

City, University of London Institutional Repository

Citation: Stankovic, V., Lin, S., Pareaud, T., Robert, T. & Zutautaite-Seputiene, I. (2008).

Toward Adaptable Software Architecture for Dependability: ASAP. Paper presented at the
7th European Dependable Computing Conference (EDCC 2008), 7 - 9 May 2008, Kaunas,
Lithuania.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/528/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Toward Adaptable Software Architecture for Dependability: ASAP

Thomas Robert and Thomas Pareaud Inga Zutautaite-Seputiene
Université de Toulouse

LAAS-CNRS

7 avenue du colonel Roche,

31400 Toulouse

France

{trobert, tpareaud}@laas.fr

Vytautas Magnus University

Mathematics and Statistics Department

8 Viliekos str.,

LT-44404 Kaunas

Lithuania

ingaz@isag.lei.lt

Vladimir Stankovic Shen Lin
City University,

Centre for Software Reliability,

London EC1V 0HB,

United Kingdom

v.stankovic@city.ac.uk

Lancaster University,

Computing Department

Lancaster LA1 4WA,

United Kindgom

s.lin6@lancaster.ac.uk

Abstract

This short paper describes the ASAP mini-project

(Assessment-based Adaptable Software Architecture

for Dependability) that was launched within the Net-

work of Excellence ReSIST
1
. The main objective of the

work is to address the adaptation of the fault tolerance

software in a system according to on-line assessment-

based triggers. On-line assessment and adaptive fault-

tolerance have been identified in ReSIST as major re-

search gaps for the future. The ambition of the mini-

project is to gather recent work on fault tolerance

software adaptation using open-component software

based engineering techniques and advanced knowledge

on on-line assessment using Bayesian inference. Some

small case studies are planned to perform and early

validation of the ideas and proposed approach.

Keywords
On-line assessment, adaptive fault tolerance, Baye-

sian inference, reflective computing.

1. Introduction

The evolution of systems at runtime is currently to

be addressed in many application domains, those being

critical or not. A solution to cope with this requirement

for more flexible systems is to adapt the system design

1
 Network of Excellence ReSIST (Resilience for Survivability in IST,

http://www.resist-noe.org)

and service at run-time. The on-line adaptation may be

required for many reasons like changes in the

environment, components upgrades, system

configuration, resource consumption, components

transient failure but also new fault assumptions. These

are some of the possible triggers for adaptation of the

system. This kind of problem is concern safety critical

embedded systems with limited resources and no

means to repair, ubiquitous computing or mobile

systems, and also large-scale distributed systems.

The solution must tackle two kinds of problems:

• The assessment of operational conditions and de-

tection of a change to trigger the adaptation

• The adaptation of the target system, including in

particular its mechanisms of achieving high de-

pendability (e.g. fault tolerance).

The objective of this work is to propose an archi-

tecture, and methods to make adaptive resilient sys-

tems, in particular regarding fault tolerance. To reach

this aim, we introduce several assessment techniques

and a reflective component model as base modules to

build up such an architecture. The reflective model is

drawn from a complete open-component engineering

framework.

This work is the continuation of the analysis of

research challenges performed within the framework of

the network of excellence ReSIST, in [3]. Among

them, Adaptation and self-organisation concerns

resilience of an evolving system that is highly affected

by its ability to adapt to new requirements of the

17

environment. The problem is thus to dynamically

reorganize the system, including its resilience

mechanisms, according to new operational conditions.

In the context of fault tolerance adaptation, the two

problems identified above have been spelled out more

precisely as:

• An on-line assessment engine that deals explicitly

with the assessment at runtime of the system resil-

ience. Thus, the on-line (run-time) assessment is

concerned with system operating in highly dy-

namic and evolving environment (e.g. network

congestion, new/changing service customers, ef-

fects of exploits of faults / vulnerabilities). Its goal

is assessment of the implications of the changing

environment on system resilience ranging from

simply signaling a sub-standard operation to trig-

gering a system’s adaptation.

• A design for adaptation applicable to fault toler-

ance –identified as an important research gap in

[3]. It has been pointed out that the adaptation ca-

pabilities of a system depend on the early stages of

its design, and the software development technol-

ogy that was selected. In the case of fault toler-

ance, they identified the urging need for an envi-

ronment that offers system architects the means to

describe and design the adaptation of the fault

tolerance [8].

This paper gives the scheme of an architecture to

provide on-line adaptation of resilient systems. Such an

architecture is built from different approaches and

techniques to address the sub-tasks identified above.

2. Overall architecture

The system architecture we envisage will consist of

several abstraction layers as illustrated in Figure 1 that

gives a coarse view of the system. The lower layer

corresponds to the system services provided to the user

and defined in the functional specification documents.

The fault tolerance layer corresponds to the set (pool)

of possible mechanisms required to fulfill non-

functional specifications (give examples?). The

mechanisms may require different degrees of

redundancy (including diverse redundancy) and offer

different degrees of dependability assurance. The

adaptation layer corresponds to the various scenarios

enabling the fault tolerance strategies to be changed

on-line. Last, the assessment layer corresponds to the

set of mechanisms responsible for estimating the

current situation and deciding which of the available

fault-tolerant mechanisms is the most adequate for it. If

the currently deployed mechanism is sub-optimal, then

a change will be triggered. This change will lead to

modifications of the active fault-tolerance mechanism

and, if necessary, modifications of the base system. In

practical terms, these layers correspond to components

such as Base System (BSys), Fault Tolerance

mechanisms (FTM), Adaptation Engine (AdE),

Assessment Engine (AsE) that uses Failure Detectors

(FDs), Software Sensors (SWS) and Software

Actuators (SWA).

System in operation

Fault tolerance

Adaptation

Assessment

action

action

action

observation

Figure 1. Abstraction layers for on-line adaptation

Figure 1 depicts in fact the proposed reflective ar-

chitecture, each abstraction level corresponding to a

metalevel. In reflective terms, observation and control

facilities provided by open component technologies

enable adaptation to be performed on each software

level configuration on-line.

The Base System is the application software (and

its supporting executive layers, operating system and

middleware) without any fault-tolerant mechanisms,

e.g. embedded software for automotive application,

avionics, etc. Such subsystem consists of several com-

ponents, with their respective APIs, which allow for

interaction
2
.

The Fault Tolerance software is defined as a set of

interacting components that provides fault tolerance

according to some requirement and resources availabil-

ity. Their organization must be flexible enough to be

manipulated at runtime. Novel software engineering

techniques such as Fractal [1] or OpenCOM [2] can be

used to reach this aim.

The Adaptation corresponds to a set of programs

that are able to change the configuration of the fault

tolerance software in order to modify on-line a given

fault tolerance strategy. Because the open component

technology enables individual components of a

software layer to be manipulated at runtime (dynamic

2
 In case diverse components are used to achieve tolerance against

software faults, the diverse components are still seen as part of the

Base System, since they are assumed to be available (e.g. off-the-

shelf) and developed by third parties in accordance with the ‘de-

sign for adaptation’ principles.

18

bindings), their objective is to update a given strategy

while maintaining consistency.

The Assessment is a process of measuring the non-

functional characteristics of the system, using a model

of the system and the evidence available before and

during operation. The Assessment in this particular

framework is achieved by an Assessment engine, a

piece of software, which allows for all necessary ele-

ments of the assessment to be represented: the system

model, the pre-deployment knowledge about the non-

functional property of interest, and the mechanism of

updating the knowledge about the attribute of interest

when new evidence becomes available. For the sake of

concreteness in this report we limit ourselves to the

following examples of assessment:

• Computation of dependability measures of interest

associated with the particular deployment of BSys,

AdE and FDs , e.g. the probability of system fail-

ure on demand, using Bayesian inference as de-

scribed in a series of papers [4], [5]. Such a service

ensures an up to date estimation of the dependabil-

ity level of the whole system.

• Detection of the changes in the operational use of

the system, i.e. of its operational environment, e.g.

as a result of changes in the pattern the software is

being used, which may invalidate the dependabil-

ity measures computed in the past under different

operational conditions.

• Detection by anticipation of real-time failure due

to changes in the runtime conditions (i.e.

scheduling errors) that lead to abnormal

behaviours or erroneous states [6]; the approach

consists of analyzing correct continuations using

the automata time abstraction [7].

Finally, SoftWare Sensors will monitor the work

of the deployed components and deliver input data to

the specific Assessment engine deployed to keep the

assessment up to date. The access to SWS will be via a

defined API, in fact a meta-interface providing inputs

to the adaptation and assessment engines.

Similarly, the adaptation will need means to act

upon the system in operation through SoftWare

Actuators.

3. Conclusion

Clearly, the on-line adaptation may be required for

multiple reasons like changes in the environment,

components upgrades, system re-configuration,

resource usage, components transient failures as well

as new fault assumptions. These are some of the

possible triggers for adaptation. These situations are

quite generic and apply to a wide range of systems,

from resource-constrained safety critical embedded

systems that cannot be repaired on-line, ubiquitous

computing and mobile systems, to large-scale

distributed infrastructure.

We argue that any solution to these challenges

needs to address the following two problems:

1) How to properly assess operational conditions

and trigger adaptation when required

2) Once adaptation has been decided, how to adapt

a target system, and in particular how to adapt its de-

pendability mechanisms.

In practice, the system in operation is composed of

services implementing the functional specifications,

those services being run on top of a middleware com-

posed of an assessment engine, an adaptation engine

and fault tolerance mechanisms.

The assessment engine obtains inputs from the sys-

tem and its environment, and uses them to compute

adaptation trigger. These triggers are passed on to the

adaptation engine that is then responsible for dynami-

cally modifying the software configuration (in particu-

lar the fault tolerance strategies) according to the needs

that have been identified.

4. Acknowledgments

The authors want to give special thanks to Jean-

Charles Fabre (LAAS-CNRS, Toulouse) and Peter

Popov (City University, London) for their help in the

elaboration of this mini project. They both played an

important role in the organization of the project as well

as in the contribution to the project content. We also

thank François Taïani (Lancaster University) for his

participation to this project.

5. References

[1] Bruneton, E., et al., The Fractal Component Model and

Its Support in Java. Software Practice and Experience,

2006. 36 (11-12)(Experiences with Auto-adaptive and

Reconfigurable Systems): p. 29.

[2] Coulson, G., et al. Towards a Component-based Mid-

dleware Architecture for Flexible and Reconfigurable

Grid Computing. in Workshop on Emerging Technolo-

gies for Next generation Grid (ETNGRID-2004), 13th

IEEE International Workshops on Enabling Technolo-

gies: Infrastructures for Collaborative Enterprises.

2004. Italy.

[3] M. Banatre (Editor), From Resilience-Building to Resil-

ience-Scaling Technologies: Directions — Chapter 1,

Evolvability of Resilient Systems, Report D13, RESIST

NoE, N°026764, Resilience for Survivability in IST,

September 2007, 130 pages.

19

[4] Littlewood, B., P. Popov, and L. Strigini. Assessment of

the Reliability of Fault-Tolerant Software: a Bayesian

Approach. in 19th International Conference on

Computer Safety, Reliability and Security,

SAFECOMP'2000. 2000. Rotterdam, the Netherlands:

Springer.

[5] Popov, P. Reliability Assessment of Legacy Safety-

Critical Systems Upgraded with Off-the-Shelf Compo-

nents. in SAFECOMP'2002. 2002. Catania, Italy:

Springer-Verlag.

[6] Robert, T., M. Roy, and J.C. Fabre, Real-time run-time

verifiers: theory and practice, LAAS Research Report

07276, 2007, 10p.

[7] Alur, R. and D.L. Dill, A theory of timed automata.

Theoretical Computer Science, 1994. 126: p. 183--235.

[8] T. Pareaud, J-C. Fabre, M-O. Killijian, Towards adap-

tive fault tolerance in Embedded Systems, International

Congress on Embedded Real-Time Software, Toulouse,

France, Jan. 2008, 9p.

20

