MS-OR MS 6 0 6 0 N/A N/A N/A

MS-OR OR 2 0 2 0 N/A N/A N/A

assumption, using u-plots and two tests for difference

between proportions (namely Fisher’s exact and the

Binomial Proportions tests). We found that these tests

are giving reasonably consistent results with regard to

whether the hypothesis of constant proportion of

common faults should be rejected. Using these tests at

the 90% confidence level, we found, at most, one case

out of 12 where the null hypothesis was rejected (and

typically 1 in 10 cases might be rejected at the 90%

confidence level when the hypothesis is true). This

would indicate that the assumption of constant

proportions is reasonable for the dataset we used but

further work is required to draw more general

conclusions due to the small sample size in the dataset.

In summary, for users who want to assess the likely

dependability gains achievable if they switch from

using a single DBMS product to a 1-out-of-2 diverse

server then:

- if the only dependability data available for the

DBMS products are the fault reports, and

reasonable estimates can be obtained for the failure

rate of the DBMS product they are using, then the

model described in section 4 can be used to

calculate the likely improvements in reliability that

they may expect from the changeover to a diverse

setup

- if proxies can also be obtained for usage time, then

the extended Littlewood model, described in

section 3, may also be used to assess the

improvements as well as obtain other estimates such

as:

- the rate distribution of the common faults

- predictions about the expected time to next

diverse server failure etc.

- the two approaches may also be used sequentially to

improve the predictions:

- the β values using the proportions approach of

section 4 are calculated first, and they are then

used to obtain a b parameter for the prior

distribution of the extended Littlewood model

Further research is needed to validate the theory

presented in this paper. This research includes:

- Methods for obtaining more accurate proxies for

usage time.

- Empirical investigations of the predictive

performance of the proportions model for actual

DBMS product pairs.

- Empirical investigations of the consistency of β

factor estimates in successive releases of the same

product pair.

- Applying the method to other types of off-the-shelf

components (such as diverse web-servers and

application servers).

Acknowledgment

This work was supported in part by the U.K.

Engineering and Physical Sciences Research Council

(EPSRC) via projects DOTS (Diversity with Off-The-

Shelf components, grant GR/N23912/01) and DIRC

(Interdisciplinary Research Collaboration in

Dependability, grant GR/N13999/01) and by the

European Union Framework Program 6 via the ReSIST

Network of Excellence (Resilience for Survivability in

Information Society Technologies, contract IST-4-

026764-NOE).

References

1. Popov, P., L. Strigini, S. Riddle, and A. Romanovsky,

Protective Wrapping of OTS Components in 4th ICSE

Workshop on Component-Based Software Engineering:

Component Certification and System Prediction. 2001.

Toronto, Canada.

2. Strigini, L., Fault Tolerance Against Design Faults, in

Dependable Computing Systems: Paradigms,

Performance Issues, and Applications, H. Diab and A.

Zomaya, Editors. 2005, J. Wiley & Sons, pp: 213-241.

3. Gashi, I., P. Popov, and L. Strigini, Fault tolerance via

diversity for off-the-shelf products: a study with SQL

database servers. IEEE Transactions on Dependable and

Secure Computing, to appear in the October-December

issue, 2007.

4. Gashi, I., P. Popov, and L. Strigini. Fault Diversity

Among Off-The-Shelf SQL Database Servers. in Int.

Conf. on Dependable Systems and �etworks (DS�'04).

2004. Florence, Italy: IEEE Computer Society Press, pp:

389-398.

5. Littlewood, B., Stochastic Reliability Growth: a Model

for Fault-Removal in Computer Programs and Hardware

Designs. IEEE Transactions on Reliability, 1981. R-

30(4), pp: 313-320.

6. Lyu, M.R., ed. Handbook of Software Reliability

Engineering. 1996, McGraw-Hill and IEEE Computer

Society Press.

7. SourceForge, Firebird downloads. 2006,

http://sourceforge.net/project/showfiles.php?group_id=90

28.

8. Gray, J. Why Do Computers Stop and What Can be Done

About it? in 5th Symposium on Reliability in Distributed

Software and Database Systems (SRDSDS-5). 1986. Los

Angeles, CA, USA: IEEE Computer Society Press, pp: 3-

12.

9. Adams, E.N., Optimizing Preventive Service of Software

Products. IBM Journal of Research and Development,

1984. 28(1): pp: 2-14.

10. Bishop, P.G. and R.E. Bloomfield. Using a Log-normal

Failure Rate Distribution for Worst Case Bound

Reliability Prediction. in ISSRE 2003, Thirteenth

International Symposium on Software Reliability

Engineering. 2003. Denver, Colorado, U.S.A, pp: 237-

245.

11. Meulen, M.J.P.v.d., L. Strigini, and M.A. Revilla. On the

Effectiveness of Run-Time Checks. in Safecomp 2005.

2005. Fredrikstad, Norway: Springer-Verlag, pp: 151-

164.

12. Brocklehurst, S. and B. Littlewood, Techniques for

prediction analysis and recalibration, in Handbook of

Software Reliability Engineering, M.R. Lyu, Editor.

1994, McGraw-Hill and IEEE Computer Society Press.

13. Fisher, R.A., On the interpretation of chi-squared from

contingency tables, and the calculation of P. Journal of

the Royal Statistical Society, 1922. 85(1): pp: 87-94.

14. Institute of Phonetic Sciences, Binomial proportions.

2006,

http://www.fon.hum.uva.nl/Service/Statistics/Binomial_p

roportions.html.

15. Preacher, K.J., Briggs, N. E., Calculation for Fisher's

Exact Test: An interactive calculation tool for Fisher's

exact probability test for 2 x 2 tables [Computer

software]. 2001, http://www.quantpsy.org.

16. Gashi, I. and P. Popov. Rephrasing Rules for Off-The-

Shelf SQL Database Servers. in 6th European

Dependable Computing Conf. (EDCC-6). 2006.

Coimbra, Portugal: IEEE Computer Society Press, pp:

139-148.

Appendix A –Likelihood equations of the

extended Littlewood model

To produce a general likelihood function for the

model discussed in section 3, several different kinds of

data need to be considered. For each reported fault we

need to consider:

- whether it is present in both DBMS products (i.e.

could it have caused a failure in both DBMS

products),

- whether it was randomly encountered during

testing of one or more DBMS products (i.e. has it

been reported in more than one DBMS product).

We assume that all three classes of faults (faults that

are present in DBMS product A only, B only, or both)

have rates independently selected from one common

gamma rate distribution. This produces a 5-parameter

model with parameters being three unknown fault-

count parameters (say ABBABA ��� ,,), and two Γ-

distribution parameters a, b.

For the data symbols, we will use a convention that

observed failure counts n, and also observed times T of

random failure are all, likewise, subscripted to denote

which DBMS product(s) contain the faults, and, in

addition, superscripted to identify the DBMS

product(s) during the testing of which the fault is

randomly encountered. In the case of Ts only, with

multiple superscripts (AB or BA), the first of these

superscripts will indicate which DBMS product’s time

T is. For all other cases (whether of subscripts or

superscripts AB) the order has no significance and will

be left alphabetic. Finally, parameters l
A

and l
B

represent the testing time for DBMS product A or B

respectively. Using these conventions, the extended

Likelihood function for the Littlewood model is given

by:

B

ABn

B
AB

A

ABn

A
AB

AB
AB

B
AB

A
AB B

AB
A
AB

TTTTnnnp
,11 ...,...,,,(

,...,,...,... 111
A

nBA

A
BA

A
BA

BA

ABn

BA
AB

AB

ABn

AB
AB A

BA

BA
AB

AB
AB

TTnTTTT

),,,,;..., 1 ba���TTn ABBABA
B

BnA

B
BA

B
BA B

AB

=

×
−−−)!(

!
AB
AB

B
AB

A
ABAB

AB

nnn�

�

×+
++

++

AB
AB

B
AB

A
AB

AB
AB

B
AB

A
ABAB

AB

nnn

nnn
n

b

a
a

2
)1(

×
+

+ +−

=
∏ })1{()1(

1

a
BA

ABi
n

i
b

lT
A
AB

×
+

+ +−

=
∏ })1{()1(

1

a
AB

ABj
n

j
b

lT
B
AB

×
+

+ +−

=
∏ })1{()2(

1

a
BA
ABk

AB
ABk

n

k
b

TT
AB
AB

×
+

+ −−−− annn�
BA

AB
AB

B
AB

A
ABAB

b

ll)(
)1(

×+×
−

+−

=
∏ })1{(

)!(

!)1(

1

a
A

mBA

n

m
n

n

A
BABA

BA

b

T

b

a

n�

�
A

BA

A

BA

A

BA

×+
−−

})1(
)(an�

A A

BABA

b

l

×+×
−

+−

=
∏ })1{(

)!(

!)1(

1

a
B
BzA

n

z
n

n

B
BABA

BA

b

T

b

a

n�

�
B

BA

B

BA

B

BA

an�
B B

BABA

b

l)(
)1(

−−
+ (17)

