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Abstract—This paper demonstrates the principal motivations
for Dual Heuristic Dynamic Programming (DHP) learning meth-
ods for use in Adaptive Dynamic Programming and Reinforce-
ment Learning, in continuous state spaces: that of automatic local
exploration, improved learning speed and the ability to work
without stochastic exploration in deterministic environments. In
a simple experiment, the learning speed of DHP is shown to be
around 1700 times faster than TD(0). DHP solves the problem
without any exploration, whereas TD(0) cannot solve it without
explicit exploration.

DHP requires knowledge of, and differentiability of, the
environment’s model functions. This paper aims to illustrate the
advantages of DHP when these two requirements are satisfied.

Index Terms—Dual Heuristic Dynamic Programming, DHP,
Adaptive Dynamic Programming, Reinforcement Learning

I. INTRODUCTION

Adaptive Dynamic Programming (ADP) [1] and Reinforce-
ment Learning (RL) [2] are similar fields of study that aim to
make an agent learn actions that maximise a long-term reward
function. These algorithms rely on learning a value function,
V , that is defined in Bellman’s Principle of Optimality [3].

Successful algorithms exist in the RL and ADP literature
that learn the values of the value-function directly by sam-
pling trajectories. These algorithms include the RL algorithms
TD(λ), Sarsa(λ) and Q(λ) [4], [5], [6]. We refer to these
algorithms collectively as “value learning” (VL) algorithms.

ADP contains similar and sometimes equivalent algorithms
to RL, but in ADP there is another category of value-function
learning algorithms that aim to learn the value-gradient, which
we define to be ∂V

∂~x , where ~x is the state vector of the
agent in state-space. These algorithms include Dual Heuristic
Dynamic Programming (DHP) and Value Gradient Learning
(VGL(λ)) [7], [8], [9], [10], [11]. We refer to these algorithms
collectively as “DHP based” algorithms.

Implementing DHP-based algorithms is a bit more diffi-
cult than the VL algorithms, and they require knowledge of
the environment’s model functions and their differentiability.
However DHP methods have the big advantage that local
exploration occurs automatically for them. This is the main
motivation for DHP methods, and we elaborate on what this
means in more detail in the rest of the paper. There are two
main useful consequences of this fact:
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• DHP methods do not require explicit local exploration of
the state space. This means they can work reasonably
well in deterministic environments without stochastic
exploration, but VL methods cannot.

• DHP based methods can have much improved learning
speeds compared to VL methods.

In this paper we aim to present clearly this motivation for
DHP methods, plus the two consequences, by presenting a
simple problem for comparison. We are providing this exper-
iment to motivate DHP usage which is not currently a well
known algorithm within the RL community, but potentially
has these significant benefits which we aim to highlight here.

We also highlight important and relevant caveats for using
the DHP algorithm: DHP assumes the model functions of the
environment can be learned, and are differentiable, and that the
cost of model learning is relatively low compared to the cost of
learning optimal behaviour with a model-free algorithm such
as TD(0). We show that when these conditions are satisfied,
then the use of DHP could be extremely beneficial.

In section II we define the functions and concepts necessary
for RL and ADP problems, and define the algorithms. In
section III we give the motivations for designing and choosing
the DHP based algorithms, making reference to how a greedy
policy relates to the value-gradient. In section IV we give
an experiment that confirms the motivations succinctly and
convincingly, and in section V we give conclusions and
summary.

II. PROBLEM AND ALGORITHM DEFINITIONS

The typical ADP/RL scenario is an agent wandering around
in an environment (with state space S ⊂ <n), such that at
time t it has state vector ~xt ∈ S. At each time t the agent
chooses an action ~at ∈ A which takes it to the next state
according to the environment’s (possibly stochastic) model
function ~xt+1 = f(~xt,~at), and gives it an immediate reward,
rt, given by the function rt = r(~xt,~at). The agent keeps
moving, forming a trajectory of states (~x0, ~x1, . . .), which
terminates if and when a designated terminal state is reached.
In ADP/RL, we aim to find a policy, which is a smooth
function π(~x) that calculates which action ~a = π(~x) to take
for any given state ~x. The objective of ADP/RL is to find a
policy such that the expectation of the total discounted long
term reward, E (

∑
t γ

trt), is maximised from any start point
~x0, where γ ∈ [0, 1] is a constant discount factor that specifies
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the importance of long term rewards over short term ones, and
E () denotes expectation.

There are only minor technical differences between the ADP
and RL learning methods; one difference is that RL methods
commonly place more emphasis on model-free learning than
ADP methods do, where as ADP methods often assume the
model functions are already known and therefore can be made
use of during learning.

A. Approximate Value Function

We define Ṽ (~x, ~w) to be the real scalar valued output of a
smooth function approximator with weight vector ~w and input
vector ~x. This is the “approximate value function”, or “critic
function”.

B. Greedy Policy

The greedy policy is the policy that always chooses actions
as follows:

π(~x, ~w) = arg max
~a∈A

(Q̃(~x,~a, ~w)) (1)

where we define the function Q̃ as

Q̃(~x,~a, ~w) = r(~x,~a) + γṼ (f(~x,~a), ~w) (2)

C. Action Network

An action network, or actor, is a separate function approxi-
mator, π(~x, ~z), (with a weight vector ~z) designed to represent
the policy function. The action network can be trained by one
of several possible methods, e.g. see [2, ch. 6.6] or [8, eq.10].
The objective of any actor training method is to make the actor
behave as closely as possible to equation 1. If an actor is fully
trained to behave exactly like equation 1 then we say it is
behaving greedily.

D. Bellman’s Optimality Principle

Bellman’s Optimality Principle [3] asserts that there exists
an optimal value function V ∗(~x) which satisfies

V ∗(~x) = max
~a∈A

(E (r(~x,~a) + γV ∗(f(~x,~a)))) ∀~x ∈ S,

and if this optimal value function can be found, then optimal
behaviour is determined by following a greedy policy on V ∗.

We note that we can break down Bellman’s Optimality
Principle into two necessary conditions which are more rel-
evant to the learning algorithms used in this paper: For any
given approximate value function Ṽ (~x, ~w) and policy function
π(~x, ~z), if

1) Ṽ (~x, ~w) = E
(
r(~x, π(~x, ~z)) + γṼ (f(~x, π(~x, ~z)), ~w)

)
for all ~x ∈ S, and simultaneously,

2) the policy π(~x, ~z) is behaving greedily on Ṽ for all ~x ∈
S,

then Bellman’s Optimality Principle is satisfied, and π(~x, ~z)
is an optimal policy.

E. TD(0) Learning

Here and throughout this paper, a convention is used that all
defined vector quantities are columns, whether they are coordi-
nates, or derivatives with respect to coordinates. For example,
~xt and ∂Ṽ

∂~x are both column vectors. Also, subscripted “t”
indices are what we call trajectory shorthand notation. These
refer to the time step of a trajectory and provide corresponding
arguments ~xt and ~at where appropriate; so that for example
Ṽt+1 ≡ Ṽ (~xt+1, ~w), and

(
∂Ṽ
∂ ~w

)
t

is shorthand for the column

vector function ∂Ṽ (~x,~w)
∂ ~w evaluated at (~xt, ~w).

Using this notation, the TD(0) algorithm [4], applied in
batch mode to a whole trajectory, can be defined succinctly
by the following weight update:

∆~w = α
∑
t

(
∂Ṽ

∂ ~w

)
t

(rt + γṼt+1 − Ṽt) (3)

where α > 0 is the learning rate. Pseudocode for the TD(0)
algorithm is given in Algorithm 1.

The quantity

δt = rt + γṼt+1 − Ṽt (4)

is called the “TD error”. The TD algorithm aims to set this
to zero all over state space. If this can be achieved exactly,
whilst simultaneously making the policy behave greedily, then
Bellman’s Optimality Principle will be satisfied.

Algorithm 1 On-line implementation of TD(0) algorithm.
1: t← 0
2: while not terminated(~xt) do
3: ~at ← π(~xt)
4: ~xt+1 ← f(~xt,~at)
5: δ ← r(~xt,~at) + γṼt+1 − Ṽt
6: ~w ← ~w + α

(
∂Ṽ
∂ ~w

)
t
δ

7: t← t+ 1
8: end while

F. The DHP Algorithm

We define the approximate value gradient, or critic gradient,
to be the column vector G̃(~x, ~w) ≡ ∂Ṽ (~x,~w)

∂~x .
We define vector by vector differentiation by example. We

define ∂f
∂~x to be a matrix with element (i, j) equal to ∂f(~x,~a)j

∂~xi .

Similarly,
(
∂G̃
∂ ~w

)ij
= ∂G̃j

∂ ~wi ; and combining with trajectory

shorthand notation,
(
∂G̃
∂ ~w

)
t

is this matrix evaluated at (~xt, ~w).
Using this notation, and the implied matrix-vector products,

the DHP algorithm is defined by a weight update of the form:

∆~w = α
∑
t

(
∂G̃

∂ ~w

)
t

((
Dr

D~x

)
t

+ γ

(
Df

D~x

)
t

G̃t+1 − G̃t
)
(5)

where α > 0 is a small learning rate constant; G̃t is the
approximate value gradient; and where D

D~x is shorthand for

D

D~x
≡ ∂

∂~x
+
∂π

∂~x

∂

∂~a
; (6)
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and where all of these derivatives are assumed to exist.
Equations 5 and 6 define the DHP algorithm.

We will call the quantity

~et =

(
Dr

D~x

)
t

+ γ

(
Df

D~x

)
t

G̃t+1 − G̃t (7)

the “DHP error”. The DHP algorithm aims to make this equal
to zero whilst also under a policy that is behaving greedily.
Achieving these two conditions simultaneously all over state
space would recover Bellman’s Optimality Principle.

DHP is traditionally defined with the function G̃(~x, ~w)
directly implemented as the output of a smooth vector function
approximator, where the output vector dimension is the same
as that of ~x [7], [8]. However it can alternatively be imple-
mented as the actual gradient ∂Ṽ (~x,~w)

∂~x , where Ṽ is the usual
scalar approximate value function. Either option is possible.
We use the second option in this paper’s experiment, so that
a greedy policy can be described more easily, and so that the
relationship of DHP to TD(0) is more apparent.

Pseudocode for the DHP algorithm is given in Algorithm
2.1 The most computationally expensive line of this implemen-
tation is the matrix-vector product in line 6. If this product is
evaluated using methods analogous to those used by [12] then
it can be evaluated in O(dim(~w)) operations, which is thus the
overall asymptotic running time for the whole algorithm, per
trajectory time step. This is the same asymptotic running time
as the TD(0) algorithm, so when comparing the two algorithms
in experiments, we can just consider the number of iterations
required until convergence.

Algorithm 2 On-line implementation of DHP algorithm.
1: t← 0
2: while not terminated(~xt) do
3: ~at ← π(~xt)
4: ~xt+1 ← f(~xt,~at)
5: ~e←

(
∂r
∂~x

)
t

+
(
∂π
∂~x

)
t

(
∂r
∂~a

)
t

+γ
((

∂f
∂~x

)
t

+
(
∂π
∂~x

)
t

(
∂f
∂~a

)
t

)
G̃t+1 − G̃t

6: ~w ← ~w + α
(
∂G̃
∂ ~w

)
t
~e

7: t← t+ 1
8: end while

1) Applicability of the DHP algorithm: Due to the appear-
ance of the derivatives of f and r in the DHP weight update,
the DHP algorithm is model-based. We assume these model
functions can be learned by a separate “system identification”
learning process, for example as described by [13]. This
system identification process could have taken place prior to
the main learning process (which is a recognised strategy
for RL, as was used in the successful flight of an inverted
helicopter by [14]), or concurrently with it; and results in
learned model functions f(~x,~a) and r(~x,~a). Alternatively, in
deterministic continuous time situations, there is an on-line
method by [15] which is capable of learning the necessary
derivatives of f and r virtually instantaneously. We do not

1This contains a fix to the version that was published in IJCNN12. In line
6 of Algorithm 2, the learning rate α was missing in the published version.

describe this model-learning stage of the process any further
in this paper.

Furthermore, these functions must be differentiable. In many
situations we can force smoothness onto the model functions
by using a smooth deterministic function approximator to
represent them. However it be noted that the DHP algorithm
will be optimising performance with respect to the learned
model functions, as opposed to the true model functions.

DHP also requires the differentiability of the policy function
π(~x, ~z). This can be achieved by implementing the actor by
a smooth function approximator such as a neural network.
However when a greedy policy is used, which often results in
bang-bang behaviour, it can be harder to assure differentiabil-
ity; except in simple analytical situations like the experiment
of this paper, and in the continuous time scenario [16] where
a closed form for the greedy policy based upon the value-
gradient can be used.

The DHP algorithm is designed specifically for continuous
space environments problems, so would not do as well at many
traditional RL discrete state-space domains (such as board
games or grid worlds).

III. MOTIVATION FOR DHP BASED ALGORITHMS BY
CONSIDERATION OF THE GREEDY POLICY

A strong motivation for using DHP based algorithms in
continuous state spaces can be understood by considering
a first-order Taylor series expansion of the greedy policy
function (eq. 1):

π(~x, ~w) ≈ arg max
~a

(
r(~x,~a) + γṼ (~x, ~w)

+γ

(
∂Ṽ (~x, ~w)

∂~x

)T
(f(~x,~a)− ~x)


= arg max

~a

r(~x,~a) + γ

(
∂Ṽ (~x, ~w)

∂~x

)T
(f(~x,~a)− ~x)



Hence we see the greedy policy is dependent on ∂Ṽ
∂~x and not

on Ṽ . We can see from this that changing ∂Ṽ
∂~x will immediately

affect the greedy policy. We can also see that if the greedy
policy is to deliver an optimal trajectory, then learning this
value-gradient is necessary, and that is why the DHP algorithm
tries to learn it directly (note that ∂Ṽ∂~x is named G̃ in Algorithm
2).

By moving ∂Ṽ
∂~x towards its correct target we will steer

the trajectory in the correct direction. That’s all we have
to do: Learn the ∂Ṽ

∂~x gradients and the trajectory will bend
itself into the correct (optimal) shape. Hence local exploration
is automatic for DHP based methods, and this makes DHP
methods extremely efficient.

Furthermore, it can be proven that if the value gradient is
perfectly known along a greedy trajectory, i.e. if the DHP
error ~et = ~0 at all time steps along a trajectory generated by a
greedy policy, then that trajectory will be locally extremal, and
often locally optimal. The proof for this is given by [10], and
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the proof is closely related to Pontryagin’s Maximum Principle
[17].

The first order Taylor series approximation used here be-
comes better and better as the time step for sampling the
underlying physical system gets smaller. It becomes perfect
in continuous time, and this is what the value gradient policy
of [16] uses.

This section was intended to show the motivation for DHP
when using a greedy policy. The motivation for using it with
a general action network is similar, because the objective
of any actor training algorithm is to make the actor behave
greedily, and greediness of the actor is a necessary condition
for Bellman’s Optimality Principle to apply. We demonstrate
an actor-critic experiment in section IV-H.

Hence whether by a greedy policy, or by an actor-critic
architecture, greedy behaviour needs to be learned eventually if
Bellman’s Optimality Principle is to be satisfied. And if greedy
behaviour is to be learned in a continuous state space, then
the value gradients need to be learned. In the case of DHP-
based methods, these value-gradients are learned directly and
without the need for explicit local exploration, using model-
based formulae. In the case of VL methods, learning can be
model-free, but the value-gradients must be learned indirectly,
for example by learning the values on all of a group of
neighbouring trajectories through explicit local exploration.

IV. EXPERIMENTS

We now provide an experiment with a simple quadratic
reward function to confirm the efficiency and exploration
claims for DHP. We describe the experiment first for TD(0)
and DHP using a greedy policy (in sections IV-A to IV-D).
We also provide theoretical analysis in section IV-E of the
two weight updates in this situation, to demonstrate further
how TD(0) requires stochastic exploration to generate local
exploration, but DHP does not. We then show, in sections
IV-F and IV-G, that similar results would occur if TD(0) was
replaced by the Sarsa or TD(λ) algorithms. And finally, in
section IV-H, we give another version of the experiment using
a neural network based actor critic architecture, and show that
similar results happen in that situation too.

A. Problem Definition

We define an environment with ~x ∈ < and ~a ∈ <. This is a
simple quadratic optimisation problem. The model functions
that we use to define the problem are:

f(xt, t, at) =

{
xt + at if t = 0

xt if t = 1
(8a)

r(xt, t, at) =

{
0 if t = 0

−(xt)
2 if t = 1

(8b)

Each trajectory is defined to terminate at time step t = 2, so
that exactly two rewards are received by the agent (i.e. with
the final reward being received on transitioning from t = 1 to
t = 2). In these model function definitions, action a1 has no
effect, so the whole trajectory is parametrised by just x0 and

a0. The total reward for this trajectory is −(x0 + a0)2, so the
optimal action to choose is a0 = −x0. These model functions
are dependent on t, which is an abuse of notation we have
adopted for brevity, but this could be legitimised by including
t into ~x.

In all the experiments we performed in this paper, to make
exploration slightly harder, we forced the agent to always start
at x0 = 0. From this start point the optimal action is to do
nothing (i.e. a0 = 0).

B. Approximate Value Function Definition

We define a very simple approximate value function as
follows. It uses weight vector ~w = (w1, w2)T :

Ṽ (xt, t, ~w) =

{
−(x1)2 + w1x1 + w2 if t = 1

0 otherwise
(9)

This function is capable of representing the optimal value
function, which for this problem is V ∗(xt, t) = −(xt)

2 when
t = 1.

The approximate value-gradient is found by differentiating
equation 9 partially with respect to x, to give

G̃(xt, t, ~w) =

{
−2x1 + w1 if t = 1

0 otherwise
(10)

C. Greedy Policy with Added Noise

For this approximate value function, the greedy policy can
be solved analytically. First we expand the approximate Q
value function for this model and value function:

Q̃(x0, a0, ~w) = −(x0 + a0)2 + w1(x0 + a0) + w2

Then the greedy policy requires that we maximise Q̃ with
respect to the action, giving:

π(x0, ~w) = w1/2− x0 +Xσ (11)

Here Xσ is a normally distributed random variable with
mean zero and standard deviation σ, that we are deliberately
adding to the greedy policy to force it to explore more. If
σ = 0 then no noise will be added and the greedy policy will
not explore at all.

We emphasise that the greedy policy function makes use of
the same weight vector ~w in both the policy, π, and the critic,
Ṽ .

By considering what weights would force the greedy policy
to produce the optimal action a0 = −x0 (in the absence of
noise), we see that the optimal weights are given by w1

∗ = 0.

D. Results for DHP and TD(0) with a Greedy Policy

Even though both DHP and TD(0) are traditionally defined
for an actor critic scenario, in this initial experiment we use
them both with a greedy policy. We do this because in this
problem the greedy policy is a very simple analytical function,
and we can therefore analyse the learning algorithms in greater
detail (in section IV-E). In a later version of the experiment, in
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section IV-H, we repeat the experiment with a full actor-critic
architecture.

The results for each combination of learning parameters and
learning algorithm were collated from 1000 trials. At the start
of each trial, all weight components were initialised with a
uniform random distribution over a range from −10 to +10.
In each trial, the learning algorithm was applied iteratively,
with the following stopping condition: A trial was considered
a success when |w1 −w1

∗| < 10−7. A trial was considered a
failure if |~w| > 104, or when the number of iterations exceeded
107. All algorithms used discount factor γ = 1.

Results for these experiments using the TD(0) and DHP
algorithms are shown in Table I. A summary of these results
is that:
• Out of the experiments that converged with 100% relia-

bility, DHP had a convergence time of just one iteration
but TD(0) had a convergence time of approximately
1700 iterations, making DHP faster by three orders of
magnitude, in this experiment.

• TD(0) has 0% success rate when the policy exploration
rate is set to zero. Hence TD(0) requires explicit explo-
ration to solve this problem, and fails in this deterministic
setting without stochastic exploration.

• DHP achieves 100% convergence even when the policy
is deterministic.

• DHP is three orders of magnitude faster than TD(0) even
when the DHP policy is stochastic.

E. Analysis of Behaviour of DHP and TD(0) Under a Greedy
Policy

Due to the simplicity of the greedy policy used, we can find
the analytical forms for the DHP and TD(0) weight updates. In
this section we do this, to try to gain some insights into why
the DHP method so clearly outperforms the TD(0) method
in this problem, with respect to exploration requirements and
speed.

When the greedy policy equation (eq. 11) is used to choose
the action, and when following the model function of equation
8a (i.e. x1 = x0 + a0) from a start state x0, the agent will
pass through a next state of

x1 = w1/2 +Xσ. (12)

To analyse the DHP and TD(0) weight updates for this
problem, first we note that the approximate value function (eq.
9) is only learnable at time step t = 1, hence the summations
in both the DHP and TD(0) weight updates only apply at
t = 1. For example, the DHP weight update (eq. 5) reduces
in this case to:

∆~w =α

(
∂G̃

∂ ~w

)
1

((
Dr

D~x

)
1

+ γ

(
Df

D~x

)
1

G̃2 − G̃1

)

=α

(
∂G̃

∂ ~w

)
1

((
Dr

D~x

)
1

+ 2x1 − w1

)
by eq. 10

=α

(
∂G̃

∂ ~w

)
1

((
∂r

∂~x

)
1

+

(
∂π

∂~x

)
1

(
∂r

∂a

)
1

+ 2x1 − w1

)
by eq. 6

=α

(
∂G̃

∂ ~w

)
1

(−2x1 + 2x1 − w1) by eq. 8b

=⇒
(

∆w1

∆w2

)
=

(
−αw1

0

)
by eq. 10

(13)

The above equation shows that for any learning rate 0 ≤ α ≤
1, DHP will make w1 travel directly in a straight line through
weight space towards the optimal weight w1

∗ = 0. This shows
how DHP solves this problem so quickly, and regardless of the
level of stochastic exploration.

For the TD(0) weight update (eq. 3), we also only need
consider the t = 1 term of the sum, giving:

∆~w =α

(
∂Ṽ

∂ ~w

)
1

(r1 + γṼ2 − Ṽ1)

=α

(
∂Ṽ

∂ ~w

)
t

(r1 + (x1)2 − w1x1 − w2) by eq. 9

=α

(
∂Ṽ

∂ ~w

)
t

(−w1x1 − w2) by eq. 8b

=⇒
(

∆w1

∆w2

)
= α

(
x1
1

)
(−w1x1 − w2) by eq. 9

=α

(
−w1(x1)2 − w2x1
−w1x1 − w2

)
=α

(
−w1(w1/2 +Xσ)2 − w2(w1/2 +Xσ)

−w1(w1/2 +Xσ)− w2

)
by eq. 12

This weight update is dependent on a random variable,
Xσ . But we can average out the stochastic effects of Xσ

to calculate the expectation of the above weight update, and
hence calculate the overall drift of the weight vector as the
learning algorithm makes progress. Here we use E (Xσ) = 0

and E
(

(Xσ)
2
)

= σ2 and the linear rule for expectations, i.e.
E (aXσ + b) = aE (Xσ) + b, to get

E
((

∆w1

∆w2

))
=α

(
−(w1)3/4− w1σ

2 − w1w2/2
−(w1)2/2− w2

)
This averaged weight update for TD(0) is a more complex

dynamical system for the weight vector than the corresponding
DHP weight update (eq. 13), and it is more difficult to solve
and find the trajectory through weight space. But the ∆w2 part
of the equation is continually aiming to achieve a fixed point
of w2 = −(w1)2/2, and when this is attained the averaged
weight update for w1 simplifies to

E (∆w1) = −αw1σ
2.

This is the almost the same as the DHP equation (eq. 13),
except the learning rate is proportional to σ2. This shows
nicely how when the exploration rate σ drops to zero, the
TD(0) weight update fails to emulate DHP and fails to learn
the optimal weights w1

∗ = 0. This confirms the main points
that this paper is trying to show, i.e. that DHP is direct, fast
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Policy α = 0.01 α = 0.1 α = 1.0
noise Success Iterations Success Iterations Success Iterations

(σ) rate (Mean) (± s.e.) rate (Mean) (± s.e.) rate (Mean) (± s.e.)
Results for algorithm TD(0)

10 68.5% 1081.4 11 0.0% 0.0%
1 100.0% 1697.8 11.1 85.9% 162.4 1.0 3.0% 189.6 19.3

0.1 100.0% 174234 90.4% 17223 104 15.5% 1519.1 9.8
0 0.0% 0.0% 0.0%

Results for algorithm DHP
10 100.0% 1734.8 3.3 100.0% 166.1 0.3 100.0% 1 0
0 100.0% 1738.2 3.0 100.0% 166.1 0.3 100.0% 1 0

TABLE I
RESULTS FOR DHP AND TD(0) WITH A GREEDY POLICY, AS DESCRIBED IN SECTION IV-D. (S.E.=STANDARD ERROR)

and does not need to explicitly perform local exploration to
succeed; but when stochastic exploration is set to zero (σ = 0),
TD(0) learning will fail to make any progress towards its
intended goal.

F. Use of the Sarsa Algorithm

In the previous experiment, the use of a greedy policy with
TD(0) may have been unconventional. However we can repeat
the above experiment with the Sarsa algorithm [5] and obtain
identical results, as we prove here.

Sarsa is an algorithm for control problems that learns
to approximate the Q̃(~x,~a, ~w) function. The policy used is
intended to be dependent on the Q̃(~x,~a, ~w) function (e.g. the
greedy policy or a greedy policy with added stochastic noise),
so Sarsa is ideal for control problems. The Sarsa weight update
is defined to be:

∆~w = α
∑
t

(
∂Q̃

∂ ~w

)
t

(rt + γQ̃t+1 − Q̃t) (14)

Sarsa is designed with Q̃ represented by an arbitrary func-
tion approximator. We choose to define our Q̃ function exactly
by equation 2. Substituting this into the Sarsa weight update
(eq. 14), and simplifying, gives

∆~w = α
∑
t

(
∂Q̃

∂ ~w

)
t

(rt + γ(rt+1 + γṼt+2)− (rt + γṼt+1))

= αγ2
∑
t>0

(
∂Ṽ

∂ ~w

)
t

(rt + γṼt+1 − Ṽt)

which is identical to TD(0) but with summation over t now
excluding t = 0, and with an extra constant factor, γ2.

The experiment described above in this paper used γ = 1,
and has no weight update term for t = 0, so the results apply
to both TD(0) and Sarsa (provided the Q̃ function used by
Sarsa is given exactly by eq. 2).

We stress that we did not disadvantage Sarsa by giving it Q̃
defined exactly by eq. 2 using the known model functions, as
this is only giving it extra correct model information, which
should be beneficial, not detrimental.

G. Using Eligibility Traces

The RL community is familiar with extensions to TD(0)
and Sarsa, which use “eligibility traces”. These are the well

known algorithms TD(λ) and Sarsa(λ) (see [4], [5] for details).
Similarly VGL(λ) is an extension to DHP that uses eligibility
traces. [10], [11] give further details, and pseudocode for both
on-line and batch-mode implementations.

However using eligibility traces would not make any dif-
ference to the results of this particular experiment. This is
because the approximate value function defined in equation 9
is only learnable at time step t = 1; and it is perfectly known
at all time steps after that (i.e. it is perfectly known at time
step t = 2). Hence the total actual future reward after t = 1 is
identical to the total approximated future reward after t = 1.
This choice between “actual” and “approximated” is what λ is
designed to distinguish between. Hence the introduction of an
eligibility trace learning constant λ will have no effect. This
proves that the above results for TD(0), Sarsa and DHP are
identical to the results we would get for TD(λ), Sarsa(λ) and
VGL(λ) respectively.

H. Using a Neural-Network Based Actor-Critic Architecture

The results and conclusions of this paper are also applicable
to actor-critic architectures, as we argued at the end of section
III. To demonstrate this, we describe a version of the same
TD(0)/DHP experiment (as defined in section IV-A) using
one multi-layer perceptron (MLP, [18]) neural network for the
actor and another MLP for the critic.

Both networks used a fully connected layered architecture
with 2 inputs, 4 hidden units, and 1 output unit, and shortcut
connections from the input layer to the output layer. The
weights for both networks were initially randomised in [-1,1],
and all activation units were hyperbolic tangent functions,
except for the critic’s output node which used an identity
function. The input vector for each network was the full state
vector, i.e. (x, t). The output of the critic network gave Ṽ
directly, and the output of the action network plus noise Xσ

gave the policy function.
The critic was trained by either the DHP or TD(0) weight

update, with a learning rate of α = 0.1. The actor was trained
concurrently in each case by a common ADP weight update
(e.g. [8, eq. 10]),

∆~z = β
∑
t

(
∂π

∂~z

)
t

((
∂r

∂~a

)
t

+ γ

(
∂f

∂~a

)
t

(
∂Ṽ

∂~x

)
t+1

)
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with a learning rate β = 0.1. This is an efficient model-based
weight update that is unusual to be used in conjunction with
TD(0), but again we stress that it is not disadvantaging TD(0)
to be given access to this extra model information.

Neither critic learning algorithm attempted to learn the critic
(or its gradient) at the final time-step of a trajectory (t = 2)
since it is prior knowledge that the target critic value (or its
gradient) is always 0 at any terminal state. Hence, in the TD(0)
and DHP algorithms, we used Ṽ2 ≡ 0 and G̃2 ≡ 0, and in the
actor weight update, we used

(
∂Ṽ
∂~x

)
2
≡ 0.

Results showing learning performance for the two critic
learning algorithms, both with policy noise and without policy
noise, are given in Figure 1. The results were averaged over
100 experimental trials. The conclusions of these graphs are
the same as before, i.e. that DHP can cope without stochastic
exploration easily but TD(0) cannot; and DHP is many times
faster.
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Fig. 1. Algorithm performances on the test problem using a neural network
based actor critic architecture, as described in section IV-H; both with and
without policy noise. The y axis shows the total total discounted long term
reward, R. Compared to TD(0), the DHP method works well in the absence
of stochastic exploration, and quickly attains optimal behaviour (R = 0). The
TD(0) method fails without stochastic exploration here (in fact it converges to
a sub-optimal policy), but does learn slowly and successfully in the presence
of policy noise.

V. CONCLUSIONS

In this simple experiment, it was shown that DHP could
successfully find an optimal solution without the explicit need
for exploration, but the VL algorithms could not. It was also
shown that when the VL algorithms were allowed to do their
necessary exploration, in this case stochastically, they were
slower by a factor of approximately 1700 when the quadratic
function approximator was used, and by a similar factor when
the actor-critic neural network architecture was used.

This is the motivation for DHP-based methods, and shows
how they differ significantly from other RL methods. With
DHP-based methods:

1) Local exploration comes automatically. “Exploration
versus exploitation” becomes “exploration and exploita-
tion” when following a greedy policy, locally at least.

2) We can get potentially much greater efficiency.
3) When DHP makes progress in learning the value gra-

dient along a single trajectory, the trajectory will start
to automatically bend itself towards a locally optimal
shape, when used with a greedy policy. When TD(0)
learns just the values along a single trajectory, the
trajectory will not necessarily bend itself towards a
locally optimal shape.

The results also show DHP-based methods out-performing
regular RL methods both with and without stochastic policies.

Despite it possibly having been a foregone conclusion that
a model-based algorithm (DHP) would outperform a model-
free algorithm (TD(0)), it does not seem so obvious that items
1 and 3 in the above list would be the case. It is these two
items that we particularly want to highlight as lesser known
motivations for DHP.

This experiment was designed to highlight the key benefits
of choosing DHP, and this was a simple problem in that
there were no local optima to become trapped in, and all
functions were differentiable. We emphasise that in any more
complex differentiable environment, DHP will successfully
find locally optimal trajectories without explicit exploration,
i.e. in situations where TD(0) will fail. We also point out that
DHP has also been used in much more complex problems:
DHP successes include autopilot landing [8], power system
control [19], simple control benchmark problems such as “pole
balancing” [20], and many others [1].

The important caveats to be made about DHP are that:
• It assumes the cost of model learning is low compared

to the cost of value-function learning.
• It assumes the functions f(~x,~a), r(~x,~a) and π(~x, ~w) are

differentiable.
These caveats apply to DHP but not to TD(0). Therefore

it could have been unfair to have made the experimental
comparison between them. But the experiment is intended
to show that when these conditions are satisfied, and when
working in continuous spaces, then the use of DHP could be
extremely beneficial.

On the issue of whether it is worth learning the model in
order to use DHP, we agree with a quote by [21, sec 4.3]
concerning the use of DHP: “We mention that some view
this model dependence to be an unnecessary ‘expense’. The
position of the authors, however, is that the expense is in
many contexts more than compensated for by the additional
information available to the learning/optimization process.”
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