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Abstract 
 

Fault tolerance via design diversity is often the only 

viable way of achieving sufficient dependability levels 

when using off-the-shelf components. We have 

reported previously on studies with bug reports of four 

open-source and commercial off-the-shelf database 

servers and later release of two of them. The results 

were very promising for designers of fault-tolerant 

solutions that wish to employ diverse servers: very few 

bugs caused failures in more than one server and none 

caused failure in more than two. In this paper we offer 

details of two approaches we have studied to construct 

reliability growth models for a 1-out-of-2 fault-tolerant 

server which utilize the bug reports. The models 

presented are of practical significance to system 

designers wishing to employ diversity with off-the-shelf 

components since often the bug reports are the only 

direct dependability evidence available to them.   

 

1. Introduction 
 

Off-the-shelf (OTS) components are used 

ubiquitously in software systems development due to 

the perceived lower costs from their use (some of the 

components may be open-source and/or freely 

available), faster deployment and the multitude of 

available options. There remain concerns, however, 

about the dependability levels of the components: they 

tend to be distributed without any assurances of their 

dependability, with “use-as-is” labels often attached to 

them by the vendors. As a result, the only viable way 

available to users and system integrators of achieving 

higher dependability is to use software fault tolerance. 

Fault tolerance may take multiple forms, with examples 

ranging from simple error detection and recovery add-

ons (e.g. “wrappers” [1]) to “diverse modular 

redundancy” (e.g. “N-version programming”: 

replication with diverse versions of components) [2].  

The design decisions are well known from the 

literature. But, questions remain about the 

dependability gains that developers of systems using 

OTS components can expect, the implementation 

difficulties and the extra cost expected. We have 

studied some of these issues with OTS database servers 

or database management system (DBMS) products: a 

complex category of OTS products. The architectural 

solutions for implementing a fault-tolerant DBMS 

using diverse OTS database products are given in [3].  

With regard to the dependability of a fault tolerant 

DBMS, we have reported previously on a study with 

the publicly available fault reports of four OTS DBMS 

products (both open-source and closed development) 

[4] and later releases of two of them [3]. We found that 

a high number of these faults would not be tolerated (or 

even detected) by the existing non-diverse fault-

tolerant schemes but did not cause failures in any two 

diverse DBMS products. We found the number of 

faults that caused coincident failures to be very low. 

These results seem to suggest that significant 

dependability gains may be achieved if diverse modular 

redundancy is employed with OTS DBMS products. 

However they are not definitive evidence. The main 

problem is that the available reports concern faults 

(bugs) and not how many failures each caused, which 

makes their use in reliability predictions difficult.  

Complete failure logs would be much more useful as 

statistical evidence, but they are not available. The only 

direct dependability evidence available for these 

products often are the fault reports. 

It is the absence of failure data and the lack of 

known approaches that can utilize existing fault reports 

of OTS components in reliability assessment that has 

motivated the research detailed in this paper. More 

precisely, the question we attempt to answer is “how 
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products to evaluate the possible gains in reliability 

achievable by a 1-out-of-2 diverse server?” To this end 

we have studied two approaches which use fault reports 

for obtaining dependability measures of a fault tolerant 

server employing two diverse OTS DBMS products 

For the sake of brevity, we shall refer to this fault 

tolerant DBMS as a “FT-node”.  

The two approaches presented in this paper for 

estimating the reliability of a FT-node are: 

1. An extension of a previous software reliability 

growth model [5] for use in reliability growth modeling 

of the FT-node.  

2. An alternative “proportions” approach where the 

observed reliability of a single server is scaled by a 

factor to derive the expected reliability of the FT-node. 

The first method requires information on actual 

usage time. In closed development environments, it 

should be feasible to derive usage time from dated fault 

reports if the total population of the DBMS product is 

known over time (e.g. from product registration). 

However for open source products, information on the 

product population over time is hard to obtain, and 

hence the usage time is difficult to estimate. 

We have therefore developed a second method 

where information about usage time is not required and 

statements about the reliability improvement 

achievable by an FT-node can be made (under certain 

assumptions about the underlying failure rate 

distributions), based only on information derived from 

reported product faults. 

The paper is structured as follows: section 2 

contains background on the studies we have conducted 

with known fault reports of the DBMS products, 

software reliability growth modeling and the 

Littlewood [5] model; section 3 details the extensions 

of the Littlewood model [5] for the reliability growth 

modeling of the FT-node; section 4 contains details of 

an alternative model in which fault counts alone are 

used for reliability prediction of the FT-node; in the 

same section we also provide empirical data to 

illustrate the use of the method; section 5 contains a 

discussion and verifications of the main modeling 

assumptions made and finally section 6 contains a 

discussions of the two modeling approaches, 

conclusions and provisions for further work. 

 

2. Background and related work 
 

2.1 Analysis of faults in OTS DBMS products 
 

We have conducted two studies with fault reports of 

four OTS DBMS products and later releases of two of 

them. We have fully described these studies and 

provided analysis of the results in [4] and [3]. We will 

be utilizing the results of those studies in this paper as 

empirical evidence with one of the models, as well as 

for verification of assumptions. Therefore, in what 

follows we will provide a brief summary of the studies 

and the main results. 

A mixture of free open-source and commercial 

closed development products were used in the studies. 

In the first study we collected a total of 181 bugs 

reported for the following DBMS products, of which 

the first two are open-source and the last two are 

commercial closed-development products (for the sake 

of brevity, we will use the abbreviations detailed in 

brackets next to each product when referring to these 

products from this point forward):  

- Interbase 6.0 (IB) 

- PostgreSQL 7.0 (PG7.0) 

- Oracle 8.0.5 (OR) 

- Microsoft SQL Server 7 (MS). 

We first ran the bug scripts (contained within the 

bug reports) on the products for which they were 

reported and then (when possible
1
) on the other 

products. We found very few bugs that caused 

coincident failures in more than one DBMS product, 

and none which caused failure in more than two.  

The results were encouraging, but they only 

represented one snapshot in the evolution of these 

products. Therefore we repeated the study for the later 

releases of the two open-source products (due to 

difficulties with data collection no new bug reports 

were collected for the commercial products): 

- Firebird 1.0 (FB) (this is the open-source 

descendant of Interbase 6.0) 

- PostgreSQL 7.2 (PG7.2) 

We collected 92 new bugs reported for these two 

products. The results of the second study substantially 

confirmed those of the first: very few bug reports 

caused coincident failures. This suggests that factors 

that make diversity useful do not disappear as the 

DBMS products evolve and is a further indication that 

diversity with OTS products certainly deserves further 

study. 

 

2.2 Software reliability growth modeling 
 

Software reliability growth modeling is a well 

studied subject over the previous thirty years. A good 

reference to the subject is [6]. Chapter three of [6] 

                                                           
1
 Even though all of these DBMS products are compliant 

with the SQL language, each of them also implement their 

own proprietary extensions. Therefore some faults could be 

run on only one (or a subset of the four) DBMS products. 



provides a comprehensive survey of the well known 

models. In what follows we will provide details of one 

of these models which has been extended in this paper.  

 

2.3 Littlewood model 
 

In what follows we will use the notation and 

assumptions first described in the Littlewood model 

[5]. In [5] (and in reliability growth modeling in 

general), interest centers upon time-to-failure 

distributions and the data is a sequence of successive 

execution times between the failures t1, t2, … ti. The 

following assumptions are made: 

1. Each of the � (the number of faults that exist in the 

OTS software product at its release) faults will 

cause a failure after a time which is distributed 

exponentially, and independently of other faults, 

with rate Φi, 

where Φ1, …, Φ�  are independent identically 

distributed (i.i.d.) random variables, 

2. When a failure occurs, there is an instantaneous 

removal of the fault which caused the failure, 

3. If a total time τ has elapsed and i faults have been 

removed and Φ1, … , Φ�-i are the failure rates of the 

remaining (latent) faults,  then the failure rate of the 

program is the sum of the rates of these remaining 

faults (the indices will require renumbering)       Λ = Φ1 

+ … + Φ�-i 

4. When debugging starts each Φi has the probability 

density function (pdf) b Γ (bφ; a), the Gamma 

Distribution with parameters
2
 a and b, with φ being 

the realization of the random variable Φi. 

Following on from these assumptions it is shown in 

[5] that the times, Ti, at which the faults show 

themselves are i.i.d. random variables and they are 

Pareto distributed: 

 P(Ti < t) = 
a

tb

b
)(1

+
−  (1) 

The motivation behind these assumption and the full 

details of the model can be found in [5]. 

 

3. Extending the Littlewood model 
 

In this section we discuss how the Littlewood model 

can be extended for reliability growth modeling of a 1-

out-of-2 FT-node (i.e. the FT-node is assumed to fail 

only if both of its components fail on a particular 

demand). 

                                                           
2
 We defined the parameters of the gamma Distributions as a 

(shape) and b (scale) instead of the conventional α and β 

since we will define β for a different purpose in section 4.  

The assumptions described in section 2.3 are 

retained, but some additional assumptions are 

necessary to make the analysis tractable. We assume 

that:  

1. The operational profiles (averaged over all users) of 

the two different DBMS products are the same. 

2. There are three different fault totals 

ABBABA ��� ,,  of faults initially present in the 

software that cause failure in A-only, B-only or 

both A and B. The times to discovery of these faults 

will still be assumed to be conditionally 

exponentially distributed random variables given 

the failure rate distribution, but the failure rate may 

be different for each fault. 

3. Failure due to a specific fault is reported once only, 

for each product version in which it occurs. 

4. The failure rate distributions for each of the 

ABBABA ΦΦΦ ,, (for the three different types of 

failures that the faults cause) are assumed to be 

drawn from the same gamma distribution (we will 

discuss this assumption in more detail in section 5). 

Based on these assumptions, an extended 

Likelihood function of the Littlewood model has been 

derived (see Appendix A). This model makes use of the 

observed failure times of a given type in products A 

and/or B. 

Clearly to apply the model, it is necessary to have 

data on the inter-failure times. If the DBMS suppliers 

maintain detailed information about the calendar time 

when the fault was reported (this is usually available) 

and data on the number of installed versions over time, 

then calendar time can be scaled to derive the total 

product usage time between failures. 

Knowledge of the installed base is only usually 

known to “closed source” DBMS product vendors 

where each instance of the software is licensed. Such 

data is not usually publicly available, but in principle 

inter-failure times can be estimated.  

Quantifying the usage time for open-source OTS 

software products is more difficult. A possible proxy 

for the installed base is the number of downloads [7], 

however there are many uncertainties including: 

- Multiple download sites and/or mirrors exist for 

each product 

- OTS products are often distributed as part of 

operating systems 

- Downloaded products may not actually be used. 

Due to these difficulties, we have not yet obtained the 

data needed to apply the extended Littlewood model 

(although it may be feasible in the future, especially for 

closed source products). 

  



4. The proportions approach 
 

In this section we will explain a different approach 

which attempts to get away from the need to quantify 

actual usage time between failures. This alternative 

approach is useful in applications where it may be 

difficult to quantify the usage time, and hence difficult 

to use the model described in Section 3.  

The alternative approach to modeling the reliability 

of a 1-out-of-2 FT node is to use: 

- the counts of faults which are available from the 

fault logs of each product. From it we can then 

calculate the proportion of faults in product A that 

are also found to cause failure in product B, βAB, 

(from the ratio of common to non-common faults in 

the fault history of A). Similarly we can also 

calculate βBA for product B faults that are also found 

to cause failure in A. 

- the pfd (probability of failure on demand) of the 

products A and/or B;  estimates of these may exist 

for a particular application based on actual failures 

in operation for that application 

This approach has the following underlying 

assumptions: 

- Common faults are drawn from the same failure rate 

distribution as non common faults, i.e. a constant 

proportion of faults in each failure rate band are 

common to A and B. 

- The failure rate distributions for A and B are the 

same. 

These assumptions are identical to those made for 

the extension to the Littlewood model described in 

section 3. Given these assumptions, we can estimate the 

expected common mode failure rate as: 

E(λAB) =  βAB E(λA) or 

E(λBA) =  βBA E(λB) 

Where E(λAB) and E(λBA) both represent common 

mode failure rate estimates that should be, in principle, 

equivalent. In what follows we will describe in more 

detail how these two expressions were obtained. 

 

4.1. The underlying theory of the proportions 

approach 
 

Fault density, h(φ), represents the number of faults 

within a given failure rate interval that remain in a 

component. So, component fault-count and failure rate 

are given by ∫
∞

=
0

)( φφ dh�  and  ∫
∞

=
0

)( φφφλ dh  

respectively. 

We assume the fault density functions of the A, B 

and AB fault classes are: 

h(φ)Α = ΝΑ p(φ) (2) 

h(φ)Β = ΝΒ p(φ) (3) 

h(φ)ΑΒ = ΝΑΒ p(φ) (4) 

where: 

ΝΑ is the total number of faults in Product A 

ΝΒ is the total number of faults in Product B 

ΝΑΒ are faults common to Products A and B 

p(φ) is the probability distribution3 of failure rate φ 

for a fault in the product (assumed to be the same for 

A, B and AB faults).  

Note that �A and �B here are the total number of 

faults in each product (i.e. ABBAA ��� +=  and 

ABBAB ��� += ) 

Under these assumptions, the expected number of 

those faults nA,τΑ
 observed in product A during usage 

until time τΑ is: 

E(nA,τΑ  
) = ΝΑ (1 − ∫

∞
−

0

)( φφ φτ
dep A )  (5) 

The expected value of the number of faults nAB,τΑ 
 

observed in product A during usage until time τΑ that 

are also common to product B is: 

E(nAB, τΑ) = ΝΑΒ (1 − ∫
∞

−

0

)( φφ φτ
dep A )  (6) 

It can be seen that the assumption of a common 

failure rate distribution means that the bracketed term 

(the probability a fault is found after time τΑ) is 

identical for E(nA) and E(nAB) and will cancel out if we 

take the ratios. So knowledge of the actual usage time 

τΑ and the failure rate distribution p(λ) is not required. 

So we can estimate βΑΒ from the fault sequence 

observed in product A up to τΑ, where some faults in 

the sequence are labeled as being common to B (from a 

knowledge of the B product faults). Given the observed 

values, nA,τΑ and nAB,τΑ
: 

βΑΒ = ΝΑΒ /ΝΑ ∼  nAB,τΑ
 / nA,τΑ (7) 

Similarly, we can also estimate βΒΑ from the fault 

sequence observed in product B up to τΒ 

βΒΑ = ΝΑΒ /ΝΒ ∼  nBA,τΒ
 / nB,τΒ

 (8) 
These β values need not necessarily be identical as 

one product could contain more faults than another. 

If we now consider the use of a product for a 

particular application, the operational profile is likely 

to differ from the average usage profile for the product 

                                                           
3
 We use λ for the failure rate of an entire program (i.e. 

Product A, Product B or FT-node AB failure rate), and we 

use φ for the failure rate of a randomly chosen fault.  



which determines the average failure rate distribution 

p(φ). For a different usage profile there will be a new 

failure rate distribution p(φ)′. However if common 

faults are randomly chosen from the set of available 

faults, there is no reason to believe that the proportion 

of common faults will change for any given failure rate 

φ), i.e. we assume that: 

h(φ)′Α = ΝΑ p(φ)′ (9) 

h(φ)′ΑΒ = ΝΑΒ p(φ)′ (10) 

So the expected failure rates are: 

E(λΑ) = ΝΑ ∫
∞

′
0

)( φφφ dp                                      (11) 

E(λΑΒ) = ΝΑβ ∫
∞

′
0

)( φφφ dp                                   (12) 

and hence: 

E(λΑΒ) = βΑΒ Ε(λ A) (13) 

and similarly: 

E(λ ΒΑ) = βΒΑ Ε(λ B) (14) 

The estimates of the performance of each DBMS 

product, E(λA) and E(λB) are derived from testing or 

standalone operation for the actual application, and the 

β values are estimated from the bug history. 

In practice, the estimates E(λΑΒ) and E(λΒΑ) are 

likely to differ due to uncertainties in the β and 

λ values and, in this case, the most conservative 

estimate should be used. 

 

4.2 Empirical derivation of ββββ    
 

In this section we will use the results of our previous 

studies with the bugs [4], [3] (which we summarized in 

section 2.1) to derive empirical estimates of β. The 

results of the first study from running the DBMS 

product faults that could be run on each pair and the 

failures that they cause are given in Table 1: 

- nA are faults reported in product A 

- nAB are product A reported faults that also affect B 

- nB are faults reported in product B 

- nBA are product B reported faults that also affect A. 

The results presented in Table 1 do not distinguish 

between “Bohrbugs” and “Heisenbugs”
4
, i.e. we 

assume the fault will always cause a failure in the 

DBMS product for which it was reported (but not, 

unless it does cause a failure, for other products) even 
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 Terms introduced by Gray [8], defining two types of bugs: 

“Bohrbugs” appear to be deterministic (the failures they 

cause are easy to reproduce in testing); “Heisenbugs”, are 

difficult to reproduce as they only cause failures under 

special conditions: "strange hardware conditions (rare or 

transient device fault), limit conditions (out of storage, 

counter overflow, lost interrupt, etc.) or race conditions" 

if when we tested it in our setup we did not observe the 

failure that was detailed in the bug report. The β values 

obtained for this dataset are given in Table 2. The table 

also contains 90% upper confidence bounds on the 

estimates. The confidence bound is computed using: 

Pr(β < p |n,x) = ∑ r=0,x..C(n,r)pr(1-p)n-r (15) 

where x is the number of common faults in a sequence 

of n faults.  

Table 1 – The results of running the faults on 

each DBMS product pair. First DBMS product 

in the pair is labeled A and the second one B. 
Pair:    

          Failure in: 
nA nAB nB nBA 

IB-PG7.0 28 1 24 0 

IB-OR 31 0 4 0 

IB-MS 35 2 12 1 

PG7.0-OR 30 0 4 1 

PG7.0-MS 33 2 18 6 

OR-MS 4 0 12 0 

Table 2 – Estimates of β for each DBMS 

product pair 
Pair βΑΒ 90% 

bound  
βΒΑ 90% 

bound 

IB-PG7.0 0.036 0.132 0 0.092 

IB-OR 0 0.072 0 0.436 

IB-MS 0.057 0.145 0.083 0.288 

PG7.0-OR 0 0.074 0.250 0.679 

PG7.0-MS 0.061 0.153 0.333 0.511 

OR-MS 0 0.436 0 0.175 

Note that the number of faults for a product (like 

IB) is not constant for different partners (like PG7.0 

and MS) as it only includes the subset of faults that can 

be run on the product pair. 

The β values vary considerably for the different 

product pairs but the number of common faults is low 

(and sometimes zero) so the estimation errors are large. 

From equations (7) and (8), it can be seen that the βΒΑ, 

βΑΒ values need not be identical as they depend on the 

number of residual faults, NA and NB, which can vary 

with the quality of the development process. However 

many of the βΒΑ, βΑΒ values for the DBMS product 

pairs seem to be similar given the inherent sampling 

errors. The main exceptions to this observation are the 

PG7.0-MS and PG7.0-OR DBMS product pairs where 

the βΒΑ value exceeds the 90% confidence bound 

estimate for the βΑΒ value. The proportions theory 

indicates that this would occur if PG7.0 had 

significantly more residual faults than OR and MS. 

Taking the data set as a whole, the results suggest 

that for most diverse DBMS product pairs, β values of 

0.1 (and possibly lower) are possible. This means that 

using a 1-out-of-2 FT-node may reduce the failure rate 



10 fold or more compared with a single DBMS 

product. 

We also compared β  values for successive versions 

of the same DBMS product pairs using the results from 

our second study [3] (described in section 2.1). These 

can be compared with the faults found in the earlier 

releases. The results are given in Table 3. 

Table 3 - The results for different releases 
Pair:    

          Failure in: 
nA nAB nB  nBA 

IB-PG7.0 28 1 24 0 

FB-PG7.2 30 1 18 1 

The β factor estimates for earlier and later releases 

of the products are given in Table 4. 

Table 4 - β values for different releases 
Pair βΑΒ 90% bound βΒΑ 90% bound 

IB-PG7.0 0.036 0.132 0.000 0.092 

FB-PG7.2 0.033 0.124 0.056 0.200 

The β values seem relatively consistent between 

different releases of the same product pair (around 

0.035). This might indicate that the relative 

improvement can be estimated from previous releases 

of the DBMS product pairs (where more data may be 

available). However it is difficult to draw any firm 

conclusions due to the high uncertainty in the 

estimations.  

 

5. Validity of assumptions 
 

The two underlying assumptions of both the 

approaches that have been discussed in this paper are 

that: the failure rate distributions for A and B are the 

same; the failure rate distribution of AB-faults is also 

the same as those of A and B. The following 

subsections consider whether these assumptions are 

credible, and present some statistical tests of the 

underlying assumptions. 

 

5.1 Similar failure rate distribution 

assumption 
 

There is some justification for believing the 

assumption that the failure rate distributions for the 

DBMS product pairs are the same. The research by 

Adams [9] shows that there is remarkable consistency 

in the failure rate distributions of different operating 

systems from the same supplier. In addition, in 

previous work by one of the authors of this paper [10], 

it was argued that the failure rate distribution is 

determined by the complexity of the program structure 

and the failure rates are likely to have the same (log-

normal) distribution. This theory is consistent with the 

empirical observations in Adams [9].  

5.2 Conservatism of the common failure rate 

assumption 
 

It is also assumed that AB faults have the same 

distribution as the A and B faults. This would be the 

case if the AB faults are not “special” in any way (i.e. 

the AB faults are chosen at random from the set of A 

faults). For the empirical results presented in section 

4.2, the AB faults chosen differed for each DBMS 

product pair. So no faults were observed that were 

common to three products (i.e. there are no “special” 

AB faults that occur very frequently). This gives some 

credence to the idea of random selection (as a bias 

towards selecting the same common faults should make 

triple common faults more likely). 

We also note that an assumption of an identical 

distribution of A and AB failure rates would be 

conservative if there is a higher proportion of AB faults 

at higher failure rates. In this case, the β factor 

calculation based on the higher rate faults would 

overestimate the β value of the remaining faults, and 

hence overestimate the common failure rate using 

equations (13) or (14). 

Some empirical experiments [11] suggest that the β 

factor decreases from a high value down to a “plateau” 

as the higher failure rate faults are excluded from the 

fault set. This might be expected if additional 

coincident failures occur when dissimilar faults occupy 

a large proportion of the input space (and hence are 

more likely to overlap with other faults in the input 

space). If this was generally true for product pairs, the 

assumption of common failure rate distributions for A, 

B and AB faults would be conservative (as the β factor 

would be overestimated for the low failure rate faults 

remaining in the two products). 

 

5.3 Statistical tests of the “constant proportion 

of common faults” assumption 
 

The assumption of constant proportion of common 

faults can be tested using the data taken from the fault 

histories. Basically we would expect the sequence of 

common faults, as execution time accumulates, to be 

scaled to the sequence of all faults, as illustrated in Fig. 

1. 

We have used two methods to check whether the 

steps are consistent with the linearity assumption for 

the fault reports in our studies with the faults: 

- We constructed a u-plot
5
 [12] for the DBMS 

product pair PG7.0-MS on MS faults and checked 

                                                           
5
 U-plots can be used (in our case) to test for deviations of 

the observations from the unit slope. 



whether the Kolmogorov-Smirnov (KS) distance 

value obtained is statistically significant. 

- Divided the sample of fault reports for each DBMS 

product in two equally sized groups and performed 

the following tests to check whether there is a 

difference in the number of common faults 

observed between the two groups: 

- Fisher’s Exact test [13] 

- Binomial proportions test [14] 
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Fig. 1 – Illustration of constant proportions for 

an FT-node AB as execution time accumulates 

 

5.3.1 U-plots. In the earlier work [12] on prediction 

analysis, u-plots were used to check for consistent 

differences between the sequence of functions F^i(ti) 

(the predictions) and ti (the actual values). The 

sequence of numbers ui were calculated as  

ui = F^i(ti) (16) 

Each element of the sequence is P(Ti ≤ ti) (previous 

predictive probability that the failure time will be lower 

than its subsequently observed value).  

With the fault reports we have actual values and not 

predictions (here, the ui represent the relative distance 

along the chronological fault sequence at which the i
th

 

coincident fault is observed). We want to check 

whether the fault reports of DBMS product A which 

were also found to cause a failure in DBMS product B 

are equally likely to occur at any stage in the (ordered) 

history of fault reports for A. If this is the case then the 

step function depicted in the u-plot should not deviate 

significantly from the unit-slope (which is the 

cumulative uniform distribution function), i.e. using the 

hypothesis testing terminology: 
H0:The ui are uniformly distributed random variables   

H1:The ui are not uniformly distributed random variables 

We can produce u-plots for DBMS product pairs in 

which coincident failures were observed. However, as 

we saw in Tables 1 and 3, the number of coincident 

failures observed is very small (≤ 2) for all but one pair 

(the PG7.0-MS pair on MS faults). We will therefore 

show only one of the u-plots: for the pair PG7.0-MS on 

the MS faults. This u-plot is depicted in Fig 2.  

The explanation of the u-plot follows: a total of 18 

fault reports of MS could be run on the PG7.0 DBMS 

product (we’ll call it n); of those 6 caused a coincident 

failure in PG (we’ll call it r). Since there are 6 

coincident failure faults there will be a total of six steps 

in the u-plot function. The size of each step is 1/r. The 

ui values on the x-axis will represent the point i/n, i.e. 

the sequence in which the fault was reported in MS. 

Therefore if the second fault of MS was found to cause 

a coincident failure in PG7.0 this will be shown as the 

point 2/18 (i.e. 1/9) on the x-axis. The KS distance for 

this pair is 0.3889 with the p-value 0.5041. Since the p-

value is so large we do not have enough evidence to 

reject H0 for this DBMS product pair: we do not have 

enough evidence to reject the claim that ui are 

uniformly distributed random variables. Therefore on 

this dataset there is not enough evidence to reject the 

assumption of constant proportion of common faults. 

 
Fig. 2 - The u-plot computed for the coincident 

failure causing faults in PG7.0 and MS by the 

faults reported for MS. 

5.3.2 Tests for equality of proportions. We can also 

verify the assumption of constant proportions of 

coincident failures by partitioning the sample of faults 

observed and checking whether the proportion of 

coincident faults differs significantly between the 

partitions. Initially we have done this by partitioning 

the samples in two.  

To illustrate how this was done, we will again use 

the MS faults that could also be run on the PG7.0 

DBMS product. We have a total of 18 fault reports. We 

split the sample in half chronologically and check 

whether the proportion of MS faults reported earlier 

that cause coincident failures in PG7.0 differs 

significantly from the proportion of later MS faults. We 

therefore have two partitions each with 9 fault reports 

and the common faults found in each half is 1 and 5 

respectively.  



The full details for each pair of DBMS products on 

each dataset are given in Table 5. The table also 

contains the results of performing the Fisher’s Exact 

test and the Binomial proportions test. The Fisher’s 

Exact test used is the one for 2 X 2 tables. Fisher’s 

exact test for 2 X 2 tables is used when members of 

two independent groups can fall into mutually 

exclusive categories. Quoting from [15]: “The test is 

used to determine whether the proportions of those 

falling into each category differ by group.” The 

Binomial Proportions test (the last column of Table 5 

contain the p-values of this test), is only an 

approximation, whereas the Fisher’s exact test 

calculates the exact probability. Note that the problem 

of low sample sizes for coincident faults remains. 

Whenever possible (i.e. when the number of coincident 

failures is not 0) we have also tried to calculate the p-

values, but we warn the readers that, due to the small 

sample sizes, these values should be taken with caution. 

We can see in Table 5 that the p-values for the 

Fisher’s exact test are not statistically significant at the 

5% level. This is due to there being little difference 

between the two partitions, or in the case of PG7.0-MS 

on MS faults, the sample size being too small for the p-

value to be significant. For this latter pair the value is 

statistically significant at the 10% level (on the MS 

faults). For the Binomial Proportions test only the p-

value of PG-MS on MS faults is statistically significant 

at the 5% significance level (the p-value is 0.0455); 

none of the others are significant at the 5% or 10% 

level. 

 

6. Discussion and Conclusions 
 

Two approaches to predicting the reliability of a 1-

out-of-2 FT-node were described in sections 3 and 4. 

These methods are based on some strong assumptions 

about the operational profile and failure rate 

distributions which may not hold in real operation. 

Ideally we would like to have detailed information 

about failure counts and usage time. However vendors 

discourage users from reporting already known faults 

and detailed failure data are rarely available even to the 

software vendors themselves. Also due to the various 

non-restrictive license agreements of the open-source 

DBMS products, a DBMS product may be downloaded 

from a multitude of sources and then installed in many 

different instances, which makes estimation of the 

usage time of the DBMS products very difficult. Faced 

with these difficult problems of data availability, it was 

necessary to make these strong modeling assumptions 

in order to make an initial estimate of the potential 

benefits of fault tolerance with SQL DBMS products. 

In section 5.2 we argued that assuming a common 

failure rate distribution for A-, B- and AB-faults is 

conservative. Also we have observed in earlier research 

[4], [3] that AB-faults can fail in different ways in the 

two DBMS products, and hence can be detected (and 

potentially corrected [16]). As a result, the estimates 

that we get using our models for the reliability benefits 

of diversity will most probably be underestimates: the 

true benefits may be higher. Despite this conservatism, 

using the reported faults for the DBMS products in our 

studies, we would expect an order of magnitude 

increase in reliability when switching from a single 

DBMS product to a 1-out-of-2 FT-node. This result 

should however be treated with caution, due to the 

small sample sizes and relatively high estimation 

errors. There also appear to be variations in 

dependability improvement between different DBMS 

product pairs.  

We used the reported faults from our studies to test 

for statistical significance of empirical deviation from 

the “constant proportion of common faults” 

Table 5 - Results from performing the Fisher’s exact and Binomial proportions tests on the 

data sets of the faults study (after the data sets were partitioned into two halves). 
DBMS 

product 

pair 

Faults reported 

for DBMS 

product 

�1 AB1 �2 AB2 

Fisher’s exact test Binomial Proportions: 

Exact probability p-value p-value 

IB-PG7.0 IB 14 1 14 0 0.5 0.5 0.309 

IB-PG7.0 PG7.0 12 0 12 0 N/A N/A N/A 

IB-OR IB 15 0 16 0 N/A N/A N/A 

IB-OR OR 2 0 2 0 N/A N/A N/A 

IB-MS IB 17 2 18 0 0.2286 0.2286 0.134 

IB-MS MS 6 0 6 1 0.5 0.5 0.296 

PG7.0-OR PG7.0 15 0 15 0 N/A N/A N/A 

PG7.0-OR OR 2 1 2 0 0.5 0.5 0.248 

PG7.0-MS PG7.0 16 1 17 1 0.5152 0.7728 0.965 

PG7.0-MS MS 9 1 9 5 0.0611 0.0656 0.0455 

MS-OR MS 6 0 6 0 N/A N/A N/A 

MS-OR OR 2 0 2 0 N/A N/A N/A 



assumption, using u-plots and two tests for difference 

between proportions (namely Fisher’s exact and the 

Binomial Proportions tests). We found that these tests 

are giving reasonably consistent results with regard to 

whether the hypothesis of constant proportion of 

common faults should be rejected. Using these tests at 

the 90% confidence level, we found, at most, one case 

out of 12 where the null hypothesis was rejected (and 

typically 1 in 10 cases might be rejected at the 90% 

confidence level when the hypothesis is true). This 

would indicate that the assumption of constant 

proportions is reasonable for the dataset we used but 

further work is required to draw more general 

conclusions due to the small sample size in the dataset. 

In summary, for users who want to assess the likely 

dependability gains achievable if they switch from 

using a single DBMS product to a 1-out-of-2 diverse 

server then: 

- if the only dependability data available for the 

DBMS products are the fault reports, and 

reasonable estimates can be obtained for the failure 

rate of the DBMS product they are using, then the 

model described in section 4 can be used to 

calculate the likely improvements in reliability that 

they may expect from the changeover to a diverse 

setup 

- if proxies can also be obtained for usage time, then 

the extended Littlewood model, described in 

section 3, may also be used to assess the 

improvements as well as obtain other estimates such 

as: 

- the rate distribution of the common faults 

- predictions about the expected time to next 

diverse server failure etc. 

- the two approaches may also be used sequentially to 

improve the predictions: 

- the β values using the proportions approach of 

section 4 are calculated first, and they are then 

used to obtain a b parameter for the prior 

distribution of the extended Littlewood model 

Further research is needed to validate the theory 

presented in this paper. This research includes: 

- Methods for obtaining more accurate proxies for 

usage time.  

- Empirical investigations of the predictive 

performance of the proportions model for actual 

DBMS product pairs. 

- Empirical investigations of the consistency of β  

factor estimates in successive releases of the same 

product pair. 

- Applying the method to other types of off-the-shelf 

components (such as diverse web-servers and 

application servers).  
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Appendix A –Likelihood equations of the 

extended Littlewood model 
 

To produce a general likelihood function for the 

model discussed in section 3, several different kinds of 

data need to be considered. For each reported fault we 

need to consider: 

- whether it is present in both DBMS products (i.e. 

could it have caused a failure in both DBMS 

products),  

- whether it was randomly encountered during 

testing of one or more DBMS products (i.e. has it 

been reported in more than one DBMS product). 

We assume that all three classes of faults (faults that 

are present in DBMS product A only, B only, or both) 

have rates independently selected from one common 

gamma rate distribution. This produces a 5-parameter 

model with parameters being three unknown fault-

count parameters (say ABBABA ��� ,, ), and two Γ-

distribution parameters a, b. 

For the data symbols, we will use a convention that 

observed failure counts n, and also observed times T of 

random failure are all, likewise, subscripted to denote 

which DBMS product(s) contain the faults, and, in 

addition,  superscripted to identify the DBMS 

product(s) during the testing of which the fault is 

randomly encountered. In the case of Ts only, with 

multiple superscripts (AB or BA), the first of these 

superscripts will indicate which DBMS product’s time 

T is. For all other cases (whether of subscripts or 

superscripts AB) the order has no significance and will 

be left alphabetic. Finally, parameters l
A 

and l
B
 

represent the testing time for DBMS product A or B 

respectively. Using these conventions, the extended 

Likelihood function for the Littlewood model is given 

by: 
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