

City, University of London Institutional Repository

Citation: Fairbank, M. & Alonso, E. (2012). Value-Gradient Learning. Paper presented at

the WCCI 2012 IEEE World Congress on Computational Intelligence, 10-06-2012 - 15-06-
2012, Brisbane, Australia. doi: 10.1109/IJCNN.2012.6252791

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/5205/

Link to published version: https://doi.org/10.1109/IJCNN.2012.6252791

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Value-Gradient Learning
Michael Fairbank

Department of Computing,
School of Informatics,

City University London,
London, UK

Email: michael.fairbank.1@city.ac.uk

Eduardo Alonso
Department of Computing,

School of Informatics,
City University London,

London, UK
Email: E.Alonso@city.ac.uk

Abstract—We describe an Adaptive Dynamic Programming
algorithm VGL(λ) for learning a critic function over a large
continuous state space. The algorithm, which requires a learned
model of the environment, extends Dual Heuristic Dynamic
Programming to include a bootstrapping parameter analogous
to that used in the reinforcement learning algorithm TD(λ).
We provide on-line and batch mode implementations of the
algorithm, and summarise the theoretical relationships and
motivations of using this method over its precursor algorithms
Dual Heuristic Dynamic Programming and TD(λ). Experiments
for control problems using a neural network and greedy policy
are provided.

Index Terms—Value-Gradient Learning, Dual Heuristic Dy-
namic Programming, DHP, Adaptive Dynamic Programming

I. INTRODUCTION

Adaptive Dynamic Programming (ADP, [1]) is the study
of how an agent can learn to choose actions that minimise
a total long-term cost. For example a typical scenario is an
agent wandering around in an state space S ⊂ <n, such that
at time t it has state vector ~xt ∈ S. At each time t the agent
chooses an action ~ut (from an action space ~ut ∈ A) which
takes it to the next state according to the environment’s model
function ~xt+1 = f(~xt, ~ut), and gives it an immediate scalar
cost Ut, given by the function Ut = U(~xt, ~ut). The agent keeps
moving, forming a trajectory of states (~x0, ~x1, . . .), which
terminates if and when a state from the set of terminal states
T ⊂ S is reached. If a terminal state ~xt ∈ T is reached
then a final instantaneous cost Ut = U(~xt) is given which
is independent of any action.

An action network or actor or policy function, A(~x, ~z), is a
neural network (or more generally, a function approximator)
with parameter vector ~z, which specifies which action ~u =
A(~x, ~z) to take for any given state ~x. From any given state ~x,
the expectation of the total future long term cost encountered
when following actions chosen by an action network A(~x, ~z),
is given by the function J(~x, ~z) = 〈

∑
t γ

tUt〉, where 〈〉
denotes expectation. This is the cost-to-go function for the
given action network, also known as the value function from
dynamic programming [2] and reinforcement learning (RL,
[3]). Here γ ∈ [0, 1] is a constant discount factor that specifies
the importance of long term costs over short term ones. The
objective of ADP and RL is to train the action network to
choose actions that minimise the total cost-to-go function from
any state ~x.

ADP also uses a second neural network (or function ap-
proximator), J̃(~x, ~w) ∈ <, with weight vector ~w, known as
the critic or approximate value function. The intermediate
objective of ADP is to train the critic to approximate the cost-
to-go function, so that J̃(~x, ~w) ≈ J(~x, ~z) for all ~x ∈ S. If this
is achieved perfectly, and if simultaneously the action network
always chooses actions according to:

~u = arg min
~u∈A

〈
U(~x, ~u) + γJ̃(f(~x, ~u), ~w)

〉
∀~x (1)

then Bellman’s Optimality Condition [2] shows the trajectories
produced will be optimal, and the action network is optimal.

The method of choosing actions purely by equation 1 is
called the greedy policy on J̃ since it chooses actions that the
critic rates as best.

The ADP method Heuristic Dual Programming (HDP), and
the RL methods TD(λ) and Q-learning [4], [5], are all critic
learning methods that sample trajectories and update the critic
values encountered along the trajectory. We call these methods
value learning (VL) methods since they learn the values of J̃
along the trajectory. Variants of these methods have produced
successes in control problems [6], [7], but they can be very
slow since Bellman’s condition needs meeting over the entire
continuous state space for optimality. Even if Bellman’s condi-
tion is perfectly satisfied along a single trajectory, performance
can be extremely far from optimal. Bellman’s condition must
be satisfied at least on the neighbouring trajectories too for
local optimality. Hence VL methods must be supplemented
by exploration of the environment just to attain local optimal-
ity. This exploration could be provided by stochastic model
functions, a stochastic policy, or a stochastic start point for
each trajectory. The methods we follow significantly reduce
the need for this explicit exploration.

In this paper, we follow the ADP methods of Dual Heuristic
Dynamic Programming (DHP) and Globalized DHP (GDHP)
[8], [9], [10], [1]. DHP and GDHP work by explicitly learning
the gradient of the value function with respect to the state
vector, i.e. they learn ∂J

∂~x instead of J directly. We refer to
these methods collectively as value gradient learning (VGL)
methods, to distinguish them from VL methods. The main
reason to use VGL methods over VL methods is that whereas
VL methods need to learn the critic values all along the current
trajectory and all neighbouring trajectories to achieve local

optimality, VGL methods only need learn the value-gradient
along the single trajectory to achieve the same assurance
of local optimality. This motivation is discussed further in
section I-A. Also, VGL methods can work very well in control
problems in continuous state spaces.

We extend the VGL methods from DHP to include a
bootstrapping parameter λ ∈ [0, 1] (just as TD(λ) is an
extension of TD(0)), to give the algorithm we call VGL(λ),
which we describe in this paper. For λ = 0, VGL(λ) is
equivalent to DHP, but for λ > 0, VGL(λ) is a new algorithm.
The motivations for this extension are that using λ > 0
can increase the stability of learning and sometimes increase
learning speed, as discussed further in section I-B.

VGL methods (including DHP) are model-based methods
that require a learned differentiable model of the environment
and cost functions, f(~x, ~u) and U(~x, ~u). We discuss this more
in section I-C.

In sections I-A and I-B, we expand on the motivations for
VGL methods and the λ parameter, and in section I-C we
discuss the applicability of VGL methods and the necessary
learning of the model functions. In the rest of the paper,
we define the VGL(λ) algorithm in section II, and state its
relationship to TD(λ) and DHP in subsections II-C and II-D.
In section III, we give experimental results, and finally, in
section IV we give conclusions.

A. Motivations for DHP and VGL Methods

The VGL (and hence DHP) methods address the issue of the
Bellman equation needing to be solved over the whole of state
space, in that it turns out to be only necessary to fully learn
the value gradient along a single trajectory, under a greedy
policy, for it to be locally extremal, and often locally optimal.
This is proven by [11], and is closely related to Pontryagin’s
Minimum Principle [12]. This optimality condition contrasts
strongly with the VL methods which need to learn the value
function over all immediately neighbouring trajectories too in
order to achieve the same level of guarantee for being locally
extremal/optimal trajectories. So this is a significant efficiency
gain for the VGL methods, and is their principal motivation.

This implies that VGL methods have a much lesser require-
ment for exploration than VL methods do, since the local
part of exploration comes for free by using VGL methods.
What we mean by this is that provided the VGL learning
algorithm makes progress in learning the value gradient all
along a trajectory, while following a greedy policy, then the
trajectory will automatically make progress in bending itself
towards a locally optimal shape. This will happen without the
need for any stochastic exploration. In effect, by using VGL
methods, local exploration is automatic; or put another way the
traditional RL dilemma of “exploration versus exploitation”
transforms into “exploration and exploitation”, locally at least.

This leads to greater efficiency for VGL compared to VL.
In comparison the failure of VL without any exploration in
a deterministic environment is dramatic and common, even
when the value-function is perfectly learned along a single
trajectory. The experiment in section III-A confirms this.

Both VL and VGL methods have the same requirement for
global optimality, that is if the value function (or its gradient)
is exactly learned over all of state space, with a greedy policy,
then Bellman’s condition assures global optimality.

For a fuller discussion of the motivations to use VGL
methods see [13].

B. Motivations for Introducing the λ Parameter into DHP
The motivations for using the λ parameter are that choosing

λ carefully can increase the stability of learning and sometimes
increase learning speed.

For example, when λ = 1, the weight update used by
TD(λ) for a fixed action network is true gradient descent
on an error function and so is guaranteed to converge [4].
However when λ = 0, TD(λ) is not true gradient descent
on any error function, and this weight update can diverge
when the approximator for J̃(~x, ~w) is non-linear in ~w [14].
Similarly, DHP is not true gradient descent on any function,
and general instability in this case has been proven [15, sec.
7.7-7.8]. However VGL(1) is true gradient descent on an error
function, for a fixed action network, and so will converge.

Furthermore, when a greedy policy is used, all of TD(1),
TD(0) and DHP can be made to diverge [16]. However
with carefully chosen learning parameters and smoothness
assumptions, VGL(1) can be guaranteed to converge with a
greedy policy, as discussed further in section II. In this case
VGL(1) becomes identical to backpropagation through time
[17] acting directly on the greedy policy, as proven by [11].

Choosing λ carefully can affect the learning speed of critic
learning algorithms. Having a high value of λ makes the
target in the critic weight update use a longer “look-ahead”
along the trajectory, and so this can improve learning speed.
However, conversely, having too large a value of λ can increase
the variance of the sampled target J value in a stochastic
environment, which can slow down learning. Hence in TD(λ),
often the optimal value of λ for learning speed is somewhere
in the middle range of λ ∈ [0, 1], as demonstrated by [3].

C. Applicability of VGL methods and System Identification
The VGL methods are strictly model-based methods, and

this is largely where the extra efficiency comes from. We
assume the model functions can be learned by a separate “sys-
tem identification” learning process, for example as described
by [18]. This system identification process could have taken
place prior to the main learning process (e.g. like [19]), or
concurrently with it, and results in learned model functions
f(~x, ~u) and U(~x, ~u). Alternatively, there is an extremely fast
on-line model-learning method by [20] which could be used.
We do not describe this model-learning stage of the process
any further in this paper.

The VGL methods work naturally with continuous space
problems. They are also limited to situations to where the
model functions and policy are once-differentiable, comprising
of a deterministic part plus optionally some additive noise. In
many situations we can force smoothness onto the model func-
tions by using a smooth deterministic function approximator
to represent them.

DHP successes include autopilot landing [10], power system
control [21] and many others [1]. However some traditional
RL problem domains with discrete spaces would not be readily
solvable by VGL methods, such as a “grid world” problem,
backgammon, or a k-armed bandit problem. Also, step cost
functions would not be applicable, thus excluding problems
such balancing a pole where the total cost is a function of
the integer number of time steps that the pole is balanced for.
However the pole balancing problem can be solved by DHP if
a smoothed out cost function is used [22]. As a rule of thumb,
if a problem is suitable for smooth gradient descent on J with
respect to ~w, then it will be suitable to work on VGL methods.

II. THE VGL(λ) ALGORITHM

In this section we define the VGL(λ) Algorithm and state
how it relates to the algorithms TD(λ) and Dual Heuristic
Dynamic Programming.

To define the VGL(λ) algorithm, we require that J̃(~x, ~w)
is defined by a smooth scalar function approximator, e.g. a
neural network with weight vector ~w. This enables us to
define the “critic gradient”, or “approximate value gradient”,
as G̃(~x, ~w) ≡ ∂J̃(~x,~w)

∂~x .
Throughout this paper, a convention is used that all defined

vector quantities are columns, whether they are coordinates,
or derivatives with respect to coordinates. So, for example, G̃
and ∂J̃

∂~x are columns. Also, all subscripted indices are what we
call trajectory shorthand notation. These refer to the time step
of a trajectory and provide corresponding arguments ~xt and
~ut where appropriate; so that for example J̃t+1 ≡ J̃(~xt+1, ~w)
and G̃t ≡ G̃(~xt, ~w).

Differentiating a column vector function by a column vector
causes the vector in the numerator to become transposed
(becoming a row).1 For example ∂f

∂~x is a matrix with element

(i, j) equal to ∂f(~x,~u)j

∂~xi . Similarly,
(
∂G̃
∂ ~w

)ij
= ∂G̃j

∂ ~wi , and
(
∂G̃
∂ ~w

)
t

is this matrix evaluated at (~xt, ~w).
Then, using this notation and the implied matrix products,

the VGL(λ) algorithm can be defined as a weight update of
the form:

∆~w = α
∑
t

(
∂G̃

∂ ~w

)
t

Ωt(G
′
t − G̃t) (2)

where α is a small positive learning rate; G̃t is the critic gradi-
ent; and G′t is the “target value gradient” defined recursively
by:

G′t =

(
DU

D~x

)
t

+ γ

(
Df

D~x

)
t

(
λG′t+1 + (1− λ)G̃t+1

)
(3)

with G′t =
(
∂U
∂~x

)
t

at any terminal state; where λ ∈ [0, 1] is a
constant; where Ωt is an arbitrary positive definite matrix of
dimension (dim ~x× dim ~x); and where D

D~x is shorthand for

D

D~x
≡ ∂

∂~x
+
∂A

∂~x

∂

∂~u
; (4)

1This is the opposite of a common convention.

and where all of these derivatives are assumed to exist. We
ensure the recursion in eq. 3 converges by requiring that
either γλ < 1, or the environment is such that the agent is
guaranteed to reach a terminal state at some finite time (i.e.
the environment is “episodic”). Equations 2, 3 and 4 define the
VGL(λ) algorithm. Section II-B gives further implementation
details and pseudocode.

The target value-gradients, G′, are so called because the
VGL objective is to achieve G̃t = G′t for all t along a
trajectory. This objective ensures a locally extremal, and often
locally optimal, trajectory (as proven by [11]), when combined
with a greedy policy. It should be noted that this objective is
not straightforward to achieve since the targets G′t are moving
ones and are highly dependent on ~w (especially when a greedy
policy is being used, so that then the policy is also indirectly
dependent on ~w). Hence we must use the weight update to
slowly move the approximated gradients towards their targets.

The Ωt matrix was introduced by Werbos for the algorithm
GDHP (e.g. see [15, eq. 32]), which is very closely related to
VGL(λ). It is a free parameter, included for generality, since
the presence of any positive definite matrix here in equation
2 will force every component of G̃t to move towards the
corresponding component of G′t (in any basis). It is often
just taken to be the identity matrix for simplicity. However
for the special choice of

Ωt =


(
∂f
∂~u

)T
t−1

(
∂2Q̃
∂~u∂~u

)−1

t−1

(
∂f
∂~u

)
t−1

for t > 0

0 for t = 0
, (5)

the algorithm VGL(1) is proven to converge for a sufficiently
small learning rate and when used in conjunction with a greedy
policy, under certain smoothness assumptions [11]. Here Q̃ is
the approximate Q Value function defined by

Q̃(~x, ~u, ~w) = U(~x, ~u) + γJ̃(f(~x, ~u), ~w). (6)

A. Action Network Training Algorithm and Greedy Policy

The VGL(λ) algorithm is for training a critic function. To
make the agent learn to behave optimally, the action network
function A(~x, ~z) also needs training. We follow the method
of [10], which uses the following weight update for the action
network at each time step t:

∆~z = −β
(
∂A

∂~z

)
t

((
∂U

∂~u

)
t

+ γ

(
∂f

∂~u

)
t

G̃t+1

)
(7)

where β is a separate learning rate for the action network.
The multiplication by ∂A

∂~z can be done quickly and exactly
by ordinary backpropagation. This weight update can be done
concurrently with the critic weight update, or by iteratively
doing several critic weight updates followed by several action
network weight updates.

The above weight update is equivalent to ∆~z =

−β
(
∂A
∂~z

)
t

(
∂Q̃
∂~u

)
t
, which is direct gradient descent on the

function Q̃(~xt, A(~xt, ~z), ~w) with respect to ~z, where Q̃ is
defined by eq. 6. Consequently the objective of the above
weight update is to achieve

A(~x, ~z) = arg min
~u∈A

(Q̃(~x, ~u, ~w)) ∀~x. (8)

In some circumstances we can omit the action network
altogether and just use the right hand side of equation 8
directly, forming the greedy policy (as in equation 1). This
saves the difficulty of having to simultaneously train the critic
and action networks, which may interfere with each other in
unpredictable ways. Instead it makes the action network appear
to be always fully trained. A greedy policy is only possible
when the right hand side of equation 8 is efficient to compute,
which is common in the continuous time situations described
by [7] or [23, section 2.2]. In this case the greedy policy often
reduces to

(~ut)
i ≡ g

(
−
(
∂U

∂~ui

)
t

− γ
(
∂f

∂~ui

)
t

G̃t

)
, (9)

where g(x) is a chosen sigmoid function, for example a
hyperbolic tangent or logistic function. This greedy policy
equation produces actions that are bound to the range of
g(x), and it is conveniently efficient and differentiable, so
is applicable for use in the VGL(λ) algorithm. We give an
example of this kind of greedy policy in section III-C.

B. Implementation of VGL(λ)

We now give pseudocode for two different ways of imple-
menting the VGL(λ) algorithm - one is for on-line learning
which can be continually applied as trajectories are expanded,
and one is a batch mode implementation which is slightly more
efficient but is only applicable to completed trajectories.

When implementing VGL(λ), the function G̃(~x, ~w) can be
implemented in two different possible ways. Since G̃(~x, ~w)

is defined to be ∂J̃(~x,~w)
∂~x , the appearance of the term ∂G̃

∂ ~w in
equation 2 is defined to mean ∂2J̃

∂ ~w∂~x . We refer to this method of
implementation as using a scalar critic function, J̃(~x, ~w), or a
GDHP style critic. However an alternative, easier, method is to
implement G̃(~x, ~w) directly as the output of a smooth vector
function approximator of output dimension dim(~x). In this
case the scalar function J̃(~x, ~w) is never actually needed in
VGL(λ). We refer to this alternative method of implementation
as using a vector critic function, G̃(~x, ~w), or as using a DHP
style critic. Either of these two approaches is a valid way to
implement the VGL(λ) algorithm.

Algorithm 1 makes a direct implementation of VGL(λ)
for episodic environments. It makes a forward pass through
the trajectory, storing all states and actions, followed by a
backward pass through the trajectory accumulating G′t by the
recursion in Eq. 3.

In this implementation, if a neural network is used to
output the function G̃(~x, ~w), then the matrix-vector products
involving ∂G̃

∂ ~w can be calculated in time O(dim(~w)), by using
backpropagation. Similarly, if G̃ ≡ ∂J̃

∂ ~w , where J̃ is the
scalar output of a neural network, then the matrix product
involving second order derivatives ∂G̃

∂ ~w can still be evaluated
in the same time, by using methods analogous to those of

Algorithm 1 VGL(λ). Batch-mode implementation for
episodic environments.

1: t← 0
2: {Unroll trajectory...}
3: while not terminated(~xt) do
4: ~ut ← A(~xt, ~z)
5: ~xt+1 ← f(~xt, ~ut)
6: t← t+ 1
7: end while
8: F ← t
9: ~p←

(
∂U
∂~x

)
t
, ∆~w ← ~0, ∆~z ← ~0

10: {Backwards pass...}
11: for t = F − 1 to 0 step −1 do
12: G′t ←

(
∂U
∂~x

)
t

+ γ
(
∂f
∂~x

)
t
~p

+
(
∂A
∂~x

)
t

((
∂U
∂~u

)
t

+ γ
(
∂f
∂~u

)
t
~p
)

13: ∆~w ← ∆~w +
(
∂G̃
∂ ~w

)
t
Ωt

(
G′t − G̃t

)
14: ∆~z ← ∆~z −

(
∂A
∂~z

)
t

((
∂U
∂~u

)
t

+ γ
(
∂f
∂~u

)
t
G̃t+1

)
15: ~p← λG′t + (1− λ)G̃t
16: end for
17: ~w ← ~w + α∆~w
18: ~z ← ~z + β∆~z

[24]. The matrix products involving ∂A
∂~x can also be evaluated

quickly using backpropagation. Hence the whole algorithm
takes O(n) operations per time step of the trajectory, where
n = max(dim(~w),dim(~z)).

For non-episodic environments, Algorithm 2 gives an on-
line implementation of VGL(λ). Unlike the previous algo-
rithm, this one does not require that the trajectory reaches
a terminal state before the weight update can be applied.
This algorithm runs in a slower time of O(dim(~w) dim(~x)2)
operations per time step of the trajectory, and its derivation
is given by [11, Appendix B]. In the case of λ = 0, the
algorithm can be optimised to remove the variable E, and
then the algorithmic complexity drops to be the same as that
of Algorithm 1.

Neither algorithm attempts to learn the value gradient at the
final time-step of a trajectory since it is prior knowledge that
the target value gradient is always ∂U

∂~x at any terminal state.
Hence we assume the function approximator for G̃(~x, ~w) has
been designed to explicitly return ∂U

∂~x for all terminal states ~x.
Both algorithms incorporate the action network weight

update of equation 7. If a different actor weight update scheme
was needed then these lines could be moved or replaced, and
similarly if a greedy policy was used then these lines would
be removed.

C. Relationship to TD(λ)

TD(λ), and its related algorithms Sarsa(λ) and Q(λ), are
important learning algorithms of RL [25], [5]. VGL(λ) was
adapted from these algorithms to improve efficiency of learn-
ing of control problems in continuous spaces, where the model
functions are known, and where a critic function must be

Algorithm 2 VGL(λ). On-line implementation.

1: E ← 0 {E ∈ <dim(~w)×dim(~x) is an “eligibility trace”
workspace matrix.}

2: t← 0
3: while not terminated(~xt) do
4: ~ut ← A(~xt, ~z)
5: ~xt+1 ← f(~xt, ~ut)
6: ~δ ←

(
∂U
∂~x

)
t

+
(
∂A
∂~x

)
t

(
∂U
∂~u

)
t

+γ
((

∂f
∂~x

)
t

+
(
∂A
∂~x

)
t

(
∂f
∂~u

)
t

)
G̃t+1 − G̃t

7: E ← E +
(
∂G̃
∂ ~w

)
t
Ωt

8: ~w ← ~w + αE~δ
9: E ← λγE

((
∂f
∂~x

)
t

+
(
∂A
∂~x

)
t

(
∂f
∂~u

)
t

)
10: ~z ← ~z − β

(
∂A
∂~z

)
t

((
∂U
∂~u

)
t

+ γ
(
∂f
∂~u

)
t
G̃t+1

)
11: t← t+ 1
12: end while

learned by a neural network. Hence the VGL(λ) algorithm
has a very similar form to that of TD(λ).

For a given trajectory, the following critic weight update is
equivalent to the TD(λ) algorithm:

∆~w = α
∑
t

(
∂J̃

∂ ~w

)
t

(J ′t − J̃t) (10)

where J ′ is defined recursively by

J ′t = Ut + γ
(
λJ ′t+1 + (1− λ)J̃t+1

)
(11)

with J ′t = Ut at any terminal state, and where λ ∈ [0, 1] is
a fixed global constant. For convergence of this recursion we
require that either γλ < 1, or the environment is episodic,
just like the recursion in equation 3. To understand the
equivalence of this weight update to the TD(λ) algorithm
originally described by [4], first we note that J ′ as defined
by equation 11 is identical to the “λ-return” of [5], as proven
by [11, Appendix A]. Hence equation 10 is an application of
what [3] describe as the “forwards view of TD(λ)”, and hence
is equivalent to the TD(λ) weight update (see [11, Appendix
A] for further details).

Since J ′t is defined for an arbitrary trajectory, we can
rewrite its recursive definition as

J ′(~xt, ~w, ~z) =U(~xt, A(~xt, ~z)) + γ (λJ ′(f(~xt, A(~xt, ~z)), ~w)

+(1− λ)J̃(f(~xt, A(~xt, ~z)), ~w)
)

(12)

We can now obtain the relationship of VGL(λ) to TD(λ).
Differentiating equation 12 fully with respect to ~xt (and
applying the chain rule, ~ut = A(~xt, ~z), ~xt+1 = f(~xt, ~ut),
G̃ ≡ ∂J̃

∂~x and trajectory shorthand notation) produces the
same recursion as equation 3. This proves that G′ ≡ ∂J ′

∂~x .
Furthermore, replacing all of the terms J̃ and J ′ in the TD(λ)
weight update by their derivatives with respect to ~x produces
the VGL(λ) weight update (with Ωt ≡ I). Hence VGL(λ)
is a differentiated form of TD(λ); whereas TD(λ) attempts

to learn values, VGL(λ) attempts to learn value gradients.
The reason VGL(λ) does this is because value-gradients are
what the greedy policy uses to decide which actions to take
(for example see equation 9, or see section I-A for a further
discussion).

D. Relationship to Dual Heuristic Dynamic Programming

The algorithm Dual Heuristic Dynamic Programming
(DHP) by [8] and described more recently by [10], [1] is
identical to VGL(0) with a vector critic. The DHP algorithm
has been designed with similar motivations as ours, and pre-
dates our work. Our implementation VGL(λ) generalises it to
include a bootstrapping parameter λ analogous to that used in
TD(λ). The relationship of DHP to VGL(λ) is identical to the
relationship of TD(0) to TD(λ).

The algorithm Globalized Dual Heuristic Dynamic Pro-
gramming (GDHP) is identical to a weight update that is a
linear combination of VGL(0) with a scalar critic and TD(0).

III. EMPIRICAL RESULTS

We describe neural network experiments for two control
problems: a simple quadratic optimisation problem and a verti-
cally moving spacecraft simulation. We show the performance
of VL versus VGL methods, and also investigate the effects
of varying the λ parameter and Ωt matrix.

A. Quadratic Optimisation Problem

We now describe a quadratic optimisation experiment using
an actor-critic architecture, and compare the effectiveness of
VGL(λ) to TD(λ) in the situation of both noisy and deter-
ministic policies. This shows the motivation for VGL based
methods in that they work very quickly and that they can
do local exploration even while only following deterministic
trajectories.

We define an environment with ~x = x ∈ < and ~u = u ∈ <,
and model and cost functions:

f (x, t, u) = x+ u

U (x, t, u) = (u)2

Each trajectory is defined to terminate on arriving at time
step t = 2, and on termination a final instantaneous cost of
U(~x) = (x)2 is given. The only actions used in the trajectory
are u0 and u1; the total cost for this trajectory is (u0)2 +
(u1)2 + (x0 +u0 +u1)2, and the theoretical optimal total cost
for the whole trajectory is J∗ = (x0)2/3.

The action network was a multi-layer perceptron (MLP, see
[26] for details) with two inputs, one output and one hidden
layer of 4 nodes, shortcut connections from the input layer to
the output layer, and with activation function g(x) = tanh(x)
at all nodes. The weights ~z were initially randomised uni-
formly from the range [-0.1, 0.1]. The critic network J̃(~x, ~w)
was a scalar critic, so that in this implementation, VGL(0) is
equivalent to GDHP. The critic was identically dimensioned
to the action network, with a weight vector ~w randomised
initially in the same way. The activation function used for the
critic was g(x) = tanh(x) at all nodes except for the output

node, which used g(x) = x. The input vector to each neural
network was (x, t).

Each trajectory was made to start at x0 = 0.8. Learning
rates for the critic and actor were both α = 0.1 and β = 0.1,
respectively, with discount factor γ = 1. To provide the facility
for exploration, Gaussian noise with mean zero and variance
σ2 was added to the output of the action network to form the
policy function, A(~x, ~z).

The critic learning algorithms tested were TD(1), TD(0),
VGL(1) and VGL(0). The action network’s weight update
was done by equation 7 in all experiments. We repeated the
experiments with noise (σ = 0.01) and without noise (σ = 0).
Results averaged from 40 trials for each algorithm are shown
in figure 1. The results show that the value-learning method
(TD(λ)) could not cope without some random exploration,
but the VGL based methods (GDHP and VGL(λ)) work
successfully for both σ values used. Also, in comparison
to the value learning methods, VGL methods are very fast.
On the other-hand VGL methods require knowledge of the
model functions (in order to use their derivatives), whereas VL
methods do not. But when the model functions are available,
the increased speed and automatic local exploration provides
a strong motivation to use VGL methods.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

1 10 100 1000 10000

J-
J*

Iterations

Results without Policy Noise (σ = 0)

VGL(0)
VGL(1)

TD(0)
TD(1)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

1 10 100 1000 10000

J-
J*

Iterations

Results with Policy Noise (σ = 0.01)

VGL(0)
VGL(1)

TD(0)
TD(1)

Fig. 1. Algorithm performances for the quadratic optimisation problem of
section III-A, both with and without policy noise. The y axis shows J − J∗,
where J∗ is the optimal trajectory cost. Compared to the VL method (TD(λ)),
the VGL method works well in the absence of stochastic exploration, and
quickly attains J = J∗. The VL method fails without stochastic exploration
here (i.e. it converges to a suboptimal policy), but does learn slowly and
successfully in the presence of policy noise.

B. Vertical Spacecraft Problem

In this section we consider a neural network controlled
spacecraft.

A spacecraft of mass m is dropped in a uniform gravita-
tional field. The spacecraft is constrained to move in a vertical
line, and a single thruster is available to make upward acceler-
ations. The state vector of the spacecraft is ~x = (h, v, t)T and

has three components: height (h), velocity (v) and time step
(t). The action vector is one-dimensional (so that ~u ≡ u ∈ <)
producing accelerations u ∈ [0, 1]. The Euler method with
time-step ∆t is used to integrate the equation of motion, giving
the model function:

f((h, v, t)T , u) =(h+ v∆t, v + (u− kg)∆t, t+ 1)T

Here, kg = 0.2 is a constant giving the acceleration due to
gravity (which is less than the range of u; so the spacecraft
can overcome gravity easily). ∆t was chosen to be 0.4.

A trajectory is defined to last exactly 200 time steps. A final
impulse of cost equal to

U(~x) =
1

2
mv2 +m(kg)h (14)

is given on completion of the trajectory. This cost penalises the
total kinetic and potential energy that the spacecraft has at the
end of the trajectory. This means the task is for the spacecraft
to lose as much mechanical energy as possible throughout the
duration of the trajectory, to prepare for a gentle landing. The
optimal strategy for this task is to leave the thruster switched
off for as long as possible in the early stages of the journey,
so as to gain as much downward speed as possible and hence
lose as much potential energy as possible, and at the end of
the journey produce a burst of continuous maximum thrust to
reduce the kinetic energy as much as possible.

In addition to the cost received at termination by equation
14, a cost is also given for each non-terminal step. This cost
is

U(~x, u) =c

(
1

2
ln(2− 2u)− u arctanh(1− 2u)

)
∆t (15)

where c = 0.02 is constant. This cost function is designed to
ensure that the actions chosen will satisfy u ∈ [0, 1], even if
a greedy policy is used. We explain how this cost function
was derived, and how it can be used in a greedy policy, in
section III-C, but first we describe experiments that did not
use a greedy policy.

A DHP-style critic, G̃(~x, ~w), was provided by a fully
connected MLP with 3 input units, two hidden layers of
6 units each, and 3 units in the output layer. Additional
short-cut connections were present fully connecting all pairs
of layers. The weights were initially randomised uniformly
in the range [−.1, .1]. The activation functions were logis-
tic sigmoid functions in the hidden layers, and the identity
function in the output layer. The input to the MLP was
(h/1600, v/40, t/200)

T and the output gave G̃ directly.
The action network was identical in design to the critic,

except there was only one output node, and this had a logistic
sigmoid function as its activation function. The output of the
action network gave the spacecraft’s acceleration u directly.

The mass of the spacecraft used was m = 0.02. This kept
the magintude of J quite small so that no rescaling was needed
on the critic’s output. In all of the experiments we made the
trajectory always start from h = 1600, v = −2, and used
discount factor γ = 1.

Results using the actor-critic architecture and Algorithm 1
are given in figure 2 comparing the performance of VGL(1)
and VGL(0) (DHP). Each curve shows algorithm performance
averaged over 40 trials.

The graphs show that the VGL(1) algorithm produces a
lower total cost J than the VGL(0) algorithm does, and does
it faster. It is thought that this is because in this problem the
major part of the total cost comes as a final impulse, so it is
advantageous to have a long look-ahead (i.e. a high λ value)
for fast and stable learning.

For the actor-critic learning we chose the learning rate of
the actor to be high compared to the learning rate for the critic
(i.e. β > α). This was to make the results comparable to those
of a greedy policy which we try in the next section.

0

5

10

15

20

1 10 100 1000 10000 100000

J

Iterations

VGL(0) and VGL(1) using Actor-Critic

VGL(0)
VGL(1)

Fig. 2. VGL(0) (i.e. DHP) and VGL(1), with Actor-Critic, using learning
rates α = 10−6 and β = 0.01.

C. Vertical Spacecraft Problem with Greedy Policy

The cost function of equation 15 was derived to form an
efficient greedy policy, by following the method of [7]. First
we chose the sigmoid function g(x) that we would like the
greedy policy of equation 9 to use. This was chosen to be

g(x) =
1

2
(tanh(x/c) + 1).

The choice of c affects the sharpness of this sigmoid function.
Using this chosen sigmoid function, the cost function based
on [7] is defined to be

U(~x, u) = ∆t

∫
g−1(u)du. (16)

Note that solving this integral gives equation 15. Then to
derive the greedy policy for this cost function, we make a
first order Taylor series expansion of the Q̃(~x, ~u, ~w) function
(eq. 6) about the point ~x:

Q̃(~x, ~u, ~w) ≈ U(~x, ~u) + γ

(∂J̃
∂~x

)T
(f(~x, ~u)− ~x) + J̃(~x, ~w)


= U(~x, ~u) + γ

(
G̃(~x, ~w)

)T
(f(~x, ~u)− ~x) + γJ̃(~x, ~w)

(17)

This approximation becomes exact in continuous time, i.e. in
the limit as ∆t → 0. The greedy policy must minimise Q̃,
hence we differentiate equation 17 to get(

∂Q̃

∂u

)
t

=

(
∂U

∂u

)
t

+ γ

(
∂f

∂u

)
t

G̃t by eq. 17

= g−1(ut)∆t+ γ

(
∂f

∂u

)
t

G̃t by eq. 16

For a minimum, we must have ∂Q̃
∂u = 0, which, since ∂f

∂u is
independent of u, gives ut = g

(
− γ

∆t

(
∂f
∂u

)
t
G̃t

)
. This is a

variation on equation 9, and we used it as the greedy policy for
the experiments in Figure 3. The results show similar relative
performance of VGL(1) versus VGL(0) as in the actor-critic
experiments, and both algorithms are faster than when an actor
was used. This indicates that in this experiment, the greedy
policy derived can successfully replace the action network,
raising efficiency, and without any apparent detriment.

0

5

10

15

20

1 10 100 1000 10000

J

Iterations

VGL(0) and VGL(1) using a Greedy Policy

VGL(0)
VGL(1)

Fig. 3. VGL(0) (i.e. DHP) and VGL(1), with a greedy policy, using a learning
rate α = 10−6.

0

5

10

15

20

0 200 400 600 800 1000 1200 1400

J

Iterations

VGL(0) using RPROP and a Greedy Policy

0

5

10

15

20

0 200 400 600 800 1000 1200 1400

J

Iterations

VGL(1) using RPROP and a Greedy Policy

0

5

10

15

20

0 200 400 600 800 1000 1200 1400

J

Iterations

VGLΩ(1) using RPROP and a Greedy Policy

Fig. 4. VGL(0), VGL(1) and VGLΩ(1), with a greedy policy, using RPROP.
Each graph shows the performance of a learning algorithm for each of five
different weight initialisations; hence the ensemble of curves in each graph
gives some idea of an algorithm’s reliability and volatility.

Using a greedy policy, there are no longer two mutually

interacting neural networks whose training could be interfering
with each other. With the simpler architecture of just one
neural network (the critic) to contend with, we attempt to
speed up learning using RPROP [27]. Results as shown in
figure 4. It seems the aggressive acceleration by RPROP can
cause large instability in the VGL(1) and DHP algorithms.
This is because neither of these two algorithms is true gradient
descent when used with a greedy policy [16]. However when
the Ωt matrix defined by equation 5 is used with λ = 1, giving
the algorithm that we will refer to as VGLΩ(1), the resulting
algorithm is true gradient descent. It is gradient descent on
J , as proven by [11]. The performance of this algorithm is
shown in the bottom graph of Figure 4, and this shows the
minimum being reached stably and many times quicker than
in the actor-critic or non-RPROP case.

This represents a significant breakthrough in making learn-
ing with a greedy policy exhibit reliable and monotonic
progress. The Ωt equation that achieves this is only proven
to work for VGL(1), and counterexamples exist for its use
with DHP [16].

IV. CONCLUSIONS

We have defined the VGL(λ) algorithm and explained
its relationship to its precursor algorithms DHP and TD(λ).
VGL(λ) can be viewed as a differentiated form of TD(λ);
whereas TD methods learn values, VGL methods learn value-
gradients. VGL(λ) extends the DHP algorithm by introducing
a bootstrapping parameter, λ, which can affect learning speed
and stability.

We have described the motivations for using VGL based
methods (including DHP) in comparison to VL methods.
These are that local exploration is automatic; VGL methods
can be many times faster than VL methods; and VGL methods
work naturally in continuous state spaces. The experiments
confirmed these motivations, showing success for VGL in
environments when no exploration is used and where VL
methods fail. The experiments also demonstrate that VGL
methods can be many times faster than VL methods. However,
unlike VL methods, VGL methods require that the model
functions are differentiable, and known or learnable.

Learning value-gradients is theoretically motivated since
value-gradients can drive a greedy policy (e.g. as in equation
9), and the greedy policy equation (in the form of equation
1) must be satisfied if Bellman’s Optimality Principle is to
apply; so explicitly learning value-gradients is a very direct
way to achieve optimal trajectories, without the need for local
exploration.

The experiments demonstrated that when the special Ωt
matrix of equation 5 is used, then the VGLΩ(1) algorithm
can produce very stable learning with a greedy policy. This
is a proven convergent critic learning algorithm, under certain
smoothness assumptions, with a general function approximator
and a greedy policy.

REFERENCES

[1] F.-Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming:
An introduction,” IEEE Computational Intelligence Magazine, vol. 4,
no. 2, pp. 39–47, 2009.

[2] R. E. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton
University Press, 1957.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, Massachussetts, USA: The MIT Press, 1998.

[4] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine Learning, vol. 3, pp. 9–44, 1988.

[5] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, Cambridge University, 1989.

[6] C. Kwok and D. Fox, “Reinforcement learning for sensing strategies,”
in Proceedings of the International Confrerence on Intelligent Robots
and Systems (IROS), 2004.

[7] K. Doya, “Reinforcement learning in continuous time and space,” Neural
Computation, vol. 12, no. 1, pp. 219–245, 2000.

[8] P. J. Werbos, “Approximating dynamic programming for real-time
control and neural modeling.” in Handbook of Intelligent Control, D. A.
White and D. A. Sofge, Eds. New York: Van Nostrand Reinhold, 1992,
ch. 13, pp. 493–525.

[9] S. Ferrari and R. F. Stengel, “Model-based adaptive critic designs,” in
Handbook of learning and approximate dynamic programming, J. Si,
A. Barto, W. Powell, and D. Wunsch, Eds. New York: Wiley-IEEE
Press, 2004, pp. 65–96.

[10] D. Prokhorov and D. Wunsch, “Adaptive critic designs,” IEEE Transac-
tions on Neural Networks, vol. 8, no. 5, pp. 997–1007, 1997.

[11] M. Fairbank and E. Alonso, “The local optimality of reinforcement
learning by value gradients, and its relationship to policy gradient
learning,” CoRR, vol. abs/1101.0428, 2011. [Online]. Available:
http://arxiv.org/abs/1101.0428

[12] L. S. Pontryagin, V. G. Boltayanskii, R. V. Gamkrelidze, and E. F.
Mishchenko, The Mathematical Theory of Optimal Processes (Trans-
lated from Russian). Wiley, 1962, vol. 4.

[13] M. Fairbank and E. Alonso, “A comparison of learning speed and ability
to cope without exploration between DHP and TD(0),” in Proceedings
of the IEEE International Joint Conference on Neural Networks 2012
(IJCNN’12). IEEE Press, June 2012, pp. 1478–1485.

[14] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference
learning with function approximation,” IEEE Transactions on Automatic
Control, Tech. Rep., 1996.

[15] P. J. Werbos, “Stable adaptive control using new critic designs,” eprint
arXiv:adap-org/9810001, 1998.

[16] M. Fairbank and E. Alonso, “The divergence of reinforcement learning
algorithms with value-iteration and function approximation,” in Proceed-
ings of the IEEE International Joint Conference on Neural Networks
2012 (IJCNN’12). IEEE Press, June 2012, pp. 3070–3077.

[17] P. J. Werbos, “Backpropagation through time: What it does and how to
do it,” in Proceedings of the IEEE, vol. 78, No. 10, 1990, pp. 1550–1560.

[18] P. J. Werbos, T. McAvoy, and T. Su, “Neural networks, system identi-
fication, and control in the chemical process industries.” in Handbook
of Intelligent Control, D. A. White and D. A. Sofge, Eds. New York:
Van Nostrand Reinhold, 1992, ch. 10, pp. 283–356.

[19] A. Y. Ng, H. J. Kim, M. I. Jordan, and S. Sastry, “Inverted autonomous
helicopter flight via reinforcement learning,” in International Symposium
on Experimental Robotics. MIT Press, 2004.

[20] R. Munos, “Policy gradient in continuous time,” Journal of Machine
Learning Research, vol. 7, pp. 413–427, 2006.

[21] G. K. Venayagamoorthy and D. C. Wunsch, “Dual heuristic program-
ming excitation neurocontrol for generators in a multimachine power
system,” IEEE Transactions on Industry Applications, vol. 39, pp. 382–
394, 2003.

[22] G. G. Lendaris and C. Paintz, “Training strategies for critic and action
neural networks in dual heuristic programming method,” in Proceedings
of International Conference on Neural Networks, Houston, 1997.

[23] M. Fairbank, “Reinforcement learning by value gradients,” CoRR, vol.
abs/0803.3539, 2008. [Online]. Available: http://arxiv.org/abs/0803.3539

[24] B. A. Pearlmutter, “Fast exact multiplication by the Hessian,” Neural
Computation, vol. 6, no. 1, pp. 147–160, 1994.

[25] G. Rummery and M. Niranjan, “On-line q-learning using connection-
ist systems,” Tech. Rep. Technical Report CUED/F-INFENG/TR 166,
Cambridge University Engineering Department, 1994.

[26] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford
University Press, 1995.

[27] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” in Proc. of the IEEE
Intl. Conf. on Neural Networks, San Francisco, CA, 1993, pp. 586–591.

