

City, University of London Institutional Repository

Citation: Stankovic, V. & Strigini, L. (2009). A survey on online monitoring approaches of

computer-based systems. London, UK: Centre for Software Reliability, City University
London.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/531/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

 1/29

A survey on online monitoring approaches of

computer-based systems

Prepared by: Vladimir Stankovic, Lorenzo Strigini

Date: June 2009

Version: 2.6

 2/29

This report
1
 surveys forms of online data collection that are in current use (as well as being

the subject of research to adapt them to changing technology and demands), and can be used

as inputs to assessment of dependability and resilience, although they are not primarily meant

for this use.

1. Introduction
Monitoring the components of a system can be used to make decisions about the management

of the system and thus control its behaviour. Monitoring is also used for debugging and for

evaluating in real time the performance or quality of service (QoS) of a system. Monitoring in

IT systems can be defined as the process of dynamic collection, interpretation and

presentation of information concerning objects or software processes under scrutiny

[Mansouri-Samani and Sloman 1992]. This paper provides a general description of

monitoring: “the behaviour of the system is observed and monitoring information is gathered;

this information is used to make management decisions and perform the appropriate control

actions on the system”. When setting up a monitoring system, technical problems have to be

solved in relation to detecting the events of interest, labelling these events with sufficient

information for use in measurement, transmitting the event notices to where they will be used,

filtering and classifying the events according to the measures of interest, and acting upon the

collected information. Online monitoring has long been recognised as a viable means for

dependability improvement [Schroeder 1995]. This report surveys the use of monitoring in

diverse areas of: dependability, performance enhancement, correctness checking, security,

debugging and testing, performance evaluation and control.

In general, when we deal with the monitoring of computing systems we have one or more

monitored elements (e.g., computers, operating systems, application packages) send out

signals or measurements of their well-being or distress to a monitoring site (logically

centralised, even when computing elements are distributed), which thus can extract (or help

humans to extract) various forms of processed information and make (or help humans to

make) decisions. Concrete examples include:

- A computer manufacturer receiving health/failure data at a centralised maintenance centre

from customer installations of its machines.

1
 A version of this technical report is included in the State-of-the-art deliverable of the EU-funded Coordination

Action AMBER (Assessing, Measuring and Benchmarking Resilience),

http://www.csr.city.ac.uk/projects/amber.html

 3/29

- An independent company that installs and maintains machines at client sites

polling/receiving health data from them.

- A software vendor/distributor receiving reports of failures from its installed software.

Monitoring may serve either or both of the following two purposes:

- Supporting direct feedback control: the monitoring data trigger decisions about, for

example, dispatching maintenance technicians; or switching in stand-by components; or

switching to a higher-security configuration of a system; or asking developers to

investigate a suspected software bug; etc. That is, monitoring helps to improve the

monitored system so as to make it more resilient/dependable.

- Providing data for assessing the dependability or resilience of the monitored system

(which is the focus of this report).

The rest of this chapter is organised as follows. First, we provide a brief timeline description

of monitoring activities. Subsequently, the “Research in Distributed Systems Monitoring”

section outlines important issues in monitoring distributed systems. In the following sections,

we group forms of online monitoring according roughly to areas of use, which determine

communities of users and researchers. For each such area, we describe pertinent industrial and

academic work, focusing on its potential for dependability assessment. These “areas” are not

intended as a partition of all related work, based on first principles, but just as a convenient

clustering of existing practices, research and literature into (possibly overlapping) categories.

1.1. A concise historical perspective of monitoring

The field of monitoring and related telemetry activities for dependability assurance can be

regarded to be as old as the electronic engineering discipline.

In the early 20
th
 century the design and implementation of dependable systems have not been

rigorously constrained by cost and schedule limitations as is the case nowadays - “In many

cases, high levels of reliability were achieved as a result of over-design” [Smith 2001].

Quantified dependability assessment was, therefore, largely non-existent.

The maintenance procedures for early days’ computers consisted of a technician inspecting

the state of the vacuum tubes. “Computers built in the late 1950s offered twelve-hour mean

time to failure. The vacuum tube and relay components of these computers were the major

source of failures; they had lifetimes of a few months.” [Gray and Siewiorek 1991]. These

tasks were daunting, and in the case of a large number of simultaneously faulty vacuum tubes

 4/29

almost impossible, since the locations and causes of the errors were difficult to determine.

The reliability and ease of maintenance have been significantly improved by using various

tools, such as cathode-ray oscilloscope [Chandler 1983], as in the case of Colossus, the

famous World War II codebreaker machine that had to provide a 24-hour service. Signal

voltages were examined with an oscilloscope and it was used to assess the effect of relative

timings of different parts of a circuit.

The post-war age hastened the advent of intricate mass-produced component parts, which

brought with them greater complexity and parameter variability. This resulted in poor field

reliability of the assembly-line products. As a result, for example, the focus of military

equipment in the 1950s shifted to the collection of field failure data of safety-critical systems

and the interpretation of the corresponding test data. Databases holding failure rate

information were created by such organisations as UKAEA (united Kingdom Atomic Energy

Associations), RRE (Royal Radar Establishment), RADC (Rome Air Development

Corporation, USA), [Smith 2001].

An ability to detect, log and react to dependability-relevant events has been part of the design

of, at least, high-end dependable computers since the 1970s and 1980s. During these decades,

several computer vendors (IBM, Tandem, Digital Equipment Corporation (DEC), etc.) used

electronic communication (usually a secure telephone link) to maintain and service their

customers’ computer devices. As a result, data for maintenance as well as for statistical

studies of field dependability were made available. For instance, IBM offered customers of its

3090 high-end mainframe series (which appeared around 1985) an option for automatic

remote support capability (an automatic call was initiated to IBM) or a field service engineer

was sent to the customer’s site after a maintenance job has been raised due to a processor

controller
2
 detecting errors (see [Siewiorek and Swarz 1998, Chap. "General-purpose

Computing"]). All this information was logged in a central database called RETAIN, and, for

example, a service engineer could communicate with it to obtain the latest maintenance

information. Another option offered with the 3090 series was that a field technical support

specialist could establish a data link to a processor controller to remotely monitor and/or

control the mainframe. A similar option existed as a part of the well-known VAX system

from DEC (VAX-11/780, the first member of the VAX computer family, was introduced in

1977). The user mode diagnostic software of the VAX system reported errors, which initiated

2
 Processor controller is a unit of, usually mainframe, computers, which handles the functions of maintenance,

monitoring, and control.

 5/29

calls to the DEC’s Remote Diagnostic Centre (RDC). Subsequently, an RDC engineer would

establish a data link to the customer’s VAX system through a special remote port and execute

diagnostic scripts, logging everything during the process (see [Siewiorek and Swarz 1998,

Chap. "General-purpose computing"]).

Other examples of mature computer-based technology that employed forms of online

monitoring for achieving high dependability include:

- Telephone switching systems from the pioneer in the field, AT&T Inc. For example, “the

3B20D processor diagnostic capabilities detect faults efficiently, provide consistent test

results, protect memory content, allow automatic trouble location and are easy to

maintain”, see [Siewiorek and Swarz 1998, Chap. "High-Availability Systems"]. These

systems employ dynamic redundancy (e.g., resuming a computation on another processor

once an error is discovered) as the means for achieving high availability. Error detection

techniques are numerous. The high availability processors of the 3B series

(3B20D/3B20C/3B21D/3B21E) were first produced in the second half of the 1970s. The

4ESS switch, the first digital electronic toll switch for long distance switching (introduced

in 1976), initially used the 3B20D processor. It is worth noting that 4ESS employed

advanced error reporting techniques. The switch had automated procedures in place for

analysing error data, with the purpose of correlating and identifying intermittent errors

which evaded standard diagnostic mechanisms.

- Long-life unmanned spacecrafts, like deep-space planetary probes Voyager and Galileo,

which use block redundancy for fault tolerance. They are capable of performing error

detection, diagnosis and reconfiguration automatically (on the spacecraft) or remote

control (from ground stations), see [Siewiorek and Swarz 1998, Chap. "Long-life

systems"] for more details.

Following the use of, most commonly, secure telephone links for collecting customers’ failure

reports in the 1970s and 1980s, a natural step forward was to automate the collection of

failure data: failure data of computers/applications were automatically collected and sent back

to the manufacturer/vendor, after what the data were forwarded to the engineering department

for analysis. Consequently, much research on dependability has been based on data from

automated error logging ([Iyer 1995] lists many early examples), demonstrating how

measurement can inform modelling to lead to assessment (prediction) of dependability in

future operation.

 6/29

The technological advancement for reliability improvement has been noticeable in the hard

disk drives industry in the 1990s, when IBM introduced Self-Monitoring, Analysis, and

Reporting Technology (S.M.A.R.T.) and the closely related Predictive Failure Analysis (PFA)

technology. Dependability monitoring mechanisms are now often packaged in off-the-shelf

components, e.g., hard disk drives. Nowadays, many hard disks are equipped with

S.M.A.R.T., which detects and reports various reliability indicators and administrators can use

it for maintenance and potentially for reliability assessment. As computer systems became

increasingly distributed and integrated with networks, this kind of monitoring has taken on

more varied forms.

2. Research in Distributed Systems Monitoring
In this section we provide a general introduction to the problem of monitoring and on-line

management of distributed systems, with an emphasis on academic research.

Distributed systems are more difficult to design, build and monitor, than centralised systems

because of i) parallelism among processors, ii) random and non-negligible communication

delays, iii) partial failures (failures of components of the system) and iv) lack of global time

base and strict synchronisation between distributed nodes. The main issues of monitoring

distributed systems are as follows:

- No central point of decision making: the process of making decisions in a distributed

system may itself be distributed (leading to, for example, the “agreement problem”).

- Incomplete observability: in some cases it is not possible to observe certain parts of the

system, resulting in incomplete (and possibly inconsistent) information about events in the

system. Thus usually, locally observed events are collected and some entity, using

information about these events, has to build a global view of the system (an example of

data fusion problem).

- Non-determinism: distributed, asynchronous systems are inherently non-deterministic.

Thus, two executions of the same program may produce different, but correct, orderings

of events. This makes the reproduction of errors and the re-creation of test conditions

difficult.

- Vast data volumes: The huge amounts of data produced by monitoring have to be

processed (possibly in real-time, so as to perform short-term management, or to filter the

logs to avoid the difficulty of storing the large amounts of data).

 7/29

Somewhat old, but still useful overviews of research problems in monitoring distributed

systems can be found in [Joyce, Lomow et al. 1987] and [Mansouri-Samani and Sloman

1992]. Important research results in the field of distributed systems, which affect the problem

of monitoring them, include:

- Seminal research related to the identification of the global state of a distributed system:

work on logical clocks and vector clocks [Lamport 1978]; clock synchronization [Lamport

1987], [Cristian 1989]; global snapshots [Mani-Chandy and Lamport 1985] and a

comparison between the concepts of group membership and system diagnosis [Hiltunen

1995]. These results are important in the field since the authors identified problems and

solutions needed for the correct monitoring of distributed systems.

- Results about “Unreliable failure detectors” [Chandra and Toueg 1996], dealing with the

problem of monitoring crash failures of components in distributed systems.

- Quality of Service (QoS) monitoring and management: challenges and approaches in

providing QoS monitoring are described in detail in [Jiang, Tham et al. 2000]; the idea of

a “dependability manager” (a special type of QoS monitor) was defined in [Porcarelli,

Bondavalli et al. 2002] and specialized in [Porcarelli, Castaldi et al. 2004].

- The whole field of extracting information from an event log (possibly presented as a real-

time data stream) is relevant to the needs of monitoring for dependability assessment.

Among recent developments, the work on adaptable parsing of real-time data stream

[Campanile, Cilardo et al. 2007] proposes methods and tools to support monitoring of a

e.g., data stream under real-time constraints.

- Relationships between monitoring and metrology (see [van Moorsel 2009, Chap.

"Metrology"]): recent work about monitoring distributed systems [Falai 2007] defines a

conceptual framework for experimental evaluation and monitoring activities that supports

rigorous (from a metrological point of view) observation of distributed system.

3. Automatic Failure Reporting for Software
Commercial and open-source software increasingly employs automatic failure reporting

features.

A discussion of these monitoring mechanisms [Murphy 2004] lists benefits for both the

vendors and the customers; vendors are enabled to extend their quality assurance processes,

while customers are offered improved user experience (the user’s perception of the product’s

 8/29

quality, often seen as the most important quality measurement, can be continuously

improved). This paper however warns that certain pre-requisites are necessary during

development of a failure reporting system: i) an understanding of the customer base and usage

profile, ii) an understanding of the failure profile, and iii) the users’ privacy, frequently

regarded as the most sensitive requirement, has to be respected.

For software development organisations, the main role of automatic failure reporting is

usually detecting the bugs that manifest themselves most frequently (e.g., in [Murphy 2004] it

is claimed that Windows XP exhibited very skewed failure set immediately following its

release – “a very small number of bugs were responsible for the majority of customer

failures”), thus triggering and prioritising the bug fixes. However, these data could also be

used for assessing reliability of the software during use, if only data about the amount of use

were also collected. Reliability will of course vary between users, depending on their

“operational profiles” (frequencies of different kinds of demands on the software). So,

collecting simple usage data, like total time in operation, or number or volume of demands on

an installation, would be enough for retrospectively assessing the reliability of that

installation, but extrapolation to reliability in future use requires linking failure reports to

frequencies of demand types, or other characterisations of operational profiles. Extending

failure reporting with automated collection of accurate usage data and operational profiles

was proposed by Voas and colleagues [Voas 2000] to help vendors make better long-term

decisions with respect to their customer requirements (benefits to vendors would include, for

example, detecting misused and unused features or discovering the most typical machine

configurations used to execute the vendor’s software). A scheme for collecting operational

profile data, related to the work in [Voas 2000], is one of the claims in the US patent 6862696

[Voas 2008].

The other important limitation of automated failure reporting systems as usually deployed is

that they typically focus on detecting crash failures, as this is an easy requirement to satisfy,

but ignore “value domain” failures (production of wrong results), which however should be

considered at least as important. The costs of the two kinds of failures vary between

applications, but the importance of non-crash failures should not be underestimated: for

instance, bug reports for SQL servers show a surprisingly high prevalence of defects that

cause non-crash failures [Gashi, Popov et al. 2007], [Vandiver, Balakrishnan et al. 2007].

[Garzia, Khambatt et al. 2007] present an approach for assessing end-user reliability. In

essence, the approach is based on the following:

 9/29

- Grouping users’ computers in terms of the number of disruptions they experience per unit

of time. Three groups are defined: excellent, good and poor reliability group. The

grouping is performed in regard to the anticipated improvement of the Windows Vista

over Windows XP SP2 operating system.

- Placing each user’s machine in one of the three groups based on the frequency of failures

on a particular build, over a period of two weeks (for this the data from the installations of

beta users were used).

- Identifying bugs and assessing reliability were then employed for every major Windows

Vista milestone.

The results of the assessment approach are used for ensuring the reliability objectives at major

software release stages have been met. The authors focus on end-users of desktop and laptop

computers; these users seek disruption-free operation of the software – both a software failure

and a planned activity, e.g., installation of a software update, is regarded as detrimental. The

case study was performed with Microsoft Windows Vista operating system and, according to

the paper authors, the outcomes of the proposed approach have been used in deciding on the

product’s shipment strategy.

The insightful work of [Li, Ni et al. 2008] provides a classification of current approaches used

in the IT industry for collection of reliability feedback data – four classes are identified:

interactive user reporting, online user reporting, automated per-incidence reporting and

automated reliability monitoring. The classification, though possibly incomplete, together

with seven proposed evaluation criteria, helps comparing different approaches. The authors

recommend that automated reliability monitoring is used as the approach for reliability

assessment of mass-market software, and they give details of Windows Reliability Analysis

Component (RAC), an implementation of the recommended approach. RAC is available on

Windows Vista operating system; it runs as a low-priority process; it collects the data using

operating system event logs and system calls and periodically sends the information to

Microsoft. The information includes details of all detected failures during an observation

period, and it provides the basis for data normalisation by reporting successful executions and

execution durations.

The limitations of the automated reliability monitoring approach can be identified reflecting

on, for instance, the above cited article [Li, Ni et al. 2008]:

 10/29

- The authors acknowledge that software producers could be interested in reliability

feedback data for two reasons: evaluation of the reliability status of the product, and

identification and reaction to the failures. Their viewpoint, however, focuses on the latter,

whereby the collection of reliability feedback data is primarily undertaken for software

improvement. This viewpoint might be inadequate in some cases, e.g., during the software

procurement phase when only assessment results are needed. The stance of the software

producers is, however, expected, for rarely is a software vendor willing to share

assessment results (if they exist at all) with the party in charge of procurement.

- Crash failures are assumed (as is the case with most automatic failure reporting systems,

see above) - the focus of the study is on application crashes, application hangs and

operating systems crashes.

- Even if the fault-model is to include the faults leading to non-crash failures, the

correctness, one of the seven evaluation criteria proposed in the paper, is defined with

regard to a “perfect” oracle – it is based on the assumption that the software specifications

are correct. Chances are, however, that due to developers’ misunderstandings of users’

needs, the users perceive the software to malfunction (observing a non-crash failure for

example) even if it is running correctly according to the developers’ specification. This

may lead to non-diagnosable failures.

We outline below two of the established software failure reporting systems.

The Mozilla Foundation has been providing automatic bug tracking through a proprietary

system called Talkback, or Quality Feedback Agent (QFA), since the 1990s. The strategy was

inherited from its parent company Netscape and had been successful in that, in the 2000–2004

period, the QFA program helped to resolve around 778 bugs [McLaughlin 2004]. Mozilla

report [McLaughlin 2004] that in their experience a user base of 20,000 or more provide the

best information for the purpose of uncovering software faults, building reproducible test

cases and producing appropriate fixes; we may note that confidence in dependability

estimates also increases with a larger number of monitored installations. Beginning with

Firefox version 3 alpha 5, the Mozilla platform is equipped with an open-source crash

reporting system, which is a combination of the following products:

- Google Breakpad [Google 2008a] client and server libraries.

- Mozilla-specific crash reporting user interface and bootstrap code.

- Socorro Collection and reporting server [Google 2008b].

 11/29

Before the introduction of the abovementioned RAC [Li, Ni et al. 2008] feature in the Vista

operating system, Microsoft™ offered their customers automated per-incident reporting

through Windows Error Reporting (WER) [Microsoft 2008]. This framework provides for

extraction of crash dump data, which are forwarded to Microsoft for further analysis. Whereas

crash, hang, and kernel fault reporting is provided by default in the Windows Vista operating

system, application-specific issues have to be communicated through WER – the client-side

WER service forwards the memory dump information from a desktop application, which had

crashed or stopped responding, to Microsoft. This action is initiated only after the user has

given his/her consent. Reported problems trigger a mix of automated and human-mediated

reactions like:

- A solution is sent to the user.

- More information is requested from the user so to aid developers in resolving the problem.

- A new “case” for the problem is opened, and the user is notified by a status message.

There are other software products that provide automated, opt-in systems for failure reporting,

such as The Apple Crash Reporter [Apple 2006], the GNOME [GNOME 2008] and KDE

[KDE 2008] desktop environments. Apart from these integrated solutions, there exist more

comprehensive, stand-alone products which enable one to collect, quantify, and control large

amounts of test and field data, such as FRACAS by Relex™ [Relex™ 2008].

Academic research has followed the pace of advance in automatic failure reporting. To take

an example, Cooperative Bug Isolation [Liblit 2004] is a low-overhead instrumentation

strategy for collecting information from a multitude of software end-users. The focus of the

work is a statistical debugging approach. It provides a suite of algorithms for finding and

fixing software errors based on statistical analysis of feedback data collected from the end-

users.

Many interesting ideas about (automated) failure data analysis were presented at the

“Reliability Analysis of System Failure Data” workshop held at Microsoft Cambridge, UK on

1-2 March 2007. For instance, one suggestion [Fetzer 2007] was that execution traces to be

replayed at the developer’s site following a failure, be collected through a “hybrid” approach:

instead of executing automatic tracing constantly and incurring (unnecessary) overhead

during normal operations, one could combine it with the RX approach [Qin, Tucek et al.

2005] for software fault tolerance. The RX approach provides a light-weight checkpointing

mechanism, which ensures that a program is rolled back to the most recent checkpoint after an

 12/29

error is discovered. During the retry of the program, the environment is changed to maximize

the probability that bugs are masked. A possibility, then, is to initiate collection of execution

traces only during the retries, which would reduce the overhead during normal operation.

Online monitoring plays an integral role in the field of online failure prediction. This field’s

main concern is the assessment of the risk that “misbehaviors” result in failures in a near

future. For this purpose, online failure prediction employs runtime monitoring and

measurement of the current system state. This kind of monitoring enables detection of errors

through observation of side-effects on the system, e.g., a memory leak can be discovered

through exceptional circumstances like high CPU load or disk activity, or an atypical function

call. A comprehensive survey of online failure prediction techniques is given in [Salfner,

Lenk et al. In print].

4. Network Monitoring
Network monitoring is a part of network management functions. It includes the following:

means for identification of problems caused by network failures and overloaded and/or failed

devices, continuous measurement of QoS attributes to enable corrective management actions

or to produce longer term dependability measurements, as well as means of alerting network

administrators to virus or malware infections, questionable user activity and power outages.

Network monitoring systems differ from intrusion detection systems (IDSs) or intrusion

prevention systems (IPSs)
3
 in that their focus is not exclusively on security, but also network

functioning during ordinary operation. In addition to being used for availability assurance and

performance improvement, network monitoring helps to accumulate information that could be

used for planning future network growth.

Network monitoring systems typically use “network monitoring interface cards” (NMIC),

pieces of hardware similar to standard NICs, but with a difference in design so that they

passively listen on a network. NMICs have no MAC (Media Access Control) layer addresses

and are invisible to other devices on the network. One of the most prominent manufactures is

Endace Ltd. (http://www.endace.com/dag-network-monitoring-cards.html).

Network monitoring systems may listen to different application level protocols like FTP,

SMTP, POP3, IMAP, DNS, SSH, TELNET. As for communicating data, many protocols can

be used, but the standard is Simple Network Management Protocol (SNMP), defined by the

3
 Both IDSs and IPSs are discussed in the section “Intrusion Detection and Intrusion Prevention Systems” of this

report.

 13/29

Internet Engineering Task Force (IETF) in their Requests for Comments, RFC 1157 [IETF

1990] and RFC 3413 [IETF 2002]. The protocol prescribes an architecture in which a

software component (denoted as agent) executes on managed systems (network elements such

as hosts, gateways, terminal servers, and the like), collecting the desired network information,

that is in turn communicated to one or more managing systems. It exists in three versions;

SNMPv3 has been the standard version since 2004. The IETF has designated SNMPv3 a full

Internet Standard, the highest maturity level for an RFC. An interesting extension of SNMP

with accounting features is given in [Stancev and Gavrilovska 2001].

Closely related to SNMP is the RMON standard for remote network monitoring, which

prescribes the ways of monitoring the internet traffic. It has been standardized by RFC 1271

in November 1991, but it is updated by RFC 1757 [IETF 1995] in February 1995. RMON2

[IETF 1997] is an extension of RMON that focuses on higher layers of traffic above the

medium access-control (MAC) layer.

Network monitoring software products are either embedded in larger software suites or are

offered as stand-alone products. A comprehensive repository of network monitoring tools can

be found at [StanfordLinearAccelerationCentre 2008].

Numerous QoS monitoring tools have been built by industry. QoS monitoring is made more

difficult by the fact that various pieces of network equipment route traffic through numerous

firewalls and address translators. Cisco™, for instance, offers several tools for QoS

monitoring [Cisco 2008]. Another example of QoS monitoring tool is XenMon [Gupta,

Gardner et al. 2005], a performance monitoring tool based on Xen virtual environment, [Xen

2008]. XenMon provides support for resource allocation and management functions through

accurate monitoring and performance profiling infrastructure.

5. Intrusion Detection and Intrusion Prevention Systems
Whereas network monitoring is primarily concerned with checking and reporting from

“inside” a network, e.g., detailing measurements of link bandwidth, latency and response from

routers and switches, and CPU utilisation time, intrusion detection systems (IDS) monitor a

network with the aim of discovering threats coming from outside, to trigger appropriate

defensive reactions.

IDSs are an important mechanism in the assessment of network security. They are used to

collect data about attacks (see, for example, [Cukier, Berthier et al. 2006], [Leurre.com 2008],

[HoneynetProject 2008]), an important part of security research. Detecting both attempted and

 14/29

successful intrusions would of course allow measurements of security (measurements of both

absolute frequency of successful intrusions and of the fraction of intrusions that are

successful), but this potential is limited by the fact that the IDSs themselves are inevitably

imperfect, and exhibit false negatives (failing to raise an alarm following a real intrusion),

false positives (raising an alarm due to legitimate traffic) or event misclassification (raising an

alarm following a real intrusion, but failing to classify it correctly).

IDSs are classified into different categories, which bring different imperfections in their

suitability as measurement instruments, on the basis of various criteria, such as:

- The location of the monitoring sensors:

o Network intrusion detection systems (NIDS) identify intrusions by examining

network traffic, e.g., Snort [Snort.org 2008].

o Host-based intrusion detection system (HIDS) identify intrusions by analyzing

system calls, application logs, file-system modifications (binaries, password

files, etc.) and other host activities and state, e.g., OSSEC [OSSEC 2008].

- The monitoring focus:

o Protocol-based intrusion detection systems (PIDS) monitor and analyze the

traffic of a protocol.

o Application protocol-based intrusion detection system (APIDS) works

similarly to PIDS, but the focus is an application layer protocol.

- The detection method:

o Anomaly-based, e.g., Cfengine [Cfengine 2008], which can be configured to

perform anomaly detection, i.e. to detect data patterns that differ from the

normal, established behavioural patterns.

o Signature-based, network traffic or host activity is analysed so that

predetermined attack patterns, known as signatures, are discovered.

Expectedly, there exist hybrid intrusion detection systems, which combine two or more

approaches, e.g., Prelude [Prelude 2008] or Emerald [SRI 2008].

An alternative classification groups IDSs into passive and reactive [Tipton and Krause 2003].

The latter are also known as Intrusion Prevention Systems (IPS). In addition to standard

 15/29

detection, logging and signalling of intrusions, they disable the connections initiated by the

suspected malicious sources.

A list of intrusion detection systems is given in [TimberlineTech 2008], and a classification in

a tree-like structure can be found at [IPSec 2008]. Comprehensive guidance on intrusion

detection is given in the NIST’s standard [Scarfone and Mell 2007]. A solution for online

flow-level intrusion detection for high-speed network, denoted as HiFIND, is given in [Gao,

Li et al. 2006]. HiFIND’s major characteristics are: it is scalable with respect to flow-level

detection on high-speed networks; it is resilient to DoS (Denial of Service) attacks; it can

distinguish SYN flooding
4
 and various port scans for effective mitigation; it enables aggregate

detection over multiple routers/gateways; and separates anomalies to limit false positives. The

approach for resilience improvement of intrusion detection systems in [Sousa, Bessani et al.

2007] combines proactive and reactive recovery. The complementary approach maintains

system’s correct operation by ensuring the availability of minimum amount of replicas.

Yet another way of detecting intrusions is given in [Strunk, Goodson et al. 2002]. The authors

propose a new technology for storage devices to safeguard data, even when the host operating

system is compromised. The technology enhances the intrusion survivability through:

- Faster intrusion detection through monitoring of (suspicious) storage activity.

- Facilitating intrusion diagnosis by providing a wealth of data to administrators.

- Simplifying and speeding up post-intrusion recovery by: preserving all pre-intrusion

states, providing low granularity restoration (any number of files can be restored) and

enabling users to continue utilising the system (non-destructive recovery).

6. Web Services Monitoring
Web services technology represents a significant support element for the growing integration

of ICT systems across organisational boundaries. The World Wide Web Consortium (W3C)

adopts the following broad definition: “A Web service is a software system designed to

support interoperable machine-to-machine interaction over a network”, [W3C 2008].

Web services have generated increased interest in QoS monitoring. Web Service Level

Agreements (WSLA) are contractual agreements between two parties, either customers and

4
 A SYN flooding is a form of DoS attack in which an attacker keeps sending SYN (synchronise) messages to a

target's system, until the target’s system resources are exhausted.

 16/29

service provider(s) or service providers only, which formally specify the Quality of Service

(QoS) level to be provided, as well as the consequences resulting from its violation.

Contractual obligations are commonly stipulated between provider and consumer of a service,

as well as the financial consequences in case the obligations are violated. A language

specification for WSLAs is given in [Ludwig, Keller et al. 2003]. WSLA monitoring and

enforcement is increasingly important; this is particularly true for environments where

dynamic or on-demand subscriptions to web services are possible. The monitoring is

important for customers, who need the reliability and performance agreements to be

maintained at runtime, and indeed to service providers who want to control the agreed level of

usage. The unpredictable Internet environment implies that reliability guarantees of the

applications using web services become difficult to ensure: this increases the importance of

web service reliability assessment techniques. Research has been active in the web service

monitoring field. Monitoring web services should include measuring at multiple sites; both

client- and server-side measurements should be taken. To this end, the authors of [Sahai,

Machiraju et al. 2002] propose an automated and distributed SLA monitoring engine, the Web

Service Management Agent (WSMN), which provides for joining and correlating web service

and business process data. WSMN is based on the proposed specification language that allows

for definition of accurate and flexible WSLAs. A framework for specifying and monitoring

WSLAs is given in [Alexander and Heiko 2003]
5
. It integrates flexible and extensible formal

language (based on XML) for expressing service level agreements and a runtime architecture

comprising several SLA monitoring services. The framework is flexible in that it can be

applied to not only SLAs of web services, but to other inter-domain management scenarios,

such as management of networks, systems or applications. In [Raimondi, Skene et al. 2008]

WSLA contractual conditions are represented as timed automata and a methodology, with a

prototype implementation using an Eclipse
6
 plug-in, for WSLA online monitoring is

proposed.

A possible architecture, and a corresponding implementation, for performance management of

web services is given in [Levy, Nagarajarao et al. 2003]. The feedback controller of the

management system, which tunes the performance parameters (e.g., load balancing or request

queuing), is based on a continuous monitoring approach, wherein system components

(servers, gateways, global resource manager, and console) share monitoring information

5
 Further information can be found on the webpage http://www.research.ibm.com/wsla/.
6
 Eclipse, http://www.eclipse.org/, is at the time of writing recognised as one of the most popular software

development platforms.

 17/29

through a publish/subscribe network (e.g., the global resource manager computes the

maximum number of concurrent requests that a server should execute, based on the

performance information published by each gateway).

Besides the contractual aspect of QoS monitoring, there is a need for users to assess or rank

the dependability of web services that they might use. Chen et al. propose WSsDAT tool for

dependability assessment of Web Services from the client perspective by collecting metadata

representing a number of dependability metrics [Chen, Li et al. 2006]. One of the purposes is

to identify good replication strategies, which employ the same or similar web services to

enhance reliability. WS-DREAM [Zheng and Lyu 2008] addresses these issues by allowing

users, potentially geographically dispersed, to carry out web service reliability assessment in a

collaborative manner. This worldwide testing, and sharing of test case results, is coordinated

by a centralised server; reliability assessment becomes affordable to many participants

through data sharing. What both WS-DREAM and WSsDAT seem to be missing in assessing

dependability levels is the account of the impact of operational profile from each individual

client.

7. Embedded Systems Telemetry
The use of embedded systems has been continuously growing for decades. They have been

integrated in portable devices such as mobile phones as well as in automotive safety systems,

e.g., anti-lock braking system (ABS), but also in nuclear power plant control and safety

systems.

The trend has required advances in monitoring of these systems for supporting hardware and

software maintenance, as well as dependability and performance assessment. As

manufacturers tend to embed “telemetry” capabilities to monitor the performance and health

of the hardware which the computers control (from engines in aircraft, trucks and cars to

factory equipment and house appliances) and support maintenance and repair, so they can add

similar capabilities to monitor the performance and health of the embedded computers. Like

other monitoring practices, these can be used to evaluate the dependability and resilience of

these systems.

A sort of online monitoring is frequently employed for error detection, e.g., as in “watchdog”

technique, where a small coprocessor is used to monitor the behaviour of the main processor.

An insightful survey on this technique is given in [Mahmood and McCluskey 1988]. This

 18/29

technique is not exclusive to embedded systems but is also used for dependability assessment

of general-purpose computers.

Monitoring embedded systems as a part of runtime verification process requires non-intrusive

arrangements, e.g., with hardware resources dedicated to the monitored system. These

concerns are addressed in [Watterson and Heffernan 2007]. A number of existing runtime

verification tools are referenced, highlighting their requirements for monitoring solutions (see

the section “Runtime Verification” of this report for more details on online monitoring for

runtime verification). The authors present a review of established and emerging approaches

for the monitoring of embedded software execution.

A few examples may illustrate current practice in telemetry of embedded systems. Micro

Digital Inc™ (founded in 1975), one of the first companies to offer embedded-systems

software, recommends the use of Web Network Management Protocol (WNMP)
7
. They claim

the following features:

“WNMP (Web Network Management Protocol) enables simple and flexible administration

and monitoring of embedded systems using ordinary web browsers. In contrast to SNMP, no

special program running on the client system is needed. Nor is a MIB (Management

Information Base)
8
 or MIB tool required. This makes it easy to administer or monitor an

embedded system from any computer, even a modern cell phone” [MicroDigital 2008].

The software tool µC/Probe, from Micriµm [Micrium 2008], enables developers to monitor

embedded systems in a live environment. Execution traces are obtained without the need for

halting the application, unlike conventional debuggers, and thus the benefits extend beyond

the development process. This type of monitoring application is particularly valuable for

embedded systems that cannot be suspended to examine variable and program flow, e.g.

compressors used to pump natural gas through a pipeline, or similar reciprocating engines

(like car pistons). Bringing an engine online is a very complex task and the variables have to

be examined at runtime to validate the working of the control system. On the other hand, such

an approach carries an overhead (with respect to performance and resource usage) due to

additional computation needed for communication between the µC/Probe and the target

7
 http://barracudaserver.com/brochures/WNMP.html
8
 “A management information base (MIB) stems from the OSI/ISO Network management model and is a type of

database used to manage the devices in a communications network. It comprises a collection of objects in a

(virtual) database used to manage entities (such as routers and switches) in a network.”,

http://en.wikipedia.org/wiki/Management_information_base

 19/29

embedded application. Such an overhead is a characteristic of other monitoring-related

features, which generally can be provided at additional cost if spare resources are available.

Advanced Telemetry Linked Acquisition System (ATLAS) [McLarenElectronicSystems 2008]

is a software package from McLaren Electronics used for obtaining, displaying and analysing

data from automotive control systems. It has capabilities of comparing live telemetry data

with uploaded logs. Also, it provides fast data handling so that the large quantities of data

could be processed in real-time.

The research led by professor Brian Williams from Computer Science and Artificial

Intelligence Laboratory (CSAIL), at Massachusetts Institute of Technology, has led to a

significant progress in the field of model-based autonomy [Williams and Nayak 1996],

[Williams, Ingham et al. 2003]. This research advocates the use of the model-based

programming paradigm for addressing intrinsically difficult task of programming complex

embedded systems, which necessitates reasoning about complex interactions between sensors,

actuators, and control processors. Statistical models, such as hidden Markov model, are

constituent parts of model-based programming. This type of programming has led to the

creation of Livingstone, a core component in the flight software of Deep Space One, the first

spacecraft in NASA’s New Millennium programme. Livingstone is a reactive, model-based

and self-configuring kernel for autonomous systems. One of the main active research areas in

the field is concerned with intelligent embedded systems, which are able to explore, diagnose

and repair themselves using online assessment combined with adaptation. The online

assessment approach relies on the advanced monitoring capabilities.

8. Monitoring Large-Scale Enterprise Software
Business integration across enterprise domains requires connection of data and applications

throughout the enterprise. In this section, we discuss monitoring techniques for large,

enterprise-wide, systems of networks and computers. Nowadays, enterprise software systems

represent the main support for many businesses to provide services to the end users. The

software is required to provide continuous service despite failures of individual hardware

components or software processes.

Satisfying stringent dependability requirements is, however, hard – enterprise software is

growing in size and complexity, and the necessary updates are becoming more frequent

[Munawar and Ward 2006]. Each component in a system requires monitoring of its resources,

performance and state variables. This frequently leads to generating an overwhelming amount

 20/29

of data, which are hard to collect and store, and are complicated to analyse. State-of-the-art

monitoring methods, therefore, focus on continuously examining only partial data,

intensifying monitoring level only when a particular problem is suspected [Munawar and

Ward 2006]. This improves performance by decreasing measurement effects and at the same

time reduces storage, transmission, analysis and reporting overhead.

There is a variety of commercial solutions for enterprise software monitoring, such as:

- The IBM’s MQ WebSphere [Stanford-Clark 2002] family of products (formerly know as

MQ Series) offers a solution. The products transform field data into whatever form is

required by different applications and a publish/subscribe model enables the receipt of the

exact subset of data required. MQIsdp (MQ Integrator, SCADA device protocol) offers a

publish/subscribe model over TCP/IP with different levels of delivery assurance: at most

once, at least once and once-and-once-only.

- Windows Management Instrumentation (WMI) [Microsoft 2000] defines a non-

proprietary set of environment-independent specifications which allow management

information to be shared between management applications. WMI prescribes enterprise

management standards and related technologies that work with existing management

standards, such as Desktop Management Interface (DMI) and SNMP (see section

“Network Monitoring” of this report). Distributed Management Task Force (DMTF 2008)

(DMTF, formerly "Desktop Management Task Force") is a standards organization that

develops and maintains standards for management of enterprise IT and Internet

environments. DMTF standards, among others, include the following:

o Common Information Model (CIM) - The CIM schema is a conceptual schema

that defines how the managed elements in an IT environment (for instance

computers or storage area networks) are represented as a common set of

objects and relationships between them. CIM is extensible to allow product

specific extensions to the common definition of these managed elements. CIM

is the basis for most of the other DMTF standards.

o Web-Based Enterprise Management (WBEM), a set of systems management

technologies, which specifies the following: protocols for the interaction

between systems management infrastructure components implementing CIM, a

concept for defining the behaviour of the elements in the CIM schema, the

 21/29

CIM Query Language (CQL) and other specifications needed for the

interoperability of CIM infrastructure.

Many products from leading software vendors are WMI enabled, such as:

- HP OpenView, a former Hewlett Packard product range consisting of network and

systems management products. In 2007, HP OpenView was renamed to HP Software

[HewlettPackard 2008]. HP OpenView is most commonly described as a suite of software

applications which allow large-scale system and network management of an organization's

IT infrastructure.

- IBM Tivoli Management Framework (TMF) [IBM 2008b]. TMF is a systems

management platform from IBM – the framework is a CORBA-based architecture that

provides management of large numbers of remote locations or devices.

IBM’s autonomic computing initiative [IBM 2008a], of which IBM Tivoli is one technology,

has addressed the growing complexity of computing systems management through self-

managing autonomic system paradigm. The approach, whose concept originates from social

animal collective behaviour, defines four functional areas: self-configuration, self-healing,

self-optimisation, and self-protection. Online monitoring is pertinent to self-healing and self-

protection, but also to self-optimisation, since the area is concerned with control of resources

through automatic monitoring to ensure the optimal functioning with respect to the defined

requirements. Academic research has provided significant contributions to the autonomic

computing programme, and at the same time to monitoring of enterprise level software. Some

of the notable examples are:

- Astrolabe [van Renesse, Birman et al. 2003], a DNS-like distributed management service

for scalable management and self-organization of large-scale, highly dynamic, distributed

applications.

- A mechanism for dynamically monitoring and reconfiguring a system-of-systems built out

of a heterogeneous mix of components [Kaiser, Gross et al. 2002].

Research in the field of dependability of enterprise systems still suffers from scarcity of

empirical data, with few published empirical studies [Sahoo, Squillante et al. 2004] [Hsueh

2008]. The earlier paper [Sahoo, Squillante et al. 2004] emphasised the need for a deeper

understanding about the occurrence of failures and their statistical properties in real

(enterprise) environments. The authors presented a detailed empirical and statistical analysis

of system errors and failures from a production environment of 400 servers, pointing out that

 22/29

the collection of empirical data is more difficult with the increased complexity of today’s

software. The latter paper [Hsueh 2008] presented a characterisation of failure data collected

by Boeing’s internal incident and problem recording system. The characterisation focuses on

only service availability related records obtained from this online monitoring system.

9. Runtime Verification
Runtime verification techniques are means for runtime failure reporting and they typically rely

on “formal methods” for designing the functions that detect failures (and are thus not limited

to crash failures). These techniques are motivated more with verifying and improving

software than by measuring its dependability attributes. Well-established, heavyweight formal

methods, e.g., theorem proving or model-checking, are being increasingly accompanied by

online (runtime) monitoring with the aim of helping in verifying program correctness. This is,

at least partly, due to the constant increase of software complexity and size (frequently

resulting in state space explosion), which limits the use of traditional verification techniques.

Moreover, runtime error detection solutions are explicitly required by some development

standards of safety critical industries: e.g., EN 50128 [BSI-BritishStandards 2001] for

computerized railway control systems prescribes several methods and techniques that are

mandatory or highly recommended for achieving specific safety integrity levels (SIL).

Monitoring for software failures during software runtime confirms (or disproves) whether an

actual run of the software conforms to the requirements specification, by checking whether it

preserves certain formally specified properties. Note that runtime error detection is closer to

testing than to exhaustive model checking since it cannot prove the lack of defects, but is only

able to indicate the presence of defects in the execution. Runtime error detection techniques

are used for detecting defects that have remained in the software even after rigorous testing.

Error detection signals emitted by these solutions can trigger error confinement and recovery

activities, i.e., runtime verification can be seen as an entry point of fault tolerance mechanism.

The actual implementation of runtime verification techniques can be built on such

increasingly popular approaches as aspect-oriented (AOP [Kiczales, Lamping et al. 1997]) or

monitoring-oriented programming (MOP [Formal-Systems-Laboratory 2008]).

The seminal paper [Diaz, Juanole et al. 1994], which extends the ideas from [Ayache, Azema

et al. 1979], proposes the Observer concept for validating runtime behaviours of self-checking

distributed systems – “systems that detect erroneous behaviours as soon as errors act at some

observable output level”. The concept is based on the principle of an observer-worker system.

 23/29

A system of this type consists of two distinct components, a worker and an observer: the

former is a standard implementation of the system behaviour; while the latter is a redundant

implementation which outputs are comparable with the outputs of the worker. Using the

concept, it is possible that a system’s runtime behaviour is (continuously) checked against a

formal specification.

StateRover tool [TimeRover 2009] provides, among other features, support for validation,

automatic test generation and verification of system requirements. The tool is based on an

automatic model checking technique for UML (Unified Modeling Language)

statecharts. The self-acting attribute of the technique stems from the use of an

automatic white box test-generation combined with automatic run-time monitoring of

statechart assertions. The white-box test generator automatically produces test

sequences (events, conditions, and input data); chooses one of the test sequences

and submits it to the System Under Test (SUT), which subsequently starts up an

embedded assertion for run-time monitoring.

A taxonomy of runtime software-fault monitoring tools is described in [Delgado, Quiroz

Gates et al. 2004]. It presents common building blocks of a monitoring system: specification

language, monitor and event-handler (the results of monitoring are captured and

communicated to the user by an event-handler, and in some cases responses to violations are

initiated). Operational issues, such as program types targeted by the monitoring system,

platform dependencies and tool maturity level, are also included in the taxonomy.

MOP [Formal-Systems-Laboratory 2008] is a tool-supported formal software development

framework in which runtime monitoring presents a basic design principle. MOP enables a

developer to specify required properties by using a formalism of choice. Many formalisms are

allowed, due to the observation that different types of logic are best suited to different types of

specifications. Depending on the success of the properties’ validation (a property can be

violated or successfully validated), a specific code, stated by the programmer, will be

executed.

Another interesting work, which builds on the extensively studied field of self-checking via

assertions, is the RunTime Reflection Project [Arafat, Bauer et al. 2005]. The project

establishes methods to dynamically analyze reactive distributed systems at runtime. The

approach is layered and modular; it provides the means for both detecting system failures

(through runtime verification) and identifying the failure causes (through a detailed

diagnosis). Diagnoses can be subsequently used in order to trigger recovery measures, or to

 24/29

store detailed log-files for off-line analysis. The approach has many points in common with

the proposal of the Dependability Manager [Porcarelli, Bondavalli et al. 2002]; the main

difference is that runtime verification has as its main purpose verification of the system, while

the main purpose of the Dependability Manager is the reconfiguration of the system based on

runtime evaluations.

There is a significant body of research dedicated to the automatic synthesis of executable

assertions (i.e., the implementation of checks to be performed during runtime). A significant

part of the work appears in the Runtime Verification Workshop series [RVW 2008], such as

[Rosu and Havelund 2001], [Finkbeiner and Sipma 2004], [Gerth, Peled et al. 1995].

References
[Alexander, K. and L. Heiko 2003] "The WSLA Framework: Specifying and Monitoring Service

Level Agreements for Web Services" Journal of Network and Systems Management 11(1): 57-81.

[Apple 2006]" Apple Crash Reporter" accessed Jan. 2009, from

http://developer.apple.com/technotes/tn2004/tn2123.html

[Arafat, O., A. Bauer, et al. 2005] "Runtime Verification Revisited". München, Technischen

Universität München.

[Ayache, J. M., P. Azema, et al. 1979] "Observer, a Concept for On-Line Detection for Control Errors

in Concurrent Systems". Ninth International Symposium on Fault-Tolerant Computing, Madison.

[BSI-BritishStandards 2001] "BS EN 50128".

[Campanile, F., A. Cilardo, et al. 2007] "Adaptable Parsing of Real-Time Data Streams". Proceedings

of the 15th Euromicro International Conference on Parallel, Distributed and Network-Based

Processing, IEEE Computer Society.

[Cfengine 2008]" Cfengine - a Datacentre Management Platform" accessed Dec. 2008, from

http://www.cfengine.com/

[Chandler, W. W. 1983] "The Installation and Maintenance of Colossus" Annals of the History of

Computing, IEEE 5(3): 260-262.

[Chandra, T. D. and S. Toueg 1996] "Unreliable Failure Detectors for Reliable Distributed Systems"

Journal of the ACM (JACM) 43(2): 225-267.

[Chen, Y., P. Li, et al. 2006] "Measuring the Dependability of Web Services for Use in e-Science

Experiments". Third International Service Availability Symposium, ISAS 2006, Helsinki, Finland,

Springer.

[Cisco 2008]" QoS Monitoring Tools" accessed Dec. 2008, from

http://www.cisco.com/en/US/tech/tk543/tk759/technologies_tech_note09186a0080094bc3.shtml

[Cristian, F. 1989] "Probabilistic Clock Synchronization" Distributed Computing 3: 146-158.

[Cukier, M., R. Berthier, et al. 2006] "A Statistical Analysis of Attack Data to Separate Attacks".

Proceedings of the International Conference on Dependable Systems and Networks (DSN06).

 25/29

[Delgado, N., A. Quiroz Gates, et al. 2004] "A Taxonomy and Catalog of Runtime Software-Fault

Monitoring Tools" IEEE Transactions On Software Engineering 30(12).

[Diaz, M., G. Juanole, et al. 1994] "Observer-A Concept for Formal On-Line Validation of Distributed

Systems" IEEE Transactions on Software Engineering 20(12): 900-913.

[Falai, L. 2007] "Observing, Monitoring and Evaluation Distributed Systems". "Resilient Computing

Lab", University of Florence. PhD.

[Fetzer, C. 2007] "Automatic Collection of Failure Traces". "Reliability Analysis of System Failure

Data workshop, RAF07". Cambridge, UK.

[Finkbeiner, B. and H. Sipma 2004] "Checking Finite Traces Using Alternating Automata" Formal

Methods in System Design 24(2): 101-127.

[Formal-Systems-Laboratory 2008]" Monitoring-Oriented Programming" accessed Oct. 2008, from

http://fsl.cs.uiuc.edu/index.php/Monitoring-Oriented_Programming

[Gao, Y., Z. Li, et al. 2006] "A DoS Resilient Flow-level Intrusion Detection Approach for High-

speed Networks". Proceedings of 26th IEEE International Conference on Distributed Computing

Systems (ICDCS'06).

[Garzia, M., M. Khambatt, et al. 2007] "Assessing End-User Reliability Prior To Product Ship".

"Reliability Analysis of System Failure Data". Microsoft Research, Cambridge, UK, March 2007.

[Gashi, I., P. Popov, et al. 2007] "Fault Tolerance via Diversity for Off-the-Shelf Products: A Study

with SQL Database Servers" IEEE Transactions on Dependable and Secure Computing (TDSC) 4(4):

280-294.

[Gerth, R., D. Peled, et al. 1995] "Simple on-the-fly Automatic Verification of Linear Temporal

Logic". Proceedings of the Fifteenth IFIP WG6.1 International Symposium on Protocol Specification,

Testing and Verification.

[GNOME 2008]" FreeBSD GNOME Project: Reporting a Bug" accessed Dec. 2008, from

http://www.freebsd.org/gnome/docs/bugging.html

[Google 2008a]" Google BreakPad" accessed Dec. 2008, from http://code.google.com/p/google-

breakpad/

[Google 2008b]" Socorro" accessed Dec. 2008, from http://code.google.com/p/socorro/

[Gray, J. and D. Siewiorek 1991] "High-Availability Computer Systems" Computer 24(9): 19.

[Gupta, D., R. Gardner, et al. 2005] "XenMon: QoS Monitoring and Performance Profiling Tool", HP

Research Labs.

[HewlettPackard 2008]" HP Software" accessed Dec. 2008, from

http://welcome.hp.com/country/us/en/prodserv/software.html

[Hiltunen , M. A. 1995] "Membership and System Diagnosis". Proceedings of the 14th Symposium on

Reliable Distributed Systems, IEEE Computer Society.

[HoneynetProject 2008]" The Honeynet Project" accessed Dec. 2008, from http://www.honeynet.org/

 26/29

[Hsueh, M. C. 2008] "Failure Characterization of a Large Enterprise Computing Environment". Int.

Workshop on Resilience Assessment and Dependability Benchmarking (RADB 2008), in DSN2008,

Anchorage, Alaska, IEEE Computer Society.

[IBM 2008a]" Autonomic Computing" accessed Dec. 2008, from

http://www.research.ibm.com/autonomic/index.html

[IBM 2008b]" Tivoli Software" accessed Dec. 2008, from http://www-

01.ibm.com/software/tivoli/products/mgt-framework/

[IETF 1990]" Request for Comments (RFC) 1157" accessed Dec. 2008, from

http://tools.ietf.org/html/rfc1157

[IETF 1995]" Request for Comments (RFC) 1757" http://tools.ietf.org/html/rfc1757

[IETF 1997]" Request for Comments (RFC) 2021" http://tools.ietf.org/html/rfc2021

[IETF 2002]" Request for Comments (RFC) 3413" accessed Dec. 2008, from http://www.rfc-

editor.org/rfc/rfc3413.txt

[IPSec 2008]" Intrusion Detection and Prevention Tree" accessed Jun. 2009, from

http://ipsec.pl/intrusion-detection/prevention-systems-classification-tree.html

[Iyer, R. K. 1995]. Experimental Evaluation. Proceedings of the 25th International Symposium on

Fault-Tolerant Computing, FTCS-25, Pasadena, California.

[Jiang, Y., C. K. Tham, et al. 2000] "Challenges and Approaches in Providing QoS Monitoring"

International Journal of Network Management 10(6): 323-334.

[Joyce, J., G. Lomow, et al. 1987] "Monitoring Distributed Systems" ACM Transactions on Computer

Systems (TOCS) 5(2): 121-150.

[Kaiser, G., P. Gross, et al. 2002] "An Approach to Autonomizing Legacy Systems". "Workshop on

Self-Healing, Adaptive and self-MANaged Systems (SHAMAN)". New York City, NY, USA.

[KDE 2008]" KDE Bug Tracking System" accessed Dec. 2008, from https://bugs.kde.org/

[Kiczales, G., J. Lamping, et al. 1997] "Aspect-Oriented Programming". Proceedings of the European

Conference on Object-Oriented Programming.

[Lamport, L. 1978] "Time, clocks, and the ordering of events in a distributed system"

Communications of the ACM 21(7): 558-565.

[Lamport, L. 1987] "Synchronizing Time Servers", Digital Equipment Corporation.

[Leurre.com 2008]" The Leurre.com Honeynet Project" accessed Dec. 2008, from

http://www.leurrecom.org/

[Levy, R., J. Nagarajarao, et al. 2003] "Performance Management for Cluster Based Web Services".

IFIP/IEEE Eighth International Symposium on Integrated Network Management, 2003.

[Li, P. L., M. Ni, et al. 2008] "Reliability Assessment of Mass-Market Software: Insights from

Windows Vista®". 19th International Symposium on Software Reliability Engineering, ISSRE 2008,

Seattle, WA, USA.

 27/29

[Liblit, B. R. 2004] "Cooperative Bug Isolation". "School of Computer Science", University of

California Berkeley. PhD.

[Ludwig, H., A. Keller, et al. 2003] "Web Service Level Agreement (WSLA) - Language

Specification", IBM T.J. Watson Research Center.

[Mani-Chandy, K. and L. Lamport 1985] "Distributed Snapshots: Determining Global States of

Distributed Systems" ACM Transactions on Computer Systems (TOCS) 3(1): 63-75.

[Mansouri-Samani, M. and M. Sloman 1992] "Monitoring Distributed Systems (A Survey)". "Imperial

College Research". London, Imperial College, London: 49.

[McLarenElectronicSystems 2008]" Atlas- Advanced Telemetry Linked Acquisition System" accessed

Dec. 2008, from http://www.mclarenelectronics.com/Products/All/sw_atlas.asp

[McLaughlin, L. 2004] "Automated Bug Tracking: The Promise and the Pitfalls" IEEE Software

21(1): 100-103.

[Micrium 2008]" Micrium - Empowering Embedded Systems" accessed Dec. 2008, from

http://www.micrium.com/

[MicroDigital 2008]" Web Network Management Protocol" accessed Dec. 2008, from

http://www.smxrtos.com/pr/barracuda_wnmp.htm

[Microsoft 2000]" Windows Management Instrumentation: Background and Overview" accessed Oct.

2008, from http://msdn.microsoft.com/en-us/library/ms811553.aspx

[Microsoft 2008]" Introducing Windows Error Reporting" accessed Dec. 2008, from

http://msdn.microsoft.com/en-us/isv/bb190483.aspx

[Munawar, M. and P. Ward 2006] "Adaptive Monitoring in Enterprise Software Systems". In

SIGMETRICS 2006 Workshop on Tackling Computer Systems Problems with Machine Learning

Techniques (SysML).

[Murphy, B. 2004] "Automating Software Failure Reporting" ACM Queue 2(8).

[OSSEC 2008]" OSSEC - a Host-Based Intrusion Detection Stystem" accessed Dec. 2008, from

http://www.ossec.net/

[Porcarelli, S., A. Bondavalli, et al. 2002] "Model-Based Dynamic Reconfiguration in Complex

Critical Systems". Fourth European Dependable Computing Conference, (EDCC-4), Fast Abstract

Track, Toulouse, France.

[Porcarelli, S., M. Castaldi, et al. 2004] "A Framework for Reconfiguration-based Fault-Tolerance in

Distributed Systems ". Architecting Dependable Systems II. R. De Lemos, C. Gacek and A.

Romanovsky, Springer-Verlag.

[Prelude 2008]" Prelude - a Universal Security Information Management (SIM) System" accessed

Dec. 2008, from http://www.prelude-ids.com/en/welcome/index.html

[Qin, F., J. Tucek, et al. 2005] "RX: Treating Bugs as Allergies - a Safe Method to Survive Software

Failures". Proceedings of the 20th ACM Symposium on Operating Systems Principles (SOSP ’05),

New York, NY, USA, ACM Press.

 28/29

[Raimondi, F., J. Skene, et al. 2008] "Efficient Online Monitoring of Web-Service SLAs". Proceeding

of 16th ACM SIGSOFT International Symposium on the Foundations of Software Engineering, FSE

16, Atlanta, Georgia, USA.

[Relex™ 2008]" FRACAS" http://www.relex.com/

[Rosu, G. and K. Havelund 2001] "Monitoring Java Programs with Java PathExplorer". Proceedings

of the First Workshop on Runtime Verification (RV’01), Paris, France Elsevier.

[RVW 2008]" Runtime Verification Workshop" http://www.runtime-verification.org/

[Sahai, A., V. Machiraju, et al. 2002] "Automated SLA Monitoring for Web Services". Proceedings of

the 13th IFIP/IEEE International Workshop on Distributed Systems: Management Technologies for E-

Commerce and E-Business Applications, Springer-Verlag.

[Sahoo, R. K., M. S. Squillante, et al. 2004] "Failure Data Analysis of a Large-Scale Heterogeneous

Server Environment". Proceedings of the Int. Conference on Dependable Systems and Networks

(DSN’04), Florence, Italy, IEEE Computer Society.

[Salfner, F., M. Lenk, et al. In print] "A Survey of Online Failure Prediction Methods" ACM

Computing Surveys

[Scarfone, K. and P. Mell 2007] "Guide to Intrusion Detection and Prevention Systems (IDPS)",

National Institute of Standards and Technology (NIST).

[Schroeder, B. A. 1995] "On-line Monitoring: a Tutorial" Computer 28(6): 72-78.

[Siewiorek, D. and R. Swarz 1998] "General-purpose Computing". Reliable Computer Systems:

Design and Evaluation. Natick, Massachusets, A K Peters.

[Smith, D. J. 2001] "Reliability, Maintainability And Risk", Newnes (Elsevier Inc).

[Snort.org 2008]" SNORT® Network Intrusion Prevention and Detection System" accessed Dec.

2008, from http://www.snort.org/

[Sousa, P., A. N. Bessani, et al. 2007] "Resilient Intrusion Tolerance through Proactive and Reactive

Recovery". Proceedings of the 13th Pacific Rim International Symposium on Dependable Computing

(PRDC 2007), IEEE Computer Society.

[SRI 2008]" Event Monitoring Enabling Responses to Anomalous Live Disturbances (EMERALD)"

accessed Dec. 2008, from http://www.sdl.sri.com/projects/emerald/

[Stancev, B. and L. Gavrilovska 2001] "Implementation of Accounting Model within SNMPv3

Architecture". Proceedings of the Ninth IEEE International Conference on Networks, ICON 2001.

[Stanford-Clark, A. 2002] "Integrating Monitoring and Telemetry Devices as Part of Enterprise

Information Resources", WebSphere MQ Development, IBM Software Group: 14.

[StanfordLinearAccelerationCentre 2008]" Network Monitoring Tools"

http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html

[Strunk, J. D., G. R. Goodson, et al. 2002] "Intrusion Detection, Diagnosis, and Recovery with Self-

Securing Storage". Pittsburgh, School of Computer Science, Carnegie Mellon University: 30.

[TimberlineTech 2008]" Alphabetical List of Intrusion Detection Products" accessed Dec. 2008, from

http://www.timberlinetechnologies.com/products/intrusiondtct.html

 29/29

[TimeRover 2009]" StateRover Programming Environment" accessed June 2009, from

http://www.time-rover.com/staterover.pdf

[Tipton, H. F. and M. Krause 2003] "Information Security Management Handbook", CRC Press.

[van Moorsel, A. 2009] "State of the Art on Assessing, Measuring and Benchmarking Resilience",

AMBER Coordination Action: 137.

[van Renesse, R., K. P. Birman, et al. 2003] "Astrolabe: A Robust and Scalable Technology for

Distributed System Monitoring, Management, and Data Mining" ACM Transactions on Computer

Systems (TOCS) 21(2): 164-206.

[Vandiver, B., H. Balakrishnan, et al. 2007] "Tolerating Byzantine Faults in Transaction Processing

Systems Using Commit Barrier Scheduling". Proceedings of 21st ACM SIGOPS Symposium on

Operating Systems Principles, Stevenson, Washington, USA, ACM (NY, USA).

[Voas, J. 2000] "Deriving Accurate Operational Profiles for Mass-Marketed Software". Proceedings of

the 4th International Conference on Empirical Assessment & Evaluation in Software (EASE 2000).

Keele University, Staffordshire, UK, Springer.

[Voas, J. 2008]" A Schema for Collection of Operational Profile Data, US Patent 6862696" accessed

October 2008, from http://www.patentstorm.us/patents/6862696/description.html

[W3C 2008]" Web Services Glossary" accessed Oct. 2008, from http://www.w3.org/TR/ws-gloss/

[Watterson, C. and D. Heffernan 2007] "Runtime Verification and Monitoring of Embedded Systems"

IET Software 1(5): 172-179.

[Williams, B. C., M. D. Ingham, et al. 2003] "Model-based Programming of Intelligent Embedded

Systems and Robotic Space Explorers" Proceedings of the IEEE 91(1): 212 - 237.

[Williams, B. C. and U. Nayak 1996] "A Model-based Approach to Reactive Self-configuring

Systems". Proceedings of the Thirteenth National Conference on Artificial Intelligence AAAI-96,

Portland, Oregon.

[Xen 2008]" The Xen® Hypervisor" accessed Dec. 2008, from http://www.xen.org/

[Zheng, Z. and M. R. Lyu 2008] "WS-DREAM: A Distributed Reliability Assessment Mechanism for

Web Services". Proceedings of the 38th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks, DSN 2008, Anchorage, Alaska, USA.

