

City, University of London Institutional Repository

Citation: Gashi, I., Popov, P. T. & Strigini, L. (2004). Fault diversity among off-the-shelf

SQL database servers. Paper presented at the International Conference on Dependable
Systems and Networks, 28 Jun - 1 Jul 2004.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/522/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Fault Diversity among Off-The-Shelf SQL Database Servers

Ilir Gashi, Peter Popov, Lorenzo Strigini

Centre for Software Reliability,

City University,

Northampton Square

London, EC1V 0HB

i.gashi@city.ac.uk, ptp@csr.city.ac.uk, strigini@csr.city.ac.uk

Abstract
Fault tolerance is often the only viable way of obtaining

the required system dependability from systems built out

of “off-the-shelf” (OTS) products. We have studied a

sample of bug reports from four off-the-shelf SQL servers

so as to estimate the possible advantages of software fault

tolerance - in the form of modular redundancy with

diversity - in complex off-the-shelf software. We checked

whether these bugs would cause coincident failures in

more than one of the servers. We found that very few bugs

affected two of the four servers, and none caused failures

in more than two. We also found that only four of these

bugs would cause identical, undetectable failures in two

servers. Therefore, a fault-tolerant server, built with

diverse off-the-shelf servers, seems to have a good chance

of delivering improvements in availability and failure

rates compared with the individual off-the-shelf servers or

their replicated, non-diverse configurations.

1. Introduction

When systems are built out of “off-the shelf” (OTS)

products, fault tolerance is often the only viable way of

obtaining the required system dependability [23, 30, 12].

Fault tolerance may take multiple forms, from simple

error detection and recovery add-ons (e.g. wrappers [22])

to full-fledged “diverse modular redundancy” [16]:

replication with diverse versions of the components.

Even this latter class of solutions becomes affordable with

many OTS products and has the advantage of a fairly

simple architecture. The cost of procuring two or even

more OTS products (some of which may be free) would

still be far less than that of developing one’s own.

All these design solutions are well known from the

literature. The questions, for the developers of a system

using OTS components, are about the dependability gains,

implementation difficulties and extra cost that they would

bring for that specific system.

To study the issues for a realistic category of OTS

products we have chosen SQL database servers. These are

complex products, with many faults in each release, and

even features that imply an accepted possibility of an

incorrect behaviour, albeit rare. An example of the latter

is the known “write skew” [3] problem with some

optimistic concurrency control architectures [7]. Further

dependability improvement of OTS SQL servers seems

only possible if fault tolerance through design diversity is

used [11]. Given the many available OTS SQL servers

and the standardisation of their functionality (SQL 92 and

SQL 99), it seems reasonable to build a fault-tolerant

SQL server from available OTS servers.

The effort of developing an SQL server using design

diversity (e.g. several of-the-shelf SQL servers and

suitably adapted “middleware” for replication

management) would require strong evidence of its

usefulness: for example empirical evidence that likely

failures of the SQL servers, which may lead to serious

consequences, are unlikely to be tolerated without

diversity. This paper starts to investigate such empirical

evidence. We seek to demonstrate whether design

diversity has a potential to deliver significant

improvement of dependability of SQL servers, compared

to solutions for data replication that can only tolerate

crash failures. To this aim we are running experiments to

determine the dependability gains achieved through fault

tolerance.

A preliminary evaluation step concerns fault diversity

rather than failure diversity. By manual selection of test

cases, one can check whether the diverse redundant

configuration would tolerate the known bugs in the

repositories of bugs reported for the various OTS servers.

We have conducted a study on four SQL servers, both

commercial and open-source. We collected known bug

reports for these servers. For each bug, we took the test

case that would trigger it and ran it on all four servers (if

possible), to check for coincident failures. We found the

number of coincident failures to be very low.

We use the following terminology. The known bugs

for the OTS servers are documented in bug report

repositories (i.e. bug databases, mailing lists etc). Each

bug report contains the description of what the bug is and

the bug script (SQL code that contains the failure

triggering conditions) required to reproduce the failure

(the erroneous output that the reporter of the bug

observed). In our study we collected these bug reports and

ran the bug scripts in the servers (we will use the phrase

“running a bug” for the sake of brevity).

This paper is structured as follows: In Section 2 we

describe the background and motivation of the study and

related work from the literature. In Section 3 we describe

how the study was conducted and the terminology for

classification of faults. In Section 4 we present the

quantitative results obtained. In Section 5 we describe the

bugs that caused coincident failures. In Section 6 we

discuss the possible reliability gains to be had from using

diverse OTS SQL servers and in Section 7 we present

conclusions and possible further work.

2. Background and related work

2.1. Fault tolerance in databases

Software fault tolerance has been thoroughly studied

and successfully applied in many sectors, including

databases. For example, standard database mechanisms

such as transaction “rollback and retry” and

“checkpointing” can be used to tolerate faults that are due

to transient conditions. These techniques can be used with

or without data replication in the databases.

There are many solutions for data replication [4, 33,

20], as a feature of many commercial SQL servers or as

middleware that can be used with a variety of SQL

servers. Typically, these replication solutions work with

sets of identical servers. Jimenez-Peris et al [13] present a

relevant discussion of the various ways in which database

replication with OTS servers can be organised, namely

treating the servers as white, grey or black boxes. All

commercial offerings are of the white-box kind, where

code necessary for replication is added inside the server

product. The grey-box approach, as implemented in [14],

assumes that servers provide specific services to assist

with replication. The black-box approach uses the

standard interfaces of the servers. Both the grey and black

box approaches are implemented via middleware on top

of the existing servers. To the best of our knowledge, a

common assumption is made in the known replication

solutions that the SQL servers will fail in a “fail-stop”

manner [26], with detectable clean crashes, and leaving a

copy of a correct state for use in recovery. Apart from

simplifying the protocols for data replication, the

assumption of crash failures also allows for some

performance optimisation such as executing the

modifying queries on a single server, which then

propagates the updates to all other servers involved in the

replication, a solution considered adequate by the

standardising bodies [28].

These approaches have shortcomings, i.e., they do not

protect against failures that are not easily detectable (non-

fail-stop), and incorrect updates would be propagated to

all the replicas. Using diverse SQL servers instead of

servers of the same type would improve error detection

and thus reduce the risk from incorrect results.

Availability could also be improved because servers that

are diagnosed as correct can continue operation while

recovery is performed on the faulty server[s]. Elsewhere

[21, 9] we describe some initial steps toward
implementing middleware for data replication with

diverse SQL servers. There, we also discuss some

difficulties of data replication with diverse servers, such

as the need to use the subset of SQL that is common to all

servers used, and to translate all queries into the SQL

“dialects” of these servers.

2.2. Studies of faults and failures

The usefulness of diversity depends on the frequency

of those failures that cannot be tolerated without it. There

have been comparatively few related studies.

Gray studied the TANDEM NonStop system [10] and

observed that over an (unspecified) measured period only

one out of 132 faults caused failures deterministically, i.e.

the same failure was observed on retry. Gray calls these

“Bohrbugs”. The others, which he calls “Heisenbugs”

only caused failures under special conditions (e.g. created

by a combination of the state of the operating system and

other software), difficult to reproduce artificially.

Heisenbugs – so long as their failures are detected – can

be tolerated by replication without diversity, as in the

Tandem system. A later study, [17] of field software

failures for the Tandem Guardian90 operating system

found that 82 % of the reported field software faults were

tolerated. However, 18 % of the faults did lead to both

non-diverse processes in a Tandem process failing and

therefore leading to a system failure.

Related studies exist on determinism and fail-stop

properties of database failures, but they, like our study,

concern faults rather than failure measurements. A study

[5] examined fault reports of three applications (Apache

Web server, GNOME and MySQL server). Only a small

fraction of the faults (5-14%) were Heisenbugs triggered

by transient conditions that would be tolerated by a

simple “rollback and retry” approach. However the reason

why there are few Heisenbugs here, and indeed in our

study, might be that people are less likely to report faults

that they cannot reproduce, and this is acknowledged by

the authors in [5]. In another study [6] the same authors

found (via fault injection) that a significant number of

faults (7%) violated the fail-stop model by writing

incorrect data to stable storage. Even though they report

that this number falls to 2% when applying the Postgres95

transaction mechanism, this number still remains high for

applications with stringent reliability requirements.

2.3. Diversity with off-the-shelf applications

Other researchers have also considered the potential of

diversity for improving the dependability of OTS

software. Various architectures have been proposed that

use diversity for intrusion tolerance: e.g. HACQIT [25],

which demonstrates diverse replication (with two OTS

web servers - Microsoft’s IIS and Apache web server) to

detect failures (especially maliciously caused ones) and

initiate recovery; SITAR [32], an intrusion tolerant

architecture for distributed services and especially COTS

servers; or the Cactus architecture [12], intended to

enhance survivability of applications which support

diversity among application modules.

In another example, [2] uses diverse Java virtual

machines for interoperability rather than for tolerating

failures.

3. Description of the study

3.1. Bug reports

Two commercial (Oracle 8.0.5 and Microsoft SQL

Server 7 (without any service packs applied)) and two

open-source (PostgreSQL Version 7.0.0 and Interbase

Version 6.0), SQL servers were used in this study.

Interbase, Oracle and MSSQL were all run on the

Windows 2000 Professional operating system, whereas

PostgreSQL (which is not available for Windows) was

run on RedHat Linux 6.0 (Hedwig).

We only used bugs that caused failure of a server’s

core engine. We did not consider other bugs such as those

that caused failure to a client application tool or various

connectivity API’s (JDBC/ODBC etc.), because these

functions in a future fault tolerant architecture would be

provided by the middleware.

For each of these servers there is an accessible

repository of reports of known bugs. We collected:

Interbase bugs [27] reported in the period between August
2000 and August 2001; PostgreSQL bugs [24] reported
between May 2000 and January 2001; Oracle bugs [19]

reported between September 1998 and December 2002.

Bug reports for MSSQL [18] do not specify dates; we

used all reports for both MSSQL 7 and MSSQL 2000,

available as of August 2003, that included “bug scripts”

and were core engine bugs. For Oracle and MSSQL we

collected reports from longer periods, because for these

two servers (both “closed development” servers) some

reports do not include bug scripts and we could not check

whether the bug was present in other servers. By

extending the collection period we obtained reasonably

large (though obviously imperfect) samples of bug

reports. Despite this, the sample that we could use for

Oracle contained only 18 bugs, since most reports omitted

the bug scripts.

For each reported bug we attempted to run the

corresponding bug script. Full details are available in [8].

3.2. Reproducibility of failures

All these servers offer features that are extensions to

the basic SQL standard, and these extensions differ

between the servers. Bugs affecting one of these

extensions thus literally cannot exist in a server that lacks

the extension. We called these “dialect-specific” bugs.

For example, Interbase bug 217138 [8] uses the UNION
operator in views, which PostgreSQL 7.0.0 views do not

offer, and thus cannot be run in PostgreSQL: it is a

dialect-specific bug.

Another “reproducibility” issue arises when a bug

script does not cause failure in the server for which the

bug was reported. We called these bugs Heisenbugs,

borrowing Gray’s terminology [10]. We intend to run the

Heisenbugs again in a more stressful simulated

environment [21] (with multiple clients and large number

of transactions) to see whether repeated trials will give

incorrect results.

4. Quantitative results

4.1. Detailed results

In total we included in the study 181 bug reports: 55

for Interbase, 57 for PostgreSQL, 51 for MSSQL and 18

for Oracle. Out of these 181 bugs, 76 were “dialect-

specific” (could be run in only one of the four servers); 47

could be run in all four servers; 26 could be run in only

two servers and 32 in only three servers.

Each bug was first run on the server for which it was

reported, and (after translating the script into the SQL

dialect of the respective server) on the other servers. The

bugs were classified into dialect-specific and non-dialect-

specific bugs; the latter were then further classified into

Bohrbugs or Heisenbugs as explained previously. The

failures were also classified into different categories

according to their effects, as different failure types require

different recovery mechanisms:

Engine Crash failures: crashes or halts of the core engine.

Incorrect Result failures: incorrect outputs without engine

crashes: the outputs do not conform to the server’s

specification or to the SQL standard.

Performance failures: correct output, but with an

unacceptable time penalty for the particular input.

Other failures.

We also classified the failures according to their

detectability by a client of the database servers:

Self-Evident failures: engine crash failures, cases in which

the server signals an internal failure as an exception (error

message) and performance failures.

Non-Self-Evident failures: incorrect result failures,

without server exceptions within an accepted time delay.

Table 1 contains the results of this step of the study.

Each grey column lists the results produced when the

bugs reported for a certain server were run on that server.

For example, we collected 55 known Interbase bugs, of

which, when run on our installation of the Interbase

server, 8 did not cause failures (possible Heisenbugs).

The 47 bugs that caused failures are further classified in

the part of the column below the double vertical lines,

after the “Failure observed” row. All the performance

failures and all the engine crashes are self-evident.

Incorrect Result failures and “Other” failures can be self-

evident or non-self-evident depending on whether the

server gives an error message.

The three columns to the right of the grey one present

the results of running the Interbase bugs on the other three

servers. For example, we can see that 23 of the Interbase

bugs cannot be run in PostgreSQL (dialect-specific bugs).

Then we have the bugs that “require further work”: this

means that we have not managed yet to translate the bug

script in the PostgreSQL dialect of SQL, or are listed as

“performance bugs” but we could not decide whether

performance improves by changing servers. We plan to

resolve this uncertainty via a testing infrastructure [21] to

measure the precise execution times of the queries.

Out of 55 Interbase bugs we managed to run 27 in

PostgreSQL; only one caused a failure in both Interbase

and PostgreSQL. This particular failure was a non-self-

evident incorrect result as can be seen from the table.

As for the failure types, we can see that most of the

bugs cause incorrect result failures. This will be discussed

further in the Section 6.

We observed a higher number of Heisenbugs in

MSSQL and Oracle than in the other servers. This was

documented by some of the bug reports, which indicated:

“may cause a failure”.

Table 1. Results of running the bug scripts on all four servers. IB stands for Interbase, PG
for PostgreSQL, OR for Oracle and MS for MSSQL

 IB PG OR MS PG IB OR MS OR IB MS PG MS IB OR PG

Total bug scripts 55 55 55 55 57 57 57 57 18 18 18 18 51 51 51 51

Bug script cannot be run

(Functionality Missing)
n/a 23 20 16 n/a 32 27 24 n/a 13 13 12 n/a 36 32 31

Further Work n/a 5 4 6 n/a 2 0 0 n/a 1 1 2 n/a 3 7 2

Total bug scripts run 55 27 31 33 57 23 30 33 18 4 4 4 51 12 12 18

No failure observed 8 26 31 31 5 23 30 31 4 4 4 3 12 11 12 12

Failure observed 47 1 0 2 52 0 0 2 14 0 0 1 39 1 0 6

T
y
p
es
 o
f
fa
il
u
re
s

 Poor Performance 3 0 0 0 0 0 0 0 1 0 0 0 6 0 0 0

Engine Crash 7 0 0 0 11 0 0 0 3 0 0 0 5 0 0 0

Incorrect

Result

Self-evident 4 0 0 1 14 0 0 1 3 0 0 0 10 0 0 6

Non-self-evident 23 1 0 1 20 0 0 1 7 0 0 1 17 1 0 0

Other
Self-evident 2 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0

Non-self-evident 8 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0

4.2. Summary of observed fault diversity

Table 2 contains a summary from the viewpoint of the

probable effects on a fault-tolerant server. Of the 47 bugs

that could be run on all four servers, 12 did not cause

failures in any of the servers: they are Heisenbugs for the

server for which they were reported, and non-existent or

Heisenbugs for the other three servers. 31 of these only

caused a failure in the server for which they were reported

and not in the others; and 4 bugs caused a coincident

failure in two servers.

In addition to these 47, we have many bugs that could

be run only on a subset of the four servers and thus on a

fault-tolerant server built out of this subset. The following

sections in the table show the number of bugs that could

be run in each of these different combinations (4 three-

version combinations and 6 two-version combinations),

and how many caused failures or coincident failures.

The last four columns show the 76 dialect-specific

bugs, which could only be run in the server for which

they were reported and therefore affect functionality that

would not be available on a fault-tolerant diverse server.

Table 2. The number of bug scripts run and the effects on different combinations of servers

The server(s) in which the

bug script was run

IB,

PG,

OR,

MS

IB,

PG,

OR

only

IB,

PG,

MS

only

IB,

OR,

MS

only

PG,

OR,

MS

only

IB,

PG

Only

IB,

MS

Only

IB,

OR

Only

PG,

OR

Only

PG,

MS

Only

MS,

OR

Only

IB

Only

PG

Only

MS

Only

OR

Only

Total number of bug scripts

run
47 3 7 12 10 5 3 0 4 12 2 17 18 28 13

Failure not observed in any

server
12 0 1 2 0 0 0 0 0 0 1 1 2 5 3

Failure observed in one

server only
31 3 6 9 9 5 3 0 3 7 1 16 16 23 10

Failure observed in two

servers
4 0 0 1 1 0 0 0 1 5 0 N/A N/A N/A N/A

None of the bugs caused a failure in more than two servers

4.3. Two-version combinations

We now look more closely at the two-version

combinations of the four different servers in our study, to

see how many of the coincident failures are detectable in

the 2-version systems. We define:

Detectable failures: self-evident failures or those where

servers return different incorrect results (the comparison

algorithm must be written to allow for possible

differences in the representation of correct results, e.g.

different numbers of digits in the representation of

floating point numbers, padding of characters in character

strings etc.). All failures affecting only one out of two (or

at most n-1 out of n) versions are detectable.

Non-Detectable failures: the ones for which two (or

more) servers return identical incorrect results.

Table 3 contains a summary of the results on each of

the six possible two-version combinations. Here we only

include bugs that could be run on both servers, i.e. we

exclude dialect-specific bugs. Only four of the 12

coincident failures we observed are non-detectable. We

can see that diversity allows detection of failures for at

least 94% of these bugs.

Table 3. Summary of results for the two-version combinations

Pairs of

servers

Total number

of bug scripts

run

Failure observed

(in at least one

server)

One out of two servers failing Both servers failing

Self-

evident

Non -self-

evident

Non –

Detectable

Detectable

Self-evident Non-self-evident

IB + PG 62 43 17 25 1 0 0

IB + OR 62 29 8 21 0 0 0

IB + MS 69 35 11 21 2 1 0

PG + OR 64 30 13 16 0 0 1

PG + MS 76 46 18 21 1 6 0

OR + MS 71 14 7 7 0 0 0

5. Common faults

We now discuss the bugs that caused coincident

failures, listed in Table 4. We give some details about the

functions affected and conjectures about the probable

severity and frequency of failure as a function of the

environment of use of the server.

There were 13 bugs in total that were originally

reported for one server but caused failure in another. 12

caused a failure in both the server for which they were

reported and another server. One bug (MSSQL bug

report 56775) was reported for MSSQL, did not cause

failure in MSSQL (possible Heisenbug) but did cause

failure in PostgreSQL.

Table 4. Bugs that cause coincident
failures. The table should be read
horizontally to know for which server the
bug was reported, and vertically to know
in which other server it caused a failure.

 IB PG OR MS

IB N/A 1 - (Bug ID 223512) 0
2– (BugID’s
217042(3),

222476)

PG 0 N/A 0
2 – (BugID’s
43 and 77)

OR 0
1 –

(Bug ID 1059835)
N/A 0

MS
1-
(BugID

58544)

5 – (BugID’s 54428,
56516, 58158, 58253,

351180)

0 N/A

Arithmetic-related bugs

PostgreSQL bug report 77 and Oracle bug report

1059835 [8] describe arithmetic precision problems,

causing incorrect result failures. The Oracle bug 1059835

affects the MOD (modular arithmetic) operator, probably

causing higher consequence failures. The failure rates for

these bugs would only be expected to be high in

applications with high use of mathematical functions, not

a typical use of SQL servers.

Bugs affecting complex queries

PostgreSQL bug 43 [8] causes a failure in both

PostgreSQL and MSSQL. The complex SELECT

statement below, with nested sub-queries, causes the

failure:
SELECT P.ID AS ID, P.NAME AS NAME FROM PRODUCT
P WHERE P.ID IN
(SELECT ID FROM PRODUCT WHERE PRICE >= '9.00'
AND PRICE <= '50' AND ID NOT IN
((SELECT PRODUCT_ID FROM PRODUCT_SPECIAL
WHERE START_DATE <= '2000-9-6' AND END_DATE >=
'2000-9-6')
UNION
(SELECT PRODUCT_ID AS ID FROM PRODUCT_SPECIAL
WHERE PRICE >= '9.00' AND PRICE <= '50' AND
START_DATE <= '2000-9-6' AND END_DATE >= '2000-9-6')))

Interestingly, for this same bug the two servers fail with

different patterns. PostgreSQL fails returning a parsing

error. MSSQL does not, but subsequently gives an

incorrect result, probably because it built an incorrect

parsing tree.

MSSQL Bug 58544 [8] causes failures in both MSSQL

and Interbase. Using a LEFT OUTER JOIN on a VIEW

that uses the DISTINCT keyword causes the failure. A

left outer join is a special type of outer join where if you

have a join between tables T1 and T2 then the joined table

unconditionally has a row for each row in T1 (as opposed

to a Full Outer Join where the joined table has a row for

each row present in both tables T1 and T2). The

DISTINCT keyword subsequently eliminates all the

duplicate rows from the joined table. Complex queries

would be common on large databases with many tables,

leading probably to a comparatively high failure rate, with

possibly high failure severity, especially for incorrect

result failures.

Miscellaneous bugs

Interbase Bug 223512(2) causes a failure in the Data

Definition Language (DDL) part of SQL which is used to

create/modify database objects (i.e. tables, views, users,

procedures etc). It causes failures in both Interbase and

PostgreSQL: both incorrectly allow a client to drop Views

using the Drop Table statement. This violates the SQL-92

standard, which allows Views to be dropped only via the

Drop View statement. This bug would seem to cause

infrequent failures in operation and it would normally

require an error by an administrator. The severity of

failures would also be expected to be low since a view is

just a ‘virtual table’ (or a stored SELECT statement),

which represents the data from one or more tables. No

data are lost by dropping a view, although a runtime error

will be generated each time a client attempts to access the

dropped view.

Interbase bug 217042(3) causes both Interbase and

MSSQL to fail to validate the default values upon

creation of tables. Therefore a statement like:
CREATE TABLE TEST (A INT DEFAULT ‘ABC’)

is allowed in both Interbase and MSSQL, even though an

error should be raised since a string value (ABC) cannot

be stored in an Integer type attribute. The DEFAULT

attributes are used often in operation but it is not clear

how often database users will define DEFAULT values of

the wrong type. The failure to detect that an incorrect type

default value is being assigned to a particular column at

table creation time is non-detectable. However, a runtime

error will occur, generating an error message, every time

an attempt is made to insert the default value into the

table: the failure will be detected, albeit with high

latency
1
.

 Interbase bug 222476 causes a failure in MSSQL as

well. Both servers give empty field names for avg

(average) and sum SQL functions, although they return

correct results in these fields. This would be a serious

problem for client applications that construct their output

from the field names and results returned by the server.

Five of the MSSQL bug scripts also caused failure in

PostgreSQL, but with the difference that PostgreSQL fails

at the beginning of the bug script. This implies that the

causes are probably different for the two products, and the

“failure regions” (sets of demands that would trigger the

bug) identified by such scripts for the two servers only

partially overlap: there are variations of the script for

1 If we classify the database as part of the server system, the common
terminology recommended in [15] would imply that assigning the wrong

type is an internal error, which only becomes a failure and is detected

when the attempt is made to insert the default value.

which PostgreSQL fails but MSSQL does not. For

example, MSSQL bug 54428 causes an incorrect

“primary key constraint” failure in MSSQL. The same

bug causes failure (at the beginning of the bug script)

when an attempt is made to create a clustered index in

PostgreSQL. The latter is a known bug for PostgreSQL,

and its correction in the later release 7.0.3 causes

PostgreSQL not to fail on any of these five scripts.

6. Discussion

6.1. Extrapolating from the counts of common

bugs to reliability of a diverse server

These numbers are intriguing and point to a potential

for serious dependability gains from assembling a fault

tolerant server from two or more of these off-the-shelf

servers. But they are not definitive evidence. Apart from

the sampling difficulties caused e.g. by lack of certain bug

scripts, it is important to clarify to what extent our

observations allow us to predict such gains.

For brevity, we consider the simplest case: suppose

that users of a certain database server product A try to

obtain a more dependable service by using a fault-

tolerant, replicated, diverse server AB, built from product

A plus another product B (for discussion of the feasibility

and design problems, see [21]). The number of bugs

reported over a certain reference period (say one year) for

product A is mA. Our study then finds that of these mA

bugs, only mAB also caused failure of B. We may then

expect that, had these users been using AB instead of A,

only those failures of A that were due to those mA bugs

could have caused complete service failures. How much

more reliable would this have made the AB server,

compared to the A server?

Before proceeding, we introduce some more

simplifications. The possible effects of individual server

failures on system failures have been discussed in

Sections 4.1 and 4.3, under the definitions of “self-

evident” and “detectable” failures. Here, for the sake of

brevity, we use a simplified scenario: failures of both

servers A and B on the same demand are “system

failures”, and failures of a single one of them are not
2
. In

addition, we only consider the effects on reliability of the

factor that we have studied: the diversity between faults

of the two products A and B. We thus ignore any effects

of the middleware needed in the AB server, which adds

complexity and thus possibly faults; and of added

2 This simplified model is still realistic if either: i) we are only

concerned with interruptions of service, and all failures of A and/or B

are detectable (crashes, self-detected errors, or different erroneous
results if both A and B fail); or ii) we are concerned with undetected

erroneous results, and all failures of both A and B on the same demand

are pessimistically assumed to produce such results.

complexity in client applications that used complex

vendor-specific features of server A, if they must be

adapted to use the more restricted feature set of server

AB. With these simplifications, the AB server is certain to

be at least as reliable as the single A server because it

only fails if both A and B fail. We still need to assess the

size of the probable reliability gain. To this end, we need

to take into account various complications: the difference

between fault records and failure records; imperfect

failure reporting; variety of usage profiles.

We can start with a scenario in which our data would

be sufficient for trustworthy predictions, and then discuss

the effects of these assumptions not holding in practice.

This ideal scenario is as follows: we are interested in the

reliability gains for a database installation using server A,

if it were to switch to a diverse server AB, assuming that

this installation has a usage profile (probabilities of all

possible demands on the server) similar to the average of

all the bug-reporting installations of server A
3
. We

assume that users neither change their patterns of usage of

the databases (demand profile) nor upgrade to new

releases of the database servers
4
; that all failures that

affected installations of A during the reference year were

noticed and reported; and that there is exactly one bug

report for each failure that occurred.

Then, we can state that the bug reports describe a one-

year sample of operation of the system, and our best

reliability prediction is that the same set of users, during

another year of operation, would experience a mean

number mA of system failures if they used A, but only

mAB if they used AB. With the numbers we observed,

the ratio mAB / mA is quite small, so the expected

reliability gain would be large. Given that the reports

come from millions of installations, each submitting

many demands
5
, we might even trust that the true failure

probability per demand is close to the observed frequency

of failures.

The first difficulty with this analysis is that reports

concern bugs, not how many failures each caused. They

3 Or, from a market-assessment viewpoint, we may consider the average

reliability gains for the population of all database installations which
depend on server A, if they switched to using AB.
4 Because we wish to reason about the reliability effects of diversity

alone. This scenario also has practical interest, though. Usage patterns
vary over time, but periods of very slow variations must exist; users do

upgrade to new versions, but upgrades bring expense and new problems,

so that it is interesting to see whether diversity would be a more cost-
effective way of achieving good average dependability over a system’s

lifetime than frequent upgrades.
5 How to define a “demand” to a state-rich system like a database server,
for the purpose of inference about reliability, is a tricky theoretical and

practical issue. For this informal discussion of other difficulties in

inference, we ask the reader to accept that a practical solution can be
found, somewhere between a single command and the whole sequence

of commands over the lifetime of an installation. (cf e.g. [29]for

examples of useful compromises).

do not tell us whether a bug has a large or a small effect

on reliability, although the faults that did not cause

failures would tend to have stochastically lower effect on

reliability than those that caused failures. Thus, the mAB

bugs which still cause the fault tolerant server AB to fail

may account for a large (perhaps close to 100%) or a

small fraction (perhaps close to 0) of the failures observed

in A’s operation. The actual reliability gain may be

anywhere between negligible and very high.

Software is often assessed in terms of number of bugs

remaining. But it is easily seen that the bug reports do not

give us any information on this number: the mA bugs

reported may be the only bugs in the products, or they

may be a fraction of them (perhaps minimal), which

happened to be the ones causing failures during the

reference year.

Another difficulty is not knowing how many of the

failures that occur are actually reported. This fraction is

certainly less than 100%. If all failures had the same

probability of being reported, the ratio between our

predicted failure counts for AB and A would still be the

ratio mAB / mA, although both terms in the ratio would be

larger and affected by wider uncertainty. Reporting is

probably biased, for instance towards bugs that cause

higher frequency or higher severity of failures. Some

failures – like crashes – are more noticeable than others,

like storing incorrect data in some data fields, which may

not produce visible effects for a long time (also making it

more difficult to trace the visible problem back to its

cause). Some users are more assiduous at producing

failure reports, so the bugs that affect them more are also

more likely to be reported, even if not so important for

other users.

In the end, we do not know in detail how failure reporting

differs between different bugs, but bug reports are likely

to be better evidence about bugs that cause blatant failures

than about subtle (arguably more dangerous) failures.

This prompts another consideration: as reported bugs are

corrected and products mature, more of their failures are

likely to be of the subtler types, unlikely to be reported.

Therefore failure underreporting probably causes a bias

towards underestimating the frequency of failures for

which diversity would help. This makes diversity a more

attractive defence, but it also means that bug reports will

become a less and less accurate representation of the set

of failures actually occurring.

Last, we have the problem of usage profiles. A single

user organisation needs predictions about the

dependability of its specific installation of server AB or A

(i.e., with or without diversity), which depends on its

specific usage profile, which differs – perhaps by much –

from the aggregate profile of the user population which

generated the bug reports. Installations that manage

different databases, with different user needs, are

subjected to different usage profiles. It is then plausible

that different bugs are important for different

installations; this conjecture is also supported by a

possible interpretation of Adams’ findings [1] about the

surprisingly small average failure rates of many bugs,

when averaged over many installations. Then, the number

of bugs whose effects can be tolerated (what we have

counted here) gives little information about the resulting

dependability gains. The actual effect can only be

determined empirically. The user organisation may seek

indirect evidence from the publicly available bug reports:

if they generally match the failures experienced locally,

the local effects of tolerating those bugs can be assessed.

However if it does not, little insight is gained, and the

exercise is time-consuming.

6.2. Decisions about deploying diversity

We have underscored that these results are only prima

facie evidence for the usefulness of diversity.

A better analysis would be obtained from the actual

failure reports (including failure counts), available to the

vendors, especially if they use automatic failure reporting

mechanisms (users are biased towards under-reporting of

failures from bugs they have reported before, or for which

they have successful workarounds or recovery

mechanisms), and even better if they also have indications

about the users’ usage profile (from rough measures like

the size of the database managed, to detailed monitoring

as proposed in [31]). However, vendors are often wary of

sharing such detailed dependability information with their

customers.

How can then individual user organisations decide

whether diversity is a suitable option for them, with their

specific requirements and usage profiles? As usual for

dependability-enhancing measures, the cost is reasonably

easy to assess: costs of the software products, the required

middleware, difficulties with client applications that

require vendor-specific features, hardware costs, run-time

cost of the synchronisation and consistency enforcing

mechanisms, and possibly more complex recovery after

some failures. The gains in improved reliability and

availability (from fewer system failures and easier

recovery from some failures, set against possible extra

failures due to the added middleware), and possibly less

frequent upgrades, are difficult to predict except

empirically. This uncertainty will be compounded, for

many user organisations, by the lack of trustworthy

estimates of their baseline reliability with respect to subtle

failures: databases are used with implicit confidence that

failures will be self-evident.

We note that for some users the evidence we have

presented would already indicate a diverse server to be a

reasonable and relatively cheap precautionary choice,

even without good predictions of its effects. These are

users who have: serious concerns about dependability

(e.g., high costs for interruptions of service or undetected

incorrect data being stored); applications which use

mostly the core features common to multiple off-the-shelf

products (recommended by practitioners to improve

portability of the applications); modest throughput

requirements for updates, which make it easy to accept

the synchronisation delays of a fault-tolerant server.

7. Conclusions

To estimate the possible advantages of modular-

redundant diversity in complex off-the-shelf software, we

studied a sample of bug reports from four popular off-the-

shelf SQL database server products. We checked whether

more than one product exhibited bugs that would cause

common-mode failures if the products were used in a

diverse redundant architecture. It appears that such

common bugs are rare. We found very few bugs that

affected two of the four servers, and none that affected

more than two. Moreover only four of these bugs would

cause identical, undetectable failures in two servers.

Fault-tolerant, diverse servers seem to have a good chance

of improving failure rates and availability.

These preliminary results must be taken with caution,

as discussed in Section 6, but are certainly interesting and

indicate that this topic deserves further study. Their

immediate implications vary between users, but there are

classes of database server installations for which even

these preliminary results seem to recommend diversity as

a prudent and cost-effective strategy. Decisions would of

course involve many other considerations which we could

not discuss here: performance, total cost of ownership

including updates, risks of dependence on one vendor,

etc.

The practical obstacle would be the need for

“middleware”: most users would need an off-the-shelf

middleware package, which in turn is not likely to be

developed until there are enough users. On the other hand,

a dedicated user could develop a middleware package in

the hope of seeing his investment amplified through the

creation of an open-source community of user/developers.

But once the diverse server is running, the dependability

changes due to diversity could be directly assessed. The

user could decide on an ongoing basis which architecture

is giving the best trade-off between performance and

dependability, from a single server to the most pessimistic

fault-tolerant configuration (with tight synchronisation

and comparison of results at each query).

Some other interesting observations include:

- it may be worthwhile for vendors to test their servers

using the known bug reports for other servers. For

example, we observed 4 MSSQL bugs that had not

been reported in the MSSQL service packs (previous

to our observation period). Oracle was the only server

that never failed when running on it the reported bugs

of the other servers;

- the majority of bugs reported, for all servers, led to

“incorrect result” failures (64.5%) rather than crashes

(17.1%) (despite crashes being more obvious to the

user). This is contrary to the common assumption that

the majority of bugs lead to an engine crash, and

warrants more attention by users to fault-tolerant

solutions, and by designers of fault-tolerant solutions

to tolerating subtle and non fail-silent failures.

Future work that is desirable includes:

- repeating this study on later releases of the servers, to

verify whether the general conclusions drawn here

are repeated, indicating that they are the

consequences of factors that do not disappear with

the evolution of the software products;

- statistical testing to assess the actual reliability gains.

This is already under way. We have run a few million

queries with various loads including experiments

based on the TPC-C benchmark. We have not

observed any failures so far (however, with the TPC-

C load we found that a significant gain in

performance can be obtained with diverse servers

[9]). We plan to continue these experiments with

more complete test loads. These are important for

their own sake, as evidence for decision-making, but

also for the side benefit of checking how far the data

confirm the impressions gained from this study, and

thus how accurate a picture fault reports paint for

these products;

- studying alternative options for software fault

tolerance with OTS servers, e.g. wrappers rephrasing

queries into alternative, logically equivalent sets of

statements to be sent to replicated, even non-diverse

servers [9];

- developing the necessary components for users to be

able to try out diversity in their own installations,

since the main obstacle now is the lack of popular

off-the-shelf “middleware” packages for data

replication with diverse SQL servers.

Acknowledgment

This work was supported in part by the “Diversity with

Off-The-Shelf components” (DOTS) Project funded by

the U.K. Engineering and Physical Sciences Research

Council (EPSRC). We would also like to thank Bev

Littlewood, Peter Bishop and the anonymous DSN

reviewers for comments on an earlier version of this

paper.

References

[1] E. N. Adams, "Optimizing preventive service of software

products", IBM Journal of Research and Development, 28,

1984, pp. 2-14.

[2] C. Allaire, "Allaire Run: Edition comparison",

www.allaire.com/products/jrun/MoreInformation/ChoosingThe

Edition.cfm.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil and

P. O'Neil, "A Critique of ANSI SQL Isolation Levels", in Proc.

SIGMOD Int. Conf. on Management of Data, 1995.

[4] P. A. Bernstein, V. Hadzilacos and N. Goodman,

"Concurrency Control and Recovery in Database Systems",

Reading, Mass., Addison-Wesley, 1987.

[5] S. Chandra and P.M. Chen, "Whither Generic Recovery

from Application Faults? A Fault Study using Open-Source

Software", in Proc. IEEE DSN 2000, NY, USA, 2000, pp. 97-

106.

[6] S. Chandra and P.M. Chen, "How fail-stop are programs", in

Proc. IEEE FTCS-28, Munich, Germany,1998, pp. 240-249.

[7] A. Fekete, D. Liarokapis, E. O'Neil, P. O'Neil and D. Shasha,

"Making Snapshots Isolation Serializable", 2000,

http://www.cs.umb.edu/~isotest/snaptest/snaptest.pdf.

[8] I. Gashi, "Tables containing known bug scripts of Interbase,

PostgreSQL, Oracle and MSSQL." 2003,

http://www.csr.city.ac.uk/people/ilir.gashi/DSN/.

[9] I. Gashi, P. Popov, V. Stankovic and L. Strigini, "On

designing dependable services with diverse off-the-shelf SQL

servers", in A. Romanovsky, R. de Lemos and C. Gacek (Ed.)

"Architecting Dependable Systems", Springer, 2004: in print.

[10] J. Gray, "Why do computers stop and what can be done

about it?" in Proc. 6th International Conference on Reliability

and Distributed Databases, 1987.

[11] J. Gray, "FT101: Talk at UC Berkeley on Fault-

Tolerance",2000,http://research.microsoft.com/~Gray/talks/UC

Berkeley_Gray_FT_Avialiability_talk.ppt.

[12] M. A. Hiltunen, R. D. Schlichting, C. A. Ugarte and G. T.

Wong, "Survivability through Customization and Adaptability:

The Cactus Approach", in Proc. DARPA Information

Survivability Conference & Exposition, 2000.

[13] R. Jimenez-Peris and M. Patino-Martinez, "D5: Transaction

Support", ADAPT Middleware Technologies for Adaptive and

Composable Distributed Components Deliverable IST-2001-

37126, 2003,

 http://adapt.ls.fi.upm.es/deliverables/transactions.pdf.

[14] R. Jimenez-Peris, M. Patino-Martinez, G. Alonso and B.

Kemme, "Scalable Database Replication Middleware", in Proc.

22nd IEEE Int. Conf. on Distributed Computing Systems,

Vienna, Austria, 2002, pp. 477-484.

[15] J. C. Laprie (Ed.), "Dependability: Basic Concepts and

Associated Terminology", Springer-Verlag, 1991.

[16] J. C. Laprie, J. Arlat, C. Beounes and K. Kanoun,

"Definition and Analysis of Hardware-and-Software Fault-

Tolerant Architectures", IEEE Computer, 23, 1990, pp. 39-51.

[17] I. Lee and R. K. Iyer, "Faults, Symptoms and Software

Fault Tolerance in the Tandem GUARDIAN90 Operating

System", in Proc. IEEE FTCS-23, Toulouse, France, 1993, pp.

20-29.

[18] Microsoft, "List of Bugs Fixed by SQL Server 7.0 Service

Packs",http://support.microsoft.com/default.aspx?scid=kb;EN=

US;313980.

[19] Oracle, "Oracle Metalink",

http://metalink.oracle.com/metalink/plsql/ml2_gui.startup.

[20] F. Pedone and S. Frolund, "Pronto: A Fast Failover

Protocol for Off-the-shelf Commercial Databases", in Proc. 19th

IEEE Symp. on Reliable Distributed Systems (SRDS'00),

Nurnberg, Germany, 2000, pp. 176-185.

[21] P. Popov, L. Strigini, A. Kostov, V. Mollov and D.

Selensky, "Software Fault-Tolerance with Off-the-Shelf SQL

Servers", in Proc. 3rd Int. Conf. on COTS-based Software

Systems, ICCBSS'04, Redondo Beach, CA USA, 2004: in print.

[22] P. Popov, L. Strigini, S. Riddle and A. Romanovsky,

"Protective Wrapping of OTS Components", in Proc. 4th ICSE

Workshop on Component-Based Software Engineering:

Component Certification and System Prediction, Toronto, 2001.

[23] P. Popov, L. Strigini and A. Romanovsky, "Diversity for

off-the-Shelf Components", in Proc. IEEE DSN 2000, - Fast

Abstracts supplement, New York, USA, 2000, pp. B60-B61.

[24] PostgreSQL, "PostgreSQL Bugs mailing list archives",

http://archives.postgresql.org/pgsql-bugs/.

[25] J. Reynolds, J. Just, E. Lawson, L. Clough, R. Maglich and

K. Levitt, "The Design and Implementation of an Intrusion

Tolerant System", in Proc. IEEE DSN 2002, Washington, USA,

2002, pp. 285-292.

[26] F. B. Schneider, "Byzantine generals in action:

Implementing fail-stop processors", ACM TOCS, 2(2), 1984,

pp. 145-154.

[27] SourceForge, "Interbase (Firebird) Bug tracker",

http://sourceforge.net/tracker/?atid=109028&group_id=9028&f

unc=browse.

[28] H. Sutter, "SQL/Replication Scope and Requirements

document", ISO/IEC JTC 1/SC 32 Data Management and

Interchange WG3 Database Languages, H2-2000-568, 2000

[29] J. Tian, L. Peng and J. Palma, "Test-execution-based

reliability measurement and modeling for large commercial

software", IEEE TSE, 21, 1995, pp. 405-414.

[30] A. Valdes, M. Almgren, S. Cheung, Y. Deswarte, B.

Dutertre, J. Levy, H. Saidi, V. Stavridou and T. E. Uribe, "An

Adaptive Intrusion-Tolerant Server Architecture", 1999,

http://www.sdl.sri.com/users/valdes/DIT_arch.pdf.

[31] J. Voas, "Deriving Accurate Operational Profiles for Mass-

MarketedSoftware",

http://www.cigital.com/papers/download/profile.pdf.

[32] F. Wang, F. Gong, C. Sargor, K. Goseva-Popstojanova, K.

Trivedi and F. Jou, "SITAR: A Scalable Intrusion-Tolerant

Architecture for Distributed Services", in Proc. IEEE Workshop

on Information Assurance and Security, West Point, NY, U.S.A,

2001.

[33] M. Weismann, F. Pedone and A. Schiper, "Database

Replication Techniques: a Three Parameter Classification", in

Proc. 19th IEEE Symp. on Reliable Distributed Systems

(SRDS'00), Nurnberg, Germany, 2000, pp. 206-217.

