

City, University of London Institutional Repository

Citation: Garcia, M., Bessani, A. N., Gashi, I., Neves, N. & Obelheiro, R. R. (2011). OS

diversity for intrusion tolerance: Myth or reality?. Paper presented at the 41st International
Conference on Dependable Systems & Networks (DSN), 27 - 30 Jun 2011, Hong Kong.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/526/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

OS Diversity for Intrusion Tolerance: Myth or Reality?

Miguel Garcia∗, Alysson Bessani∗, Ilir Gashi†, Nuno Neves∗ and Rafael Obelheiro‡
∗LaSIGE, University of Lisbon, Faculty of Sciences – Lisbon, Portugal
†Center for Software Reliability, City University London – London, UK

‡Computer Science Department, State University of Santa Catarina – Joinville, Brazil

Abstract—One of the key benefits of using intrusion-tolerant
systems is the possibility of ensuring correct behavior in the
presence of attacks and intrusions. These security gains are
directly dependent on the components exhibiting failure diver-
sity. To what extent failure diversity is observed in practical
deployment depends on how diverse are the components that
constitute the system. In this paper we present a study with op-
erating systems (OS) vulnerability data from the NIST National
Vulnerability Database. We have analyzed the vulnerabilities
of 11 different OSes over a period of roughly 15 years, to check
how many of these vulnerabilities occur in more than one OS.
We found this number to be low for several combinations of
OSes. Hence, our analysis provides a strong indication that
building a system with diverse OSes may be a useful technique
to improve its intrusion tolerance capabilities.

Keywords-Diversity, Vulnerabilities, NVD, Operating Sys-
tems, Intrusion Tolerance.

I. INTRODUCTION

One important application of Byzantine fault-tolerant pro-
tocols is to build intrusion-tolerant systems, which are able
to keep functioning correctly even if some of their parts are
compromised. Such protocols guarantee correct behavior in
spite of arbitrary faults provided that a minority (usually
less than one third [1]) of components are faulty (for an
overview of the area see [2]). To respect this condition, sys-
tem components need to exhibit failure diversity. However,
when security is considered, the possibility of simultaneous
attacks against several components cannot be dismissed. If
multiple components exhibit the same vulnerabilities, they
can be compromised by a single attack, which defeats the
whole purpose of building an intrusion-tolerant system in
the first place. To reduce the probability of common faults,
diversity can be employed: each component uses different
software to perform the same functions, with the expectation
that the differences will reduce the occurrence of common
vulnerabilities. This is an orthogonal aspect that affects all
works on Byzantine fault-tolerant replication (e.g., [3]–[9]).

Nearly all software systems built today rely on off-the-
shelf (OTS) components, such as operating systems and
database management systems. This is mostly due to the
sheer complexity of such components, coupled with benefits
such as the perceived lower costs from their use (some of
the components may be open-source and/or freely available),
faster deployment and the multitude of available options.
Most OTS software, however, have not been designed with

security as their top priority, which means that they all
have their share of security flaws that can be exploited. At
times, supposedly secure systems are compromised not due
to vulnerabilities in application software but in a more sur-
reptitious manner, by compromising a critical component in
their software infrastructure (e.g., the operating system). On
the other hand, given the ready availability of OTS software,
leveraging OTS components to implement diversity is less
complex and more cost-effective than actually developing
variants of software. One of the prime examples is the
operating system (OS): realistically, people will resort to an
OTS operating system rather than build their own. Given the
variety of operating systems available and the critical role
played by the OS in any system, diversity at the OS level
can be a reasonable way of providing good security against
common vulnerabilities at little extra cost.

The focus on common vulnerabilities is an important
distinctive of this work. Since intrusion tolerance is usually
applied to critical systems, it is safe to assume that maximum
care will be exercised in protecting system components,
including applying all security patches available. However,
even an up-to-date system can be compromised through
an undisclosed vulnerability (using a 0-day exploit), since
patches usually only appear after a vulnerability has been
publicized. If such a vulnerability affects several compo-
nents, there is a window of opportunity for compromising
many or all of them at the same time.

The main question we address in this paper is: What are
the gains of applying OS diversity on a replicated intrusion-
tolerant system? To answer this question, we have collected
vulnerability data from the NIST National Vulnerability
Database (NVD) [10] reported in the period between 1994
and 2010 for 11 operating systems. We focus our study
on operating systems for several reasons: they offer a good
opportunity for diversity, many intrusions exploit OS vulner-
abilities, and the number of OS-related vulnerability reports
in the NVD is sufficiently large to give meaningful results.
Each vulnerability report in the NVD database contains
(amongst other things) information about which products the
vulnerability affects. We collected these data and checked
how many vulnerabilities affect more than one operating
system. We found this number to be relatively low for most
pairs of operating systems. This study was then extended
to larger numbers of OSes, with similar conclusions for

978-1-4244-9231-2/11/$26.00 ©2011 IEEE 383

selected sets. These results suggest that security gains may
be achieved if diverse operating systems are employed in
replicated systems.

As a cautious note, we do not claim that these results are
definite evidence (although they look quite promising). The
main problem is that the available reports concern vulnera-
bilities and not how many intrusions or exploits occurred for
each vulnerability; this makes their use in security evaluation
more difficult. Complete intrusion and exploit rates would
be much more useful as statistical evidence, but they are
not widely available. To most practitioners the only direct
security evidence available for these products often are the
vulnerability reports. It is the lack of detailed intrusion and
exploit data and the lack of known approaches that can
utilize existing vulnerability reports of OTS components in
security evaluation that has motivated the research detailed
in this paper. Our contributions can be summarized as:

1) A hand-made classification of the vulnerabilities that
affect 11 operating systems in drivers, kernel, system
software and applications;

2) A study of how many common vulnerabilities appear
for several pairs of operating systems divided in four
families (BSD, Solaris, Linux and Windows) that
capture different users preferences;

3) An in-depth discussion of the limitations and opportu-
nities provided by the data available on NVD to assess
the dependability and security properties of a system.

II. RELATED WORK

Design diversity is a classical mechanism for fault toler-
ance introduced in the 1970s [11]. N-version programming
is a technique for creating diverse software components
introduced also in those early years [12]. The main idea
behind this mechanism is to use N different implementa-
tions of the same component, programmed by N different
teams, ideally using distinct languages and methodologies.
The objective was to achieve fault tolerance, assuming that
designs and implementations developed independently will
exhibit failure diversity.

The seminal work on using diversity to improve security
is due to Joseph and Avizienis [13]. The paper, however,
does not focus so much on diversity but on using diverse
components to detect the presence of viruses. Later, Forrest
and colleagues applied notions from biologic systems to
computer security and argued that diversity is an important
natural mechanism to reduce the effects of attacks [14], [15].
Randomized compilation techniques to automatically create
diversity in applications were proposed but not developed.
Taxonomies of diversity techniques for improving security
have been introduced in [16], [17]. However, most of these
studies lack empirical or statistical evaluation to support
their independence claims.

An experimental study of the benefits of adopting di-
versity of SQL database servers is presented in [18]. The

authors analyzed bug reports for four database servers and
verified which products were affected by each bug reported
(the focus of their study is on overall dependability, not
specifically on security). They found a few cases of a single
bug affecting more than one server, and that there were no
coincident failures in more than two of the servers. Their
conclusion is that diversity of off-the-shelf database servers
is an effective means of improving system reliability. Some
of the limitations of our data set (see Section V) prevent us
from making the same type of study with NVD data.

Given the criticality of operating systems, there are many
papers that study the distribution of bugs and vulnerabilities
in OS code. Miller et al. [19], [20] analyzed how commands
and services in different UNIX variants dealt with random
input and found out that between 25 and 50% of them
(depending on the study) would crash or hang. Chou et
al. [21] used compiler extensions to perform static analysis
of the Linux and OpenBSD kernels; their study shows
that device drivers exhibit more flaws than the rest of the
kernel, and that some types of bugs in the Linux kernel
take an average of 1.8 years before being fixed. Ozment
and Schechter [22] studied how OpenBSD security evolved
over time, using data from OpenBSD security advisories and
the project’s source code repository to conclude that many
vulnerabilities are still found in legacy code, that bugs in
security-related code are more likely to be vulnerabilities,
and that the rate of vulnerability reports for OpenBSD is
decreasing over time. Anbalagan and Vouk [23] analyzed
vulnerabilities in Bugzilla and Fedora Linux and found out
that 34% of the vulnerabilities are exploited before being
disclosed. None of these papers attempted to analyze the
occurrence of common vulnerabilities across different OSes.

A comparison of the robustness of 15 different POSIX-
based operating systems is presented in [24]. This study was
based on fault injection: combinations of valid and invalid
parameters were supplied to often-used system calls and C
library functions, and the effects of this on reliability (e.g.,
system crash, process hang/crash, wrong or no error code
returned, etc.) were observed. The authors found out some
commonalities among the systems studied, especially with
respect to the common mode failures of C library functions.
However, from the available data it is impossible to conclude
whether there were specific bugs that affected more than
one system (the paper only shows how many failures were
observed for each system call in several degrees of severity).
Still, their evidence indicates that, from a reliability stand-
point, using different operating systems reduces the number
of common failure modes.

Some vulnerability discovery models, which attempt to
forecast the amount of vulnerabilities found in software,
have been proposed [25]–[27]. Alhazmi and Malayia [28]
investigate how well these models fit with vulnerability data
from the NVD, and conclude that the vulnerability discovery
process follows the same S-shaped curve of “traditional”

384

software reliability growth models [29], which measure
all defects found in a system (not only those that affect
security). This conclusion is disputed in [30], where it is
claimed that the number of vulnerabilities disclosed in the
NVD grows linearly with time (this contrast might be due
to methodological differences). These studies cross-validate
our idea of using the NVD as a source of vulnerability
data; however, they are more concerned in modeling how
many vulnerabilities are found in specific software over its
lifetime [28] and if there are significant differences between
open- and closed-source software [30], while our focus is
on assessing the degree of independence between different
operating systems. Ozment [31] points out some limitations
of the NVD database, which we discuss further in Section V.

Littlewood and colleagues [32] survey a number of issues
in software diversity modeling, presenting models that have
been developed for assessing the reliability of systems that
adopt diversity. The models discussed aim to provide a
measure of the reliability of a system as a function of the
demands presented to the system and how these demands
influence the correctness of the behavior of the system; these
parameters are, for the most part, expressed as probability
distributions. Some of these ideas have later been extended
to the security domain as well [33]. They show that, although
diversity does not provide complete failure independence
(since design faults are correlated to some extent), it is
an effective means of increasing overall system reliability.
They also discuss a number of caveats regarding software
diversity modeling. It would be desirable to use these
models in our context, but this is currently unfeasible, since
we lack sufficiently detailed data (operational profiles and
vulnerability exploitation rates) to apply them.

III. METHODOLOGY

This section presents the methodology adopted in our
study, with particular focus on how the data set (i.e., the vul-
nerabilities) was selected and how this data was processed
and analyzed.

Data source: We have analyzed OS vulnerability data
from the NVD database [10]. NVD uses the Common
Vulnerability Enumeration (CVE) definition of vulnerability
[34], which is presented below.

Definition 1 (CVE Vulnerability) An information security
“vulnerability” is a mistake in software that can be directly
used by a hacker to gain access to a system or network.

CVE considers a mistake a vulnerability if it allows an
attacker to use it to violate a reasonable security policy for
that system (this excludes entirely “open” security policies
in which all users are trusted, or where there is no consid-
eration of risk to the system).

For CVE, a vulnerability is a state in a computing system
(or set of systems) that either:
• allows an attacker to execute commands as another

user;

• allows an attacker to access data that is contrary to
the specified access restrictions for that data

• allows an attacker to pose as another entity
• allows an attacker to conduct a denial of service

NVD aggregates vulnerability reports from more than
70 security companies, forums, advisory groups and or-
ganizations,1 being thus the most complete vulnerability
database on the web. All data is made available as XML files
containing the reported vulnerabilities on a given period,
called data feeds. We analyze feeds from 2002 to 2010.2

Each NVD data feed contains a list of reported vulnera-
bilities sorted by its date of publication on a given period.
For each vulnerability, called entry in the NVD parlance,
interesting information is provided such as an unique name
for the entry, in the format CVE-YEAR-NUMBER; the list
of products (with version numbers) affected by the vulner-
ability; the date of the vulnerability publication; and the
security attribute(s) that are affected when the vulnerability
is exploited on a system.

We developed a program that collects, parses and inserts
the XML data feeds into an SQL database, deployed with a
custom schema to do the aggregation of vulnerabilities by
affected products and versions.

Data selection: Despite the large amount of informa-
tion about each vulnerability available in NVD, for the
purposes of this study, we are only interested in the name,
publication date, summary (description), type of exploit
(local or remote) and the list of affected configurations. We
have collected vulnerabilities reported for 64 Common Plat-
form Enumerations (CPEs) [35]. Each one of these describes
a system, i.e., a stack of software/hardware components
in which the vulnerability may be exploited. These CPEs
were filtered, resulting in the following information that was
stored in our database:
• Part: NVD separates this in Hardware, Operating Sys-

tem and Application. For the purpose of this study we
choose only enumerations marked as Operating System;

• Product: The product name of the platform;
• Vendor: Name of the supplier or vendor of the product

platform.

Those 64 CPEs were, by manual analysis, clustered in
11 OS distributions: OpenBSD, NetBSD, FreeBSD, Open-
Solaris, Solaris, Debian, Ubuntu, RedHat3, Windows 2000,
Windows 2003 and Windows 2008. These distributions cover
the mostly used server OS products of the families: BSD,
Solaris, Linux and Windows.

1See the complete list on http://cve.mitre.org/compatible/alerts_
announcements.html.

2The 2002 feed includes information about vulnerabilities that were
reported between 1994 and 2002. The most recent feed that was analyzed
in this paper contained vulnerabilities until September 30th 2010.

3RedHat comprises the “old” Red Hat Linux (discontinued in 2003) and
the more recent Red Hat Enterprise Linux (RHEL).

385

Figure 1. Simplified SQL schema of the database used to store and
analyze the NVD data.

The schema of the resulting database is displayed in
Figure 1. The tables with prefix cvss, vulnerability_type and
security_protection are employed to optimize the database.
The most important tables are:

• The cvss tables refer directly to the CVSS metric of the
stored vulnerabilities;

• vulnerability: stores some information about a vulner-
ability (name, publication date, etc.);

• vulnerability_type: stores the vulnerability type as-
signed by us (see Section III-B);

• os: stores the operating systems platforms of interest in
this study;

• os_vuln: stores the relationship between vulnerabilities
and operating systems, and their affected versions.

The use of an SQL database brings at least three benefits
when compared with analyzing the data directly from the
XML feeds. First, it allows us to enrich the data set by hand,
for example, by assigning to each vulnerability information
regarding its type (see Section III-B), and also by associating
release times and family names to each affected OS distribu-
tion. Second, it allows us to modify the CVE fields to correct
problems. For example, one of the problems with NVD is
that the same product is registered with distinct names for
different entries. For example, (”debian_linux”,”debian”)
and (”linux”,”debian”) are two (product,vendor) pairs we
have found for the Debian Linux distribution. This same
problem was observed previously by other users of NVD
data feeds [36]. Finally, an SQL database is much more
convenient to work with than parsing the feeds on demand.

A. Filtering the Data

From the more than 44000 vulnerabilities published by
NVD at the time of this study, we selected 2120 vulnerabil-
ities. These vulnerabilities are the ones classified as OS-level
vulnerabilities (“/o” on its CPE) for the operating systems
under consideration.

When manually inspecting the data set, we discovered and
removed vulnerabilities that contained tags in their descrip-
tions such as Unknown and Unspecified. These correspond to
vulnerabilities for which NVD does not know exactly where
they occur or why they exist (however, they are usually
included in the NVD database because they were mentioned
in some patch released by a vendor). We also found few
vulnerabilities flagged as **DISPUTED**, meaning that
product vendors disagree with the vulnerability existence.
Due to the uncertainty that surrounds these vulnerabilities,
we decided to exclude them from the study. Table I shows
the distribution of these vulnerabilities on the analyzed
OSes, together with the total number of valid vulnerabilities.

OS Valid Unknown Unspecified Disputed
OpenBSD 142 1 1 1
NetBSD 126 0 1 2
FreeBSD 258 0 0 2
OpenSolaris 31 0 40 0
Solaris 400 39 109 0
Debian 201 3 1 0
Ubuntu 87 2 1 0
RedHat 369 12 8 1
Win2000 481 7 27 5
Win2003 343 4 30 3
Win2008 118 0 3 0

distinct vuln. 1887 60 165 8

Table I
DISTRIBUTION OF OS VULNERABILITIES IN NVD.

An important observation about table I is that the columns
do not add up to the number of distinct vulnerabilities (last
row of the table) because some vulnerabilities are shared
among OSes and are counted only once. Notice that about
60% of the removed vulnerabilities affected Solaris and
OpenSolaris. Moreover, these two systems are the only ones
that have more than 10% of its vulnerabilities removed. We
should remark that this manual filtering was necessary to
increase the confidence that only valid vulnerabilities were
used in the study.

B. Distribution of Vulnerabilities by OS parts

For NVD, an operating system is not only the kernel,
but the complete product that is distributed for installation.
Therefore an operating system product is composed by the
kernel, several drivers, optional modules, system software
and applications. So, besides knowing how many vulner-
abilities affect different operating system products, it is
also important to understand what part or module of these
systems is compromised by the vulnerability. Since NVD
does not provide any information other than the vulnerability

386

description, we inspected manually each of the 1887 entries
and classified them in one of four categories: Driver, Kernel,
System Software and Application. The rationale for this
classification is the following:
• Kernel: vulnerabilities that affect the TCP/IP stack and

other network protocols whose implementation is OS-
dependent, file systems, process and task management,
core libraries and vulnerabilities derived from proces-
sors architectures;

• Driver: vulnerabilities that affect drivers for wire-
less/wired network cards, video/graphic cards, web
cams, audio cards, Universal Plug and Play devices,
etc;

• System Software: vulnerabilities that affect the ma-
jority of the software that is necessary to provide
common operating system functionalities such as login,
shells and basic daemons. We account just for software
that comes by default with the distribution (although
sometimes it is possible to uninstall these components
without affecting the main OS operation);

• Application: vulnerabilities in software products that
come with the operating system but that are not needed
for basic operations, and in some cases require specific
installation: database management systems, messenger
clients, text editors and processors, web/email/FTP
clients and servers, music/video players, programming
languages (compilers and virtual machines), antivirus,
Kerberos/LDAP software, games, etc.

The classification above facilitates the analyses of which
parts of the operating systems may suffer most from com-
mon vulnerabilities, which would influence the architectural
decisions of how one designs a diverse system.

IV. OS DIVERSITY STUDY

This section presents the results of the study. In particular,
it presents an overall analysis of the counts of vulnerabilities
for each OS component class, and shows how many vulner-
abilities affect OS pairs. The section also provides empirical
evidence to demonstrate if there are security gains in using
diverse OSes when deploying an intrusion-tolerant system.

A. Distribution of OS Vulnerabilities

Vulnerability classification: The descriptions of 1887
vulnerabilities were examined, and then they were assigned
to one of the OS component classes presented in the previous
section. Table II summarizes the result of this analysis.

The table shows that with the exception of Drivers, all
OS distributions have a reasonable number of vulnerabil-
ities in each class. In the BSD and Solaris OS families,
vulnerabilities appear in higher numbers in the Kernel part,
while in the Linux and Windows families, the Applications
vulnerabilities are more prevalent. This can be explained
by noticing that Windows and Linux distributions usually

OS Driver Kernel Sys. Soft. App. Total
OpenBSD 2 75 33 32 142
NetBSD 9 59 32 26 126
FreeBSD 4 147 54 53 258
OpenSolaris 0 15 9 7 31
Solaris 2 156 114 128 400
Debian 1 24 34 142 201
Ubuntu 2 22 8 55 87
RedHat 5 89 93 182 369
Windows 2000 3 143 132 203 481
Windows 2003 1 95 71 176 343
Windows 2008 0 42 14 62 118

% Total 1.4% 35.5% 23.2% 39.9%

Table II
VULNERABILITIES PER OS COMPONENT CLASS.

contain a larger set of pre-installed applications, when com-
pared to more stripped down products like BSD family OSes.
Therefore, there is a tendency to include more applications in
platforms based on these OSes, causing more vulnerabilities
of this type to appear in the statistics.

The last row of the table presents the percentage of
each class on the total data set. One can observe that
most vulnerabilities occur in the Application and Kernel
components, which is then followed by the System Software
group of utility programs. It is interesting to notice that
Drivers account for a very small percentage of the published
OS vulnerabilities. This observation seems to contradict pre-
vious studies showing that drivers are the main contributor of
crashes [37], and it is somewhat surprising given that drivers
usually account for a large percentage of the OS code [21].
One, however, should keep in mind that crash-inducing bugs
do not necessarily translate into vulnerabilities, since they
might not be exploitable by an adversary (e.g., because the
conditions to activate the fault might be extremely hard to
force). On the other hand, large and complex codes are a
typical breeding ground for programming flaws, and we may
experience a rise in driver vulnerabilities in the future.

Temporal distribution of the vulnerabilities: Figure 2
presents the number of vulnerabilities announced per OS
for each year, while organizing in separate graphs the OS
families. The figure also includes the dates of some of the
major releases of the OSes. Certain OSes like Windows
2008 and Ubuntu have several years with zero vulnerabilities
because their first distribution is relatively recent.

The graphs lead to some interesting observations. First, it
is possible to notice a strong correlation among the peaks
and valleys of both the Windows and Linux families, and
somewhat to a lesser extent in the BSD family. This could
mean that some vulnerabilities might be shared across the
family members (see next section for a better discussion).
Second, some OS families have less vulnerabilities being
reported in the recent past (last 5 years) when compared
with the more distant past. This is true both for the BSD
and Linux families, which could indicate that the systems
are becoming more stable, but also that the employed
development process imposes stronger requirements on the
quality of the software.

387

 0

 20

 40

 60

1993
1994

1995
1996

1997
1998

1999
2000

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

Solaris
OpenSolaris#

 o
f
v
u
ln

e
ra

b
ili

ti
e
s

OpenSolaris

2008.05

Solaris

 2.1 7 8 10

(a) Solaris family.

 0

 20

 40

 60

1996
1997

1998
1999

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010

FreeBSD
NetBSD
OpenBSD

#
 o

f
v
u
ln

e
ra

b
ili

ti
e
s

OpenBSD

 1.2 3.1 3.5

NetBSD

3.0.1

FreeBSD

3.0 4.0 5.0 6.0 7.0 8.0

(b) BSD family.

 0

 20

 40

 60

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

Win2008

Win2003

Win2000

#
 o

f
v
u
ln

e
ra

b
il
it
ie

s

Win2000

2000

Win2003

2003 SP1

Win2008

2008 SP1

(c) Windows server family.

 0

 20

 40

 60

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

Debian

Ubuntu

Redhat

#
 o

f
v
u
ln

e
ra

b
il
it
ie

s

Redhat

6.0 7 3 4 5.4

Debian

 1.1 2.1 2.2 3.1 5.0

Ubuntu

 4.10 5.0 9.04

(d) Linux family.

Figure 2. Temporal distribution of vulnerability publication data for four operating system families

Finally, it is also important to compare the vulnerability
dates and the year of the first OS release. NVD classifies
vulnerabilities when they are first discovered, and then lists
the OSes that might be compromised by their exploitation.
Therefore, it was possible to find Windows 2000 in seven en-
tries earlier than 1999, sharing vulnerabilities with Windows
NT. This confirms that Windows 2000 was built with some
of the code of Windows NT, but apparently it seems that this
code was not fixed from all already known vulnerabilities4.

B. Common Vulnerabilities

Table III shows the common vulnerabilities that were
found in every combination of OS pair over the period of
1994 to (Sept) 2010. The columns with v(A) and v(B) show
the total number of vulnerabilities collected for OS A and
B respectively, whereas v(AB) is the count of vulnerabilities
that affect both the A and B systems. Three filters were
applied to the data set: All corresponds to all vulnerabilities,
representing the raw data; No Applications removes from
the data set the vulnerabilities classified as Applications
(see Section III-B); No Applications and No Local: same as
the previous filter but only considers remotely exploitable
vulnerabilities (vulnerabilities with “Network” or “Adjacent
Network” values in their CVSS_ACCESS_VECTOR field).
The aim of the first filter is to characterize a platform with
a reasonable number of installed applications (called a Fat
Server). The second filter captures only the fundamental
OS vulnerabilities, and it basically corresponds to a server
platform that, to decrease security risks, is stripped of all
applications with the exception of the offered single service
(called a Thin Server). The third filter represents a similar
configuration, but where the machine is physically protected

4We found three cases in other OS versions where a vulnerability was
reported much earlier than the corresponding release. After examining the
NVD entry, we were able to exclude them as errors in the database, and
therefore, they are not shown in the graphs.

from illegal access and therefore it can only be remotely
attacked (called an Isolated Thin Server).

The number of shared vulnerabilities between two OSes
is substantially reduced when compared to the overall set
of vulnerabilities. Even considering a Fat Server config-
uration, it is possible to find out OS pairs that do not
have common flaws (e.g., NetBSD-Ubuntu). As expected,
OSes from the same family are affected by more common
vulnerabilities due to the software components and applica-
tions that are reused (e.g., Debian-RedHat or Windows2000-
Windows2003). The use of an Isolated Thin Server, when
compared with a Fat Server, has a strong impact on the
security of the platform because it decreases the number of
common vulnerabilities by 56% on average. This means that
a significant portion of common vulnerabilities are local (i.e.,
cannot be exploited remotely) or come from applications that
are available on both operating systems.

Table IV shows which part of the OS is affected by com-
mon vulnerabilities in an Isolated Thin Server configuration,
considering only the OS pairs with non-zero common vul-
nerabilities. The fact that there are many common Kernel and
System Software vulnerabilities between Windows 2000 and
2003 indicates that the latter inherits considerable parts of
the OS from its predecessor. This same trend is also observed
between Windows 2008 and Windows 2003/Windows 2000,
although to a less extent. Interestingly, no single vulnerable
driver is present in all products, which can be explained by
the very few faulty drivers that are reported.

The second family of OS with more common vulnerabil-
ities is BSD, which also re-utilizes several components of
the operating system. A somewhat surprising result is the
fact that most Linux distributions have much less common
vulnerabilities than we anticipated. We inspected manually
the vulnerabilities in order to find an explanation, and we
discovered that Linux distributions customize both their

388

Operating Systems All No Applications No App. and No Local
Pairs (A-B) v(A) v(B) v(AB) v(A) v(B) v(AB) v(A) v(B) v(AB)

OpenBSD-NetBSD 142 126 40 110 100 32 60 41 16
OpenBSD-FreeBSD 258 53 205 48 87 32
OpenBSD-OpenSolaris 31 1 24 1 6 0
OpenBSD-Solaris 400 12 272 10 103 6
OpenBSD-Debian 201 2 59 2 25 0
OpenBSD-Ubuntu 87 3 32 1 10 0
OpenBSD-RedHat 369 10 187 5 58 4
OpenBSD-Windows2000 481 3 278 3 178 3
OpenBSD-Windows2003 343 2 167 2 109 2
OpenBSD-Windows2008 118 1 56 1 26 1
NetBSD-FreeBSD 126 258 49 100 205 39 41 87 24
NetBSD-OpenSolaris 31 0 24 0 6 0
NetBSD-Solaris 400 15 272 12 103 8
Netbsd-Debian 201 3 59 2 25 2
NetBSD-Ubuntu 87 0 32 0 10 0
NetBSD-RedHat 369 7 187 4 58 2
NetBSD-Windows2000 481 3 278 3 178 3
NetBSD-Windows2003 343 1 167 1 109 1
NetBSD-Windows2008 118 1 56 1 26 1
FreeBSD-OpenSolaris 258 31 0 205 24 0 87 6 0
FreeBSD-Solaris 400 21 272 15 103 8
FreeBSD-Debian 201 7 59 4 25 1
FreeBSD-Ubuntu 87 3 32 3 10 0
FreeBSD-RedHat 369 20 187 13 58 5
FreeBSD-Windows2000 481 4 278 4 178 4
FreeBSD-Windows2003 343 2 167 2 109 2
FreeBSD-Windows2008 118 1 56 1 26 1
OpenSolaris-Solaris 31 400 27 24 272 22 6 103 6
OpenSolaris-Debian 201 1 59 1 25 0
OpenSolaris-Ubuntu 87 1 32 1 10 0
OpenSolaris-RedHat 369 1 187 1 58 0
OpenSolaris-Windows2000 481 0 278 0 178 0
OpenSolaris-Windows2003 343 0 167 0 109 0
OpenSolaris-Windows2008 118 0 56 0 26 0
Solaris-Debian 400 201 4 272 59 4 103 25 2
Solaris-Ubuntu 87 2 32 2 10 0
Solaris-RedHat 369 13 187 8 58 4
Solaris-Windows2000 481 9 278 3 178 3
Solaris-Windows2003 343 7 167 1 109 1
Solaris-Windows2008 118 0 56 0 26 0
Debian-Ubuntu 201 87 12 59 32 6 25 10 2
Debian-RedHat 369 61 187 26 58 11
Debian-Windows2000 481 1 278 1 178 1
Debian-Windows2003 343 0 167 0 109 0
Debian-Windows2008 118 0 56 0 26 0
Ubuntu-RedHat 87 369 25 32 187 8 10 58 1
Ubuntu-Windows2000 481 1 278 1 178 1
Ubuntu-Windows2003 343 0 167 0 109 0
Ubuntu-Windows2008 118 0 56 0 26 0
RedHat-Windows2000 369 481 2 187 278 1 58 178 1
RedHat-Windows2003 343 1 167 0 109 0
RedHat-Windows2008 118 0 56 0 26 0
Windows2000-Windows2003 481 343 253 278 167 116 178 109 81
Windows2000-Windows2008 118 70 56 27 26 14
Windows2003-Windows2008 343 118 95 167 56 39 109 26 18

Table III
VULNERABILITIES (1994 TO (SEPT.) 2010): All - ALL VULNERABILITIES; No Application - NO APPLICATION VULNERABILITIES; No

App. and No Local - NO APPLICATION VULNERABILITIES AND ONLY REMOTELY-EXPLOITABLE VULNERABILITIES.

kernels and system software, and thus the vulnerabilities are
less common. Another interesting point about OSes from the
Linux family is that they have an almost negligible number
of driver vulnerabilities (see Table II), and none of them
appears in more than one OS.

We extended the study of common vulnerabilities to
higher numbers of OSes, however, due to space limitations
we can only present a summary of the results. When we
created combinations of three OSes, we found that there are
still 285 vulnerabilities that could compromise the systems

(in general these three systems are from the same family).
This number is reduced to 102 and 9 vulnerabilities, respec-
tively, in groups of four and five OSes. There are only two
vulnerabilities shared by six OSes (with identifiers CVE-
2008-1447 and CVE-2007-5365), and one vulnerability that
appears in nine OSes (with identifier CVE-2008-4609). The
first two cases correspond to protocols that are implemented
in a similar manner in various systems, namely DNS and
DHCP, and the last one to a well-known denial of service
problem in the TCP design.

389

OpenBSD NetBSD FreeBSD Solaris Debian RedHat Win2000 Win2003
OpenBSD ### 9 25 6 0 4 2 1

19
94

-2
00

5NetBSD 7 ### 15 8 2 2 2 0
FreeBSD 7 9 ### 8 1 5 3 1
Solaris 0 0 0 ### 2 3 3 1
Debian 0 0 0 0 ### 10 0 0
RedHat 0 0 0 1 1 ### 0 0
Win2000 1 1 1 0 1 1 ### 35
Win2003 1 1 1 0 0 0 46 ###

2006-2010

Table V
HISTORY/OBSERVED PERIOD RESULTS FOR ISOLATED THIN SERVERS

OS Pairs Driver Kernel Sys. Soft. Total

Win2000-Win2003 0 40 41 81
OpenBSD-FreeBSD 1 14 17 32
NetBSD-FreeBSD 2 13 9 24
Win2003-Win2008 0 10 8 18
OpenBSD-NetBSD 1 8 7 16
Win2000-Win2008 0 8 6 14
Debian-RedHat 0 5 6 11
FreeBSD-Solaris 0 5 3 8
NetBSD-Solaris 0 4 4 8
OpenBSD-Solaris 0 5 1 6
OpenSolaris-Solaris 0 3 3 6
FreeBSD-RedHat 0 1 4 5
FreeBSD-Win2000 1 3 0 4
OpenBSD-RedHat 0 1 3 4
Solaris-RedHat 0 3 1 4
NetBSD-Win2000 1 2 0 3
OpenBSD-Win2000 0 3 0 3
Solaris-Win2000 0 3 0 3
Solaris-Debian 0 1 1 2
OpenBSD-Win2003 0 2 0 2
FreeBSD-Win2003 0 2 0 2
Debian-Ubuntu 0 0 2 2
NetBSD-Debian 0 0 2 2
NetBSD-RedHat 0 0 2 2
NetBSD-Win2003 0 1 0 1
NetBSD-Win2008 0 1 0 1
OpenBSD-Win2008 0 1 0 1
FreeBSD-Win2008 0 1 0 1
Solaris-Win2003 0 1 0 1
FreeBSD-Debian 0 0 1 1
Debian-Win2000 0 0 1 1
Ubuntu-RedHat 0 0 1 1
Ubuntu-Win2000 0 0 1 1
RedHat-Win2000 0 0 1 1

Table IV
COMMON VULNERABILITIES ON ISOLATED THIN SERVERS.

C. Selecting the OS for the Replicas

Recall that when building an intrusion-tolerant replicated
system, one would like to pick a group of OSes for the
servers that share a minimum number of vulnerabilities
(ideally zero). This selection ensures that the adversary
spends more effort and time to break the system, since he
or she has to compromise each replica separately.5 Typical
intrusion-tolerant systems require at least 3 f +1 replicas to
tolerate f faults (e.g., [3], [7], [9]), and in some specific
services they might only need 2 f + 1 or more replicas
(e.g., [4], [5]).

The results from the previous section give a strong indi-
cation that it should be possible to choose groups of OSes

5This is valid under the assumption that the cost to compromise each
OS is non-negligible and approximately the same.

with few common vulnerabilities over long intervals of time.
However, we would like to understand if the data from
the NVD database is effective at suggesting these groups
of OSes. To address this point, we divided the data in
two subsets: the history period comprising the data from
the interval 1994 to 2005 (2/3 of the valid vulnerabilities),
and the observed period for the years between 2006 and
2010 (1/3 of the valid vulnerabilities). The objective is to
employ the history period to pick groups of OSes to deploy
in an hypothetical intrusion-tolerant system (e.g., BFS [3]
or DepSpace [7]), and then use the data on the observed
period to verify if the number of shared vulnerabilities is
as small as expected. Table V presents the result of the
analysis for groups of Isolated Thin Servers. The experiment
does not consider Ubuntu, OpenSolaris and Windows 2008
due to lack of meaningful data during the history period.
In the table, values above the diagonal line and to the
right correspond to common vulnerabilities in pairs of OSes
during the history period. Values to the left and below the
diagonal line represent the observed period results.

For the base case consider that one wants to tolerate a
single intrusion, i.e., f = 1, in a set of four identical (non-
diverse) replicas (e.g., because one wants to keep admin-
istrative tasks simple). The best strategy for this scenario
would be to pick the OS with the least vulnerabilities
during the history period. Debian would be the best choice
because it only had 16 vulnerabilities that could be remotely
exploited either in the drivers, kernel or system programs.
Over the observed period, this system would have 9 shared
vulnerabilities (i.e., the ones that were reported for Debian
between 2006 and 2010) that could compromise the four
replicas of the hypothetical system (see Figure 3).

If one had chosen to employ the “most diverse” oper-
ating system group based on what was reported on the
history period, then the selected OSes would be Set1 of
Figure 3, which is composed by {Windows 2003, Solaris,
Debian and OpenBSD}. During the observed period, this
set would only have one vulnerability affecting two of the
replicas – OpenBSD and Windows 2003. Alternatively, if we
had chosen the second “most diverse” configuration, where
NetBSD would substitute OpenBSD, then one would add
3 extra common vulnerabilities during the history period.
However, during the observed period, one would still only

390

 0

 10

 20

 30

D
ebian

Set1
Set2

Set3
Set4

#
 o

f
v
u

ln
e

ra
b
ili

ti
e

s

History
Observed

16

9
11 12

26

9

1 1 2 2

Figure 3. Several configurations of OSes: Debian - only Debian;
Set1 is {Win2003, Solaris, Debian, OpenBSD}; Set2 is {Win2003,
Solaris, Debian, NetBSD}; Set3 is {Win2003, Solaris, RedHat,
NetBSD}; Set4 is {OpenBSD, NetBSD, Debian, Redhat}.

have a single common vulnerability (between NetBSD and
Windows 2003). Therefore, in both configurations of the
intrusion-tolerant system, the number of common vulner-
abilities would be extremely small, and lower than in the
base case.

The results also point out that one can deploy an intrusion-
tolerant system with few common vulnerabilities, which is
based only on Linux distributions and BSD flavors (Set4
in Figure 3). Since these four OSes can be managed in
a relatively similar way, this type of configuration can be
extremely useful for organizations that need to operate with
tight budgets – e.g., it would not be necessary to hire
personnel that knows how to administer Solaris or Windows
machines.

Table V shows that it is possible to build a set of
six operating systems with few vulnerabilities: two from
the BSD family (OpenBSD and NetBSD), one from the
Windows family (Windows 2003), the two Linux (Debian
and RedHat) and Solaris. By adding one extra operating
system, either FreeBSD or OpenSolaris (which only had 6
common vulnerabilities with Solaris in the observed period),
we would have seven options available, making it possible
to deploy diverse systems with f = 2 and f = 3, for 3 f +1
and 2 f +1 replicas, respectively.

D. Exploring Diversity Across OS Releases

The results from the previous section are encouraging
if one wants to build systems capable of tolerating a few
intrusions, since it is possible to select OSes for the replicas
with a small collection of common vulnerabilities. It is hard,
however, to support critical services that need to remain
correct with higher numbers of compromised replicas or
to use some Byzantine fault-tolerant algorithms that trade
performance by extra replicas (e.g., [6], [8]). The number
of available operating systems is limited, and consequently,
one rapidly runs out of different OSes (e.g., it is necessary
13 distinct OSes to tolerate f = 4 in a 3 f + 1 system). On
the other hand, our experiments are relatively pessimistic in
the sense that they are based in long periods of time and no

distinctions are made between OS releases. Newer releases
of an OS can contain important code changes, and therefore,
current vulnerabilities may not appear in previous versions.
As a result, if we consider (OS, release) pairs, one may
augment the number of different systems that do not share
vulnerabilities.

This section presents some preliminary results about
exploring diversity across OS releases. We looked for se-
curity advisories (or trackers) available in the various OS
websites to determine if they correlate the vulnerabilities
patched in each release with the information in NVD. This
correlation was found in a meaningful way in four of
the OSes under study: NetBSD,6 Debian,7 Ubuntu,8 and
RedHat.9 From all combinations of pairs of these OSes
in an Isolated Thin Server configuration, the pair with
highest number of common vulnerabilities is Debian-RedHat
(see Tables III and IV). Table VI presents the number of
common vulnerabilities for three releases of Debian and
RedHat, spread along the following years: Debian2.1, 1999;
Debian3.0, 2002; Debian4.0, 2007; RedHat6.2*, 2000; Red-
Hat4.0, 2005; RedHat5.0, 2007. One can observe that even
though Debian-RedHat shared a total eleven vulnerabilities,
the (OS, release) pairs are mostly without common flaws,
both in the case of the same OS but distinct releases (left
side of the table) and between different operating systems
(right side of the table). These same kind of benefits were
also reported in a previous work related with non-security
bugs for database management systems [18].

OS Versions Total OS Versions Total

Debian2.1-Debian3.0 0 Debian3.0-RedHat6.2* 0
Debian2.1-Debian4.0 0 Debian3.0-RedHat4.0 0
Debian3.0-Debian4.0 1 Debian3.0-RedHat5.0 0
RedHat6.2*-RedHat4.0 0 Debian4.0-RedHat6.2* 0
RedHat6.2*-RedHat5.0 0 Debian4.0-RedHat4.0 1
RedHat4.0-RedHat5.0 1 Debian4.0-RedHat5.0 1

Debian2.1-RedHat6.2* 0
Debian2.1-RedHat4.0 0
Debian2.1-RedHat5.0 0

Table VI
COMMON VULNERABILITIES BETWEEN OS RELEASES.

E. Summary of the Results of our Study

The main findings of the study can be summarized as:
1) The number of common vulnerabilities on the studied

operating system pairs was reduced by 56% on average
if the application and locally-exploitable vulnerabili-
ties are filtered out;

2) More than 50% of the 55 OS pairs studied have at most
one non-application, remotely exploitable common
vulnerability;

3) The top-3 diverse setups for a four-replica system
(tolerating a single failure in typical intrusion-tolerant

6http://www.netbsd.org/support/security/release.html
7http://security-tracker.debian.org/tracker/
8http://people.canonical.com/ ubuntu-security/cve/
9https://www.redhat.com/security/data/cve/

391

system) are: {Windows 2003, Solaris, Debian and
OpenBSD}, {Windows 2003, Solaris, Debian and
NetBSD} and {Windows 2003, Solaris, RedHat and
NetBSD};

4) A preliminary analysis of the diversity among different
versions of Debian and RedHat distributions suggests
that there are possible setups with the same OS that
have a disjoint set of vulnerabilities.

5) There are two vulnerabilities from 2007 and 2008 that
affect six OSes, and one vulnerability from 2008 that
affected nine OSes;

6) Driver vulnerabilities accounts only for a very small
set (less than 1.5%) of all reported OS vulnerabilities.

V. DISCUSSION

A. Limitations of NVD and its Implications on the Study

The numbers we have presented are intriguing and point
to a potential for serious security gains from assembling a
intrusion-tolerant system using different operating systems.
But they are not definitive evidence. Even though the NVD
is arguably the most complete and referenced database for
security vulnerabilities and it is regularly updated with
contributions from several sources, there are several uncer-
tainties that remain about the data, which limit the claims we
can make about the benefits of diversity to increase security.
Ozment [31] points out some problems with the NVD
(chronological inconsistency, inclusion, separation of events
and documentation); for our purposes, the first two and the
last one are the most relevant. “Chronological inconsistency”
means that the NVD data has inherent inaccuracies about the
dates when vulnerabilities were discovered and when the
vulnerable code was released, which not only complicates
reasoning about the lifetime of vulnerabilities but also affects
the versions that are vulnerable (for instance, sometimes
obsolete versions of a product are vulnerable but are not
listed in the NVD as such). “Inclusion” refers to the fact that
not all vulnerabilities are included in the NVD, only those
with a CVE number; as CVE and NVD have gained traction,
this has become less of an issue. Finally, there is little
documentation about the NVD, and, in the past, the meaning
of some fields has occasionally changed without prior notice,
which might make comparisons less meaningful. In what
follows, we will discuss some other limitations and the
implications that they have on the claims we can make about
the benefits of diversity:

1) The NVD does not provide “reproducible scripts” or
exploits – probably wisely – which would allow one to
check whether the vulnerability can be exploited. From
our past experience of working with non-security
related bugs [18], a bug report usually contains a
script that reproduces the failure that the reporter has
observed. Relying solely on the data available in the
NVD, it is not possible to confirm that a reported
vulnerability is actually exploitable.

Implication: The lack of exploitability information
makes it harder to adequately assess the risk posed by
a vulnerability. Caution forces us to consider that all
vulnerabilities are exploitable, and must be remediated
in due time, a strategy that has obvious implications
both in terms of cost and in terms of complexity of
management.

2) When a vulnerability is reported for more than one
operating system, it is not clear whether the reporter
has checked that it has been confirmed to exist in the
OSes, or it is just an indication that the vulnerability
may exist in each of the operating systems listed.
Implication: The implications of the previous item
apply here as well. Additionally, we have the implica-
tion that we cannot claim with certainty whether our
estimates of the benefits of diversity, given earlier in
the paper, are conservative or optimistic. If a vulnera-
bility has been reported for operating systems A and
B but in fact only exists in A, then our estimates are
conservative. On the other hand, if the vulnerability
has been reported for operating systems A and B only,
but in fact it exists additionally in operating systems
C and D, then our estimates are optimistic.

3) Although more than 70 organizations (including many
important OS vendors) use CVE to identify vulner-
abilities, it is not clear if all products are equally
represented in the NVD. Another related issue is that
the vulnerability reporting process is inherently biased,
both in timing and in coverage, although not necessar-
ily in an intentional manner. For instance, when a new
class of vulnerabilities is discovered or disseminated,
there is often a surge of new reports involving this
class, as it has happened with format string bugs [38]
and integer overflows [39]. Finally, not all targets are
given the same attention by vulnerability researchers.
Software with smaller user bases tend to attract less
scrutiny than popular ones, vulnerabilities with higher
impact usually receive more attention, and there is
even the case when specific vendors are targeted for
some reason, as when Oracle claimed their database
was “unbreakable” only to have several vulnerabilities
disclosed within 24 hours [40], and the rise in exploita-
tion of Adobe software in the last 15–20 months [41].
Implication: With any analysis of bug or vulnerability
reports from an open database, there is uncertainty
about how many of the vulnerabilities are actually
reported. This fraction is certainly less than 100%. If
all vulnerabilities had the same probability of being
reported, the ratio between our predicted vulnerability
counts for AB (mAB – those that affect both products
A and B) and A or B (mA or mB – those that
affect only one of the products) would still be the
ratio mAB/mA or mAB/mB respectively. But, in fact,
we do not know whether the vulnerabilities of some

392

operating systems are less likely to be reported in
NVD than others (or conversely). It is not clear if
the vulnerabilities of some operating systems are re-
ported to the vendors only (or some other vulnerability
database) and do not appear in NVD. This again has
implications about the claims that we can make about
the benefits of diversity, as data entries may be missing
which overestimate the benefits of diversity for some
products.

B. Decisions about deploying diversity
We have underscored that these results are only prima

facie evidence for the usefulness of diversity. On average,
we would expect our estimates to be conservative as we
analyzed aggregated vulnerabilities across releases: common
vulnerabilities could be much smaller in a “specific set” of
diverse OS releases. But, there are limitations on what can
be claimed from the analysis of the NVD data alone without
further manual analysis (other than what we have done, e.g.,
developing/finding and running exploit scripts on every OS
for each vulnerability). A better analysis would be obtained
if the NVD vulnerability reports were combined with the
exploit reports (including exploit counts), and even better
if they also had indications about the users’ usage profile.
However, vendors are often wary of sharing such detailed
dependability and security information with their customers.
There are partial exploit reports available from other sites
(e.g., [36]), but they are incomplete and a significant amount
of manual analysis is required to match the vulnerabilities
with exploits for each operating system.

Given these limitations, how can individual user organiza-
tions decide whether diversity is a suitable option for them,
with their specific requirements and usage profiles? The cost
is reasonably easy to assess: costs of the software products,
the required middleware (if any), added complexity of
management, difficulties with client applications that require
vendor-specific features, hardware costs, run-time cost of the
synchronization and consistency enforcing mechanisms, and
possibly more complex recovery after some failures. The
gains in improved security (from some tolerance to 0-day
vulnerabilities and easier recovery from some exploits, set
against possible extra vulnerabilities due to the increased
complexity of the system) are difficult to predict except
empirically. This uncertainty will be compounded, for many
user organizations, by the lack of trustworthy estimates of
their baseline security. We note that, for some users, the
evidence we have presented would already indicate that
diversity to be a reasonable and relatively cheap precau-
tionary choice, even without highly accurate predictions
of its effects. These are users who have serious concerns
about security (e.g., high costs for interruptions of service
or undetected exploits), and applications which can run on
multiple operating systems.

VI. CONCLUSIONS

One way to decrease the probability of common vul-
nerabilities on the replicas of intrusion-tolerant systems is
by using diverse OTS software components. In this paper
we analyzed the likelihood of common vulnerabilities on
an important class of OTS components used in intrusion-
tolerant systems: operating systems. We analyzed more than
15 years of vulnerability reports from NVD totaling 2120
vulnerabilities of eleven operating system distributions. The
results suggests substantial security gains by using diverse
operating systems for intrusion tolerance. We also discussed
in detail the limits on the claims we can make about the
benefits of diversity from NVD data alone, and discussed
what additional data, analysis and clarifications may be
needed to increase our confidence about the claims on the
benefits of diversity. Despite these limitations, we argue that
on average our estimates may be seen as conservative as we
analyzed aggregated vulnerabilities across releases – hence
common vulnerabilities could be smaller in a “specific set”
of diverse OS releases.

VII. ACKNOWLEDGMENTS

We would like to thank Paulo Sousa for his early work
on this research effort and Peter Bishop for commenting
on earlier drafts. This work was partially supported by
the EC through project FP7-257475 (MASSIF) and by
the FCT through the Multiannual and the CMU-Portugal
Programmes, and the project PTDC/EIA-EIA/100894/2008
(DIVERSE). Ilir Gashi is supported by a Strategic Develop-
ment Fund (SDF) grant from City University London.

REFERENCES

[1] L. Lamport, R. Shostak, and M. Pease, “The Byzantine
generals problem,” ACM Trans. on Programing Languages
and Systems, vol. 4, no. 3, 1982.

[2] P. Verissimo, N. F. Neves, and M. P. Correia, “Intrusion-
tolerant architectures: Concepts and design,” in Architecting
Dependable Systems, ser. LNCS, 2003, vol. 2677.

[3] M. Castro and B. Liskov, “Practical Byzantine fault-tolerance
and proactive recovery,” ACM Trans. on Computer Systems,
vol. 20, no. 4, 2002.

[4] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin, “Separating agreement form execution for Byzan-
tine fault tolerant services,” in Proc. of the ACM Symp. on
Operating Systems Principles, 2003.

[5] M. Correia, N. F. Neves, and P. Veríssimo, “How to tolerate
half less one Byzantine nodes in practical distributed sys-
tems,” in Proc. of the IEEE Symp. on Reliable Distributed
Systems, 2004.

[6] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and
J. Wylie, “Fault-scalable Byzantine fault-tolerant services,”
in Proc. of the ACM Symp. on Operating Systems Principles,
2005.

393

[7] A. N. Bessani, E. P. Alchieri, M. Correia, and J. S. Fraga,
“DepSpace: a Byzantine fault-tolerant coordination service,”
in Proc. of the ACM/EuroSys Conference on Computer Sys-
tems, 2008.

[8] M. Serafini, P. Bokor, D. Dobre, M. Majuntke, and N. Suri,
“Scrooge: Reducing the costs of fast Byzantine replication in
presence of unresponsive replicas,” in Proc. of the IEEE/IFIP
Dependable Systems and Networks, 2010.

[9] H. Moniz, N. F. Neves, M. Correia, and P. Verissimo, “RITAS:
Services for randomized intrusion tolerance,” IEEE Trans. on
Dependable and Secure Computing, vol. 8, no. 1, 2011.

[10] “National Vulnerability Database,” http://nvd.nist.gov/.

[11] B. Randell, “System structure for software fault tolerance,”
IEEE Trans. on Software Engineering, vol. 1, no. 2, 1975.

[12] A. Avizienis and L. Chen, “On the implementation of N-
version programming for software fault tolerance during
execution,” in Proc. of the IEEE Computer Software and
Applications Conf., 1977.

[13] M. K. Joseph and A. Avizienis, “A fault-tolerant approach to
computer viruses,” in Proc. of the IEEE Symp. on Research
in Security and Privacy, 1988.

[14] S. Forrest, A. Somayaji, and D. H. Ackley, “Building diverse
computer systems,” in Proc. of the Workshop on Hot Topics
in Operating Systems, 1997.

[15] S. A. Hofmeyr and S. Forrest, “Architecture for an artificial
immune system,” Evolutionary Computation, vol. 8, no. 4,
2000.

[16] Y. Deswarte, K. Kanoun, and J.-C. Laprie, “Diversity against
accidental and deliberate faults,” in Computer Security, De-
pendability, and Assurance: From Needs to Solutions, 1998.

[17] R. R. Obelheiro, A. N. Bessani, L. C. Lung, and M. Correia,
“How practical are intrusion-tolerant distributed systems?”
Department of Informatics, University of Lisbon, DI/FCUL
TR 06–15, 2006.

[18] I. Gashi, P. Popov, and L. Strigini, “Fault tolerance via diver-
sity for off-the-shelf products: A study with SQL database
servers,” IEEE Trans. on Dependable and Secure Computing,
vol. 4, no. 4, 2007.

[19] B. P. Miller, L. Fredriksen, and B. So, “An empirical study
of the reliability of UNIX utilities,” Communications of the
ACM, vol. 33, no. 12, 1990.

[20] B. Miller, D. Koski, C. Lee, V. Maganty, R. Murthy,
A. Natarajan, and J. Steidl, “Fuzz revisited: A re-examination
of the reliability of UNIX utilities and services,” University.
of Wisconsin-Madison, CS-TR 1995–1268, 1995.

[21] A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Engler, “An
empirical study of operating systems errors,” in Proc. of the
ACM Symp. on Operating Systems Principles, 2001.

[22] A. Ozment and S. E. Schechter, “Milk or wine: Does software
security improve with age?” in Proc. of the USENIX Security
Symp., 2006.

[23] P. Anbalagan and M. Vouk, “Towards a unifying approach in
understanding security problems,” in Proc. of the IEEE Int.
Symp. on Software Reliability Engineering, 2009.

[24] P. Koopman and J. DeVale, “Comparing the robustness of
POSIX operating systems,” in Proc. of the IEEE Int. Symp.
on Fault-Tolerant Computing, 1999.

[25] R. J. Anderson, “Security in open versus closed systems—the
dance of Boltzmann, Coase and Moore,” in Conf. on Open
Source Software: Economics, Law and Policy, 2002.

[26] E. Rescorla, “Is finding security holes a good idea?” IEEE
Security & Privacy, vol. 3, no. 1, 2005.

[27] O. H. Alhazmi and Y. K. Malayia, “Quantitative vulnerability
assessment of systems software,” in Proc. of the Annual
Reliability and Maintainability Symp., 2005.

[28] ——, “Application of vulnerability discovery models to major
operating systems,” IEEE Trans. on Reliability, vol. 57, no. 1,
2008.

[29] M. R. Lyu, Ed., Handbook of Software Reliability Engineer-
ing. McGraw-Hill, 1995.

[30] G. Schryen, “Security of open source and closed source soft-
ware: An empirical comparison of published vulnerabilities,”
in Proc. of the Americas Conf. on Information Systems, 2009.

[31] A. Ozment, “Vulnerability discovery & software security,”
Ph.D. dissertation, University of Cambridge, 2007.

[32] B. Littlewood, P. Popov, and L. Strigini, “Modeling software
design diversity: A review,” ACM Computing Surveys, vol. 33,
no. 2, 2001.

[33] B. Littlewood and L. Strigini, “Redundancy and diversity
in security,” in Proc. of the European Symp. on Research
Computer Security, 2004.

[34] “CVE terminology,” http://cve.mitre.org/about/terminology.
html.

[35] “Common platform enumeration,” http://cpe.mitre.org/.

[36] “CVE details website,” http://www.cvedetails.com/.

[37] A. Ganapathi, V. Ganapathi, and D. Patterson, “Windows
XP kernel crash analysis,” in Proc. of the Large Installation
System Administration Conference, 2006.

[38] T. Newsham, “Format string attacks,” Guardent, Inc.,
Tech. Rep., 2000, available from http://www.thenewsh.com/
~newsham/format-string-attacks.pdf.

[39] D. Ahmad, “The rising threat of vulnerabilities due to integer
errors,” IEEE Security & Privacy, vol. 1, no. 4, 2003.

[40] D. Litchfield, “Hackproofing Oracle Application Server,”
NGSSoftware Insight, Whitepaper, 2002.

[41] M. Labs, “2010 threat predictions,” Whitepaper, 2009, avail-
able from http://www.mcafee.com/us/local_content/white_
papers/7985rpt_labs_threat_predict_1209_v2.pdf.

394

