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Abstract 
 
Spectral filtering was compared with traditional mean spatial filters to assess their 
ability to identify and remove striped artefacts in digital elevation data. The 
techniques were applied to two datasets: a 100 m contour derived digital elevation 
model (DEM) of southern Norway and a 2 m LiDAR DSM of the Lake District, UK. 
Both datasets contained diagonal data artefacts that were found to propagate into 
subsequent terrain analysis. Spectral filtering used fast Fourier transformation (FFT) 
frequency data to identify these data artefacts in both datasets. These were removed 
from the data by applying a cut filter, prior to the inverse transform. Spectral filtering 
showed considerable advantages over mean spatial filters, when both the absolute and 
spatial distribution of elevation changes made were examined. Eleva- tion changes 
from the spectral filtering were restricted to frequencies removed by the cut filter, 
were small in magnitude and consequently avoided any global smoothing. Spectral 
filtering was found to avoid the smoothing of kernel based data editing, and provided 
a more in- formative measure of data artefacts present in the FFT frequency domain. 
Artefacts were found to be heterogeneous through the surfaces, a result of their strong 
correlations with spatially autocorrelated variables: landcover and landsurface 
geometry. Spectral filtering performed better on the 100 m DEM, where signal and 
artefact were clearly distinguishable in the frequency data. Spectrally filtered digital 
elevation datasets were found to provide a superior and more precise representation of 
the landsurface and be a more appropriate dataset for any subsequent 
geomorphological applications. 
 
Keywords: digital elevation model; terrain analysis; geographical information science 
 
1. Introduction 
 
Since the nature of the terrain surface is of such central importance in 
geomorphology, it is hardly surprising that digital elevation models (DEMs) are 
widely used within the discipline. The existence of digital representations of the 
terrain surface, and software to manipulate them, has given a new impetus to the field 
of geomorphometry (Pike, 2000; Hengl and Evans, 2007) and led to the development 
of new approaches to the identification of fundamental landscape structures such as 
ridges and valleys (Wood, 1996; Dragut and Blashke, 2007) and the identification of 
individual landforms (Miliaresis, 2006; Prima et al., 2006; Arrell et al., 2007). Over 
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short timescales, the terrain surface is a key factor in many environmental processes, 
having a major effect on key climatic parameters such as temperature and 
precipitation, and controlling the rate and spatial pattern of processes of weathering, 
erosion and deposition across a surface (Moore et al., 1991; Wilson and Gallant, 
2000; Arrell, 2005). Over long timescales these processes shape the terrain, and 
researchers are increasingly using analysis of terrain characteristics to help infer long- 
term denudational histories of regions (Bishop et al., 2002; Brocklehurst and Whipple, 
2006). 
 
Early DEMs tended to be derived from contours on topographic maps or from aerial 
photography. These typically varied in resolution from 1 km global DEMs, such as 
GTOPO30 (http://edc.usgs.gov/products/elevation/gtopo30 gtopo30.html) to 10–50 m 
DEMs produced by national mapping agencies such as the Ordnance Survey in Great 
Britain (www.ordnancesurvey.co.uk). Developments in techniques for capturing 
height data from Earth observation platforms have led to three major developments. 
Height data can be sampled uniformly across large areas. The best example of this is 
the near global coverage (56° S to 60° N) of NASA’s Shuttle Radar Topography 
Mission (SRTM; http://srtm.usgs.gov/), which provides 3 arc-second resolution (~90 
m at the Equator) data produced using synthetic aperture radar (SAR) interferometry. 
Very high-resolution data of the order of 1 m can be produced, especially using light 
detecting and ranging (LiDAR) technology (Ritchie, 1996). Information is now 
available on the height of the upper surface (often referred to as a digital surface 
model – DSM), which in many cases is not the terrain but vegetation and buildings 
that rest upon it. For some applications, this represents an element of noise, which 
must be removed to reveal the underlying terrain surface, but for others it provides 
useful information on the true roughness of the surface and on the nature and 
distribution of vegetation. 
 
Given the widespread use of DEMs, it is important to have an understanding of their 
accuracy. This is partly an issue of scale, and the degree to which a DEM represents 
the landscape. Nyquist sampling theory suggests that a DEM cannot represent 
anything smaller than twice the pixel spacing, so that whereas a 2 m LiDAR DEM 
might readily represent hillslope gullies, a 1 km DEM only represents major ridges 
and valleys. However, DEMs at all scales contain error from a variety of sources 
(Fisher and Tate, 2006), and this error can propagate to any analyses under- taken 
with the DEM. 
 
The study of error and its propagation has become an important area in geographical 
information science (GIS), nowhere more so than in the case of DEMs (Temme et al., 
2007). The large body of work on DEM error is a reflection of the widespread use of 
these datasets in a range of applications, the increasing confidence we must place in 
the results of these applications and the increasing range of digital elevation data 
products available. 
 
Elevation data differ from most other environmental data in that individual data 
values are almost never sufficient in themselves to answer any meaningful query 
(Wise, 2002). This is because these data values are simply samples from a surface of 
continuous variation, and it is this surface that is commonly of interest. Thus, given a 
sample of elevation points, or a series of contours across the surface, it is not 
necessarily possible to directly answer a query relating to surface elevation, such as 
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‘what is the elevation at this point?’ An answer requires a model of the surface 
between sampled points. Such a model has to be produced by interpolation between 
sampled values, and since interpolation is an estimation procedure, the surface will 
contain a degree of error. This means that in addition to the measurement errors 
inherent in all data, DEMs also contain interpolation errors. 
 
The two most common models of surfaces, model the area between sampled values 
differently. In a triangulated irregular network (TIN), original data points are 
connected by a series of triangles. Interpolation thus takes place when it is necessary 
to derive values for points inside these triangles. More common, gridded DEMs are 
created by interpolating values onto an array of regularly spaced points. The regularity 
of the grid inherently contains information about the topology of the points, and it is a 
simple matter to derive algorithms that calculate values for a surface in between the 
gridded DEM points (Wilson and Gallant, 2000). A gridded DEM usually contains 
interpolation error, unless the points have been measured on a regular grid, and further 
interpolation error can arise when values are estimated from the grid (e.g. elevation at 
a non-grid point). 
 
This paper is concerned with striped errors within gridded DEMs, these are common 
in photogrammetrically derived DEMs (Albani and Klinkenberg, 2003) and can be 
introduced through data resampling. As we will be concerned exclusively with 
gridded DEMs, for simplicity we will use the term DEM to refer to this data structure. 
Despite the merits of TINs for modelling a surface explicitly, and having the potential 
to directly represent key landscape elements such as peaks, ridges and valleys 
(Peucker et al., 1978; Kumler, 1994), gridded DEMs are by far the most commonly 
used format for elevation data, because of their processing simplicity, the wide 
availability of raster software and their easy transfer between systems. 
 
2. Modelling DEM error 
 
A large body of literature exists on error in DEMs and recent work by Fisher and Tate 
(2006) provides an excellent review. Error in DEMs is usually categorized into three 
types: blunders, random and systematic error (Cooper, 1998; Fisher and Tate, 2006). 
Blunders are gross errors, often caused by operator error or machine malfunction, and 
are relatively easy to detect. Much research on errors and error propagation focuses on 
random error, because there is the potential to model this theoretically. The simplest 
assumption is that errors in a DEM are random and thus follow a normal distribution. 
Comparison between values in the DEM with a sample of values from a more 
accurate source provide an estimate of this error, most commonly as the root mean 
square error (RMSE) 
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where ZDEM is the DEM model elevation, Zref is the reference or validation elevation 
and n is the number of samples. Normally this value is a global aspatial measure, 
derived from only a sample of data points. Although this measure provides 
information relating to the average error, increasing applications of digital datasets 
and demands on the confidence we place on their resultant outputs necessarily require 
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more informative error measures. Research has attempted to study potential effects of 
error on results produced from DEMs by applying random error to a DEM and using 
Monte Carlo simulation to look at the effect this has on DEM results (Hunter and 
Goodchild, 1997; Fisher, 1998). It is recognized of course that error in DEMs is not in 
fact completely random but contains a systematic element. Thapa and Bossler (1992, 
p. 836) define systematic errors as result of a ‘deterministic system which if known 
may be represented by some functional system’. These systematic errors can arise in a 
number of ways. 
 
Error originating from interpolation, an inherently spatial process, has been built into 
error modelling effects by including a spatial autocorrelation element into the 
modelled error field (Hunter and Goodchild, 1997; Fisher, 1998). Yet, still some 
systematic errors in DEMs are not well modelled by a spatial autocorrelation function 
applied globally to the whole surface. Two well-known examples arise with 
interpolation from contour data. The first is a tendency for grid points near contours to 
take on a value very close to or the same as the contour value (Wood and Fisher, 
1993; Wise, 1998; Fisher and Tate, 2006) (an effect exacerbated by converting 
elevation values to integer). The second, a manifestation of the first, is an abrupt 
change in estimated elevation midway between successive contours. Both systematic 
interpolation errors produce a set of artefacts in the DEM which mirror the original 
contour lines, and are hence strongly related to terrain shape. Spatial autocorrelation is 
consequently present in these errors, but is strongly anisotropic, operating parallel to 
the original contours. This potentially could be modelled by a spatial autocorrelation 
function, which would have to take into account the local slope direction. We are not 
currently aware whether this has been attempted. Another well-known artefact which 
might present more of a challenge for formal statistical modelling are triangular facets 
within a gridded DEM. These occur across valleys and ridges when a Delaunay 
triangulation is applied to interpolate between digitized contour data. This arises 
because in these locations three points on the same contour can form the corners of a 
Delaunay triangle, producing an erroneous flat surface. 
 
Systematic error is also common as striping in DEMs, this can originate from 
resampling data from a geographical to a UTM projection or introduced as an artefact 
of data collection or during the processing of photogrammetrically derived DEMs 
(Kok and Rangayyan, 1987). Data stripes are common in a range of DEM products, 
most commonly noted in Level 1 USGS DEMs (defined as those derived from 
photogrammetric methods) introduced through manual profiling or scanning methods 
(Brunson and Olsen, 1978; Hassan, 1988; Klinkenberg and Goodchild, 1992; Brown 
and Bara, 1994; Garbrecht and Starks, 1995; Oimoen, 2000), similarly stripes are 
found in terrain resource information management (TRIM) data as a result of 
oversampling along collection lines (Albani and Klinkenberg, 2003) and are also 
present in Shuttle Radar Topography Mission (SRTM) data as result of 
uncompensated mast motion error (Walker et al., 2007). The striped artefacts present 
within these datasets rapidly propagate through subsequent analysis (Holmes et al., 
2000). 
 
Error and artefacts are also problematic in LiDAR data (Sithole and Vosselman, 2003, 
2004) used to create DSMs. Within a DSM, elevation values recorded not only 
represent a terrain surface, but could also include any above-surface features (Chen, 
2007). Artefacts and error in LiDAR derived DSMs are introduced through LiDAR 
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system settings, aircraft pitch calibration, interpolation, horizontal displacement error 
and surveyor error. Discussion of the characteristics of these errors and artefacts has 
found them to be spatially organized, relating to landcover patterns and topographic 
characteristics, predominantly slope (Su and Bork, 2006; Hodgson and Bresnahan, 
2004). The need for improved filtering techniques of LiDAR data was expressed by 
Sithole and Vosselman (2003, 2004) and also noted by Flood (2001), who suggested 
that data filtering and point removal consumed 60–80% of LiDAR data processing 
time. 
 
Besides identifying and modelling errors in DEMs, work has also concentrated on 
correcting errors to improve DEM quality. Error is normally defined to be the 
difference between a model value and the true value (Fisher and Tate, 2006). Standard 
measures of DEM error are described in terms of the metric accuracy of elevation 
values. However, a narrow focus on metric accuracy is not necessarily a good 
approach to error detection and correction in DEMs, as many applications of DEMs 
do not rely on accurate elevation values but do need a faithful representation of 
surface shape. For example, in generating a drainage network using standard flow 
direction methods (e.g. Jenson and Domingue, 1991), it would not matter if elevation 
values were consistently 5 m too high, so long as the shape of slopes and valleys was 
accurately represented. This is where the nature of artefacts becomes important. 
Artefacts may represent relatively small errors in absolute elevation but if they are 
systematic, they can produce systematic errors in the results produced from DEMs. 
For example, flat triangles in a DEM derived from triangulated contours will produce 
errors in a derived drainage network (Wise, 2000). Errors that are spatially 
autocorrelated along DEM grid rows or columns can produce unrealistic stripes in the 
computed slope, aspect or curvature layers. 
 
3. Case study DEMs 
 
Performance of a spectral filtering and spatial mean filters to identify and remove 
DEM artefacts was compared on two contrasting scale DEMs, i) a 100 m DEM of the 
central Jotunheimen, Norway; and ii) a 2m DEM of Loughrigg Fell, Lake District, 
UK. 
 
Jotunheimen 
 
The Jotunheimen region of southern Norway represents a glaciated landscape of high 
relief with major interconnecting valley systems (Figure 1). The DEM was created by 
Statens kartverk, who applied a nearest neighbour inverse distance weighted 
algorithm to interpolate the DEM from digitized contour lines. Two interrelated error 
components were found to be present in the elevation surface: contour altitude spikes 
due to the oversampling of contour altitudes in the interpolation process (Figure 2a) 
and two persistent diagonal trends in the data (Figure 1). Although the source of these 
is not confirmed, it is suggested by the authors that it is either a result of a non-linear 
transformation from geographical coordinates to projected UTM or simply a result of 
the nearest neighbour interpolation that treated diagonal and orthogonal components 
differently. 
 
Propagation of these artefacts, predominantly through surface derivatives, is 
particularly apparent in the DEM surface gradient data. Such data are commonly used 
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in terrain and hydrological modelling applications, results from which can be biased 
by the strong spatial pattern of the artefacts. Although in part a result of inadequate 
flow algorithms and data resolution, derived flow accumulation data for this DEM 
showed uncharacteristic channel net- works (Figure 3a), with parallel channels and 
linear flow segments. 
 
As previously discussed, systematic errors, which are uniform across a surface, tend 
to be easy to resolve, where altitudinal adjustments and error bars can be applied with 
confidence. However, most known error in terrain surfaces is topographically 
organized (Wood, 1996). This organization is apparent within our DEM where the 
dominance (magnitude) of diagonal striping in derivative surfaces is greater in areas 
of moderate terrain than in smoother areas. 
 
Loughrigg Fell 
 
The LiDAR derived DSM of the western slopes of Loughrigg Fell, Lake District, UK, 
again represents a largely glacial topography, but at much higher resolution than the 
Norwegian DEM (Figure 4). The DSM contains surface vegetation features.  
 

 
Figure 1: Hillshade image of the Norwegian study area DEM of the Jotunheimen showing the 
dominant artefact banding, image is illuminated from the northwest. 
 
The predominant characteristic of the artefacts within the Loughrigg DSM is again a 
diagonal banding here in two dominant directions (~75° and 143°), an artefact from 
aircraft pitch calibration (Figure 4). Less apparent in the elevation frequency 
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histogram, the banding propagates into higher order elevation derivatives, namely 
surface gradient, plan and profile curvature. Flow direction data, a prerequisite for 
most flow accumulation algorithms, is particularly responsive to the banding, 
introducing a directional bias into subsequent flow routing data. As was seen in the 
Norwegian DEM, the magnitude of the banding in the Loughrigg DSM is not uniform 
across the surface. 
 
4. Spectral Filtering 
 
Rayner (1971, p. 72) considered that any variable or phenomenon that can be ordered 
according to increasing or decreasing wavelengths, should be viewed and treated as a 
spectrum, which he defined as ‘the scale breakdown of a phenomenon in space or 
time’. Spectral analysis is the mathematical characterization of differing wavelength 
com- ponents. Fast Fourier transformation (FFT) is an example of spectral analysis 
and quantifies the amplitude and phase angles of sinusoidal curves, which are fitted 
by least squares, to data that may be in one, two or n dimensions.  
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Figure 2. Frequency distributions of elevations within a) the original 100 m digital elevation model 
(DEM), b) the 3 × 3 smoothed DEM and c) the spectrally filtered DEM of Norway all highlighting data 
spikes.The original DEM a) highlights the magnitude of the data spikes, the 3 × 3 smoothed data b) 
shows a much smoothed data distribution with data spikes predominantly removed and the spectrally 
filtered dataset c) shows a more complex frequency distribution than found in the equivalent 3 × 3 
spatial mean filtered dataset. 
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Figure 3. Flow accumulation networks draped on the original DEM a) original DEM network b) 
filtered DEM networks, white lines represent network from the 3*3 mean filter and red lines represent 
the network from the FFT data, note linear and parallel flow structures in both the original and 3*3 
flow data.  
 
Rayner (1971) applied Fourier transforms to environmental data performing a two-
dimensional transform to digital maps of two drainage networks. The Fourier 
transform frequency spectra were found to be an effective mechanism for identifying 
and quantifying spacing and alignment of drainage networks, extracting data that was 
not otherwise easily retrievable. More recently Jordan and Schott (2005) used an FFT 
to identify tectonic faults, which were distinguish- able by their persistent orientation. 
 
The application of Fourier transforms to identify and remove interference or artefact 
patterns is not new, early work performed by Dobrin et al. (1965) demonstrated its use 
in processing seismic data. More recently Liu and Jezek (1999) applied Fourier 
transforms and directional variograms to investigate the spatial structure and spatial 
autocorrelation of error within a DEM. They used Fourier transforms to investigate 
DEM error, however, in their work they made use of a higher resolution DEM of the 
same area, which allowed them to investigate the spatial structure of the error based 
on a large sample of error measurements. In the present study, spectral analysis was 
applied directly to the DEM to try and distinguish the ‘noise’ produced by the striped 
artefacts from the landscape signal. 
 
For simplicity we conceptualize spectral filtering to be comprised of three stages. The 
initial stage of the process, ‘the FFT forward transform’, converts the data from the 
spatial domain into the frequency domain. 
 
This frequency dataset represents the frequency of every data value in the input spatial 
dataset, displaying both the horizontal and vertical spatial frequency components. The 
average elevation (the zero frequency component or DC term) is shown in the centre 
of the FFT image, data values at an increasing radial distance from this central value 
represent increasing spatial frequency components. This frequency or magnitude 
image contains information about the geometric structure of the spatial domain image, 
where brightness (digital number) represents the amplitude of the frequency 
component and direction of any frequency component to the DC term represents the 
direction of the frequency components in the DEM. When applied to gridded 
continuous data these FFT data can show strong crosshairs within the frequency data, 



 - 10 - 

representing high frequency variations between adjacent pixels and at the start and 
end of rows and columns. Interpretation of the FFT frequency data provides 
information about the structure and magnitude of the frequency organized 
components of the input data, here predominantly digital elevation data and their 
artefacts. 
 
Following Rayner (1971) and Liu and Jezek (1999) the mean of both the DEM and 
DSM were removed prior to performing the transform in order to minimize leakage 
and interference between frequency bands, which can cause problems in resolving the 
frequency data (Liu and Jezek, 1999). The mean was replaced after the inverse 
transform had been applied. Further pre-filtering or windowing, commonly applied in 
order to amplify frequencies within the input data, was not used as aliasing did not 
appear to inhibit results, although this is an area that has been identified for future 
study. 
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Figure 4. Hillshade image of the light detecting and ranging (LiDAR) 2 m digital surface model 
(DSM) of Loughrigg Fell, English Lake District, highlighting the artefact banding. The image is 
illuminated from the northwest. LiDAR data copyright Environment Agency Science Enterprise 
Centre. 
 
An FFT was applied to each of the study area digital elevation datasets and the FFT 
frequency domain data was used to discriminate between signal and artefact. Artefact 
frequency components can be identified within FFT frequency data only where they 
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can be distinguished from the data. This requires an artefact to have an 
uncharacteristic frequency or orientation. Although directional frequency components 
can exist within the landscape (for example a dominant valley or a geologically 
controlled drainage systems) and consequently be apparent in the frequency domain, 
such features were not present in the two study area datasets. However, high 
frequency diagonal components were apparent in the FFT frequency data, their 
orientation orthogonal to that of the diagonal artefacts within both study areas. In both 
cases these formed distinctive and clear components of the FFT frequency data. 
Unlike spatial filtering, filtering in the spectral domain can be and was applied to 
specific frequencies within a dataset, minimizing data smoothing and editing. 
Unwanted frequency components were removed by deleting them from the FFT 
frequency data with a user defined polygon layer that delineated the boundary 
between artefact and data within the frequency domain. This was subsequently used 
as a cut filter, essentially cutting the artefacts out of the dataset. This comprises the 
second stage of the spectral filtering. This identification and delineation of the error 
components is inherently subjective in those cases where the boundary between data 
and error is fuzzy and not crisp and should be performed only when the location of the 
anomalous frequencies within the FFT data is clear. 
 
An inverse transform was then performed transforming the data back into the spatial 
domain and reconstructing the missing cell values using their expected frequencies 
from within the modified FFT frequency data. This comprises the third and final stage 
of the spectral filtering. The procedure edits only the cells identified as error 
components (the frequencies removed from the FFT data), thereby limiting data 
smoothing and the introduction of further error. The resultant DEM is consequently 
comprised of the old DEM surface and the reconstructed elevation values for the 
elevation frequencies removed by the filter. 
 
5. Results 
 
Spectral filtering performance was assessed by comparison with the ability of mean 
smoothing filters to remove the frequency and spatial appearance of unwanted data 
artefacts and to minimize extensive data smoothing and editing. Although validation 
elevation data were not available, filter performance was assessed through 
examination of fre- quency distributions, elevation modifications, resultant 
topography and structure of surface derivatives and extracted flow networks. 
 

5.1. Norwegian 100 m elevation model 
Spatial filters. Low-pass filters with a 3 × 3, 5 × 5, 7 × 7 and 9 × 9 kernel window 
were applied to the DEM. All of the low-pass filters smoothed the data and muted 
diagonal trends and spikes (Figure 2b), but failed to remove artefacts following two 
consecutive applications (Figure 5a). Although failing to remove artefacts, these 
filters made consider- able changes to the distribution of values within the DEM, 
altering the data distribution by reducing the data range and standard deviation (Table 
I). Increasing smoothing was observed as filter size and number of applications 
increased. Elevation maxima and minima, predominantly located along ridge 
networks were subject to the largest changes of up to 380 m (Figure 5b). A single pass 
of the 3 × 3 filter edited >80% of cells by more than 1 m. 
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Examination of elevation changes produced by the filters highlights an increasing 
standard deviation with filter size and repetition (Table II). The nature of the mean 
filters resulted in very little difference to the mean elevation value within each output 
DEM. Further evidence of the ability of the mean filters to remove error is evident 
through examination of resultant DEM frequency histograms, these displayed a 
smoother distribution with size and application of the filters. The spatial distribution 
of elevation changes showed the global smoothing performed by the filters, with 
larger changes occurring on key landscape components: peaks and ridges (Figure 5b). 
 
Discussion of the extracted flow network is necessarily speculative, as in part these 
reflect the inadequacies of the extraction algorithm and data resolution. Alterations to 
the extracted network from a single pass of the 3 × 3 filter were minimal and all 
parallel and linear flow segments remain (Figure 3b). Extracted flow networks for 
coarser filters were not tested, because data resolution was degraded and scale effects 
in landform definition (Wood, 1996; Arrell et al., 2007) and network extraction would 
complicate interpretation. 
 
Spectral filtering. Diagonal components within the FFT frequency data were 
identified as representing the striped DEM artefacts, and had a repetitive and 
asymmetric structure. Their soft boundaries and vague extent suggest that they are 
present at a range of elevation frequencies, yet not systematic throughout the DEM 
(Figure 6). 
 
The spectral filtering muted diagonal trends and contour altitude peaks within the 
Norwegian DEM (Figures 2c and 5c,d). Examination of the distribution of elevation 
values within the output DEM identifies the spectral filter as a less severe filter than 
the mean filters, where minimal changes were made to the range and distribution of 
data values (Tables I and II). Further evidence of the intensity of smoothing 
performed by the spectral filter is visible in altitudinal changes produced by the filter. 
The mean alteration to elevation values is 0 m and the maximum and minimum are 66 
m and −69 m, respectively. These values are nearly an order of magnitude less than 
the equivalent spatial filtering changes (Table II), and less than 50% of cells were 
altered by more than 1 m. 
 
The spatial structure of these changes also provided evidence of the minimal 
disruption of the spectral filtering. Unlike the mean filtering approaches, altitudinal 
adjustments were largely restricted to the diagonal structure of the DEM error (Figure 
5d). A comparative examination of changes from the spatial filtering highlighted more 
invasive data editing with data throughout the DEM being smoothed (Figure 5b). 
 
Comparison of the frequency distributions of the original and filtered DEM did show 
some changes in data distribution. Most notable are small alterations to highest and 
lowest altitudes (Table II). The resultant frequency histogram had a much less erratic 
distribution and showed removal of most spikes (Figure 2c). Although every attempt 
was made to reduce the smoothing effect of the error removal procedure, some 
smoothing did occur. Removing high frequency components from the FFT data will 
in some cases remove high frequency landform components, where a soft boundary 
between noise and data makes discrimination difficult. However, in this application 
data edits were predominantly constrained to spatially and spectrally organized data 
artefacts (Figure 5d). 
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Figure 5. Subsection of Norwegian 100 m digital elevation model (DEM) showing: (A) surface 
gradient and (B) elevation differences between original and resultant DEM for a single pass of the 3 × 3 
smoothing filter; (C) surface gradient and (D) elevation differences for spectrally filtered DEM.Within 
the 3 × 3 data, diagonal artefacts still remain in the surface gradient data and largest changes in 
elevations were made on peaks and ridges. In contrast the spectrally filtered data show that diagonal 
artefacts have largely been removed from the surface gradient data and elevation changes made by the 
filter shown in (D) are largely restricted to areas with dominant artefacts, global data smoothing has not 
been performed and largest changes do not occur on peaks and ridges as found in the equivalent 3 × 3 
spatial mean filter dataset shown in (B). DEM copyright Statens kartverk. 
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Table I. DEM descriptive statistics for original and resultant 100 m Norwegian DEMs for the different 
size and repetition of spatial mean and FFT filters.  Increasing size and application of filters leads to 
trends in the standard deviation and range of elevation data.  FFT data maintain the range and standard 
deviation of the original data.    
 
Filter Minimum (m) Maximum (m) Mean (m) Standard 

deviation 
Original DEM 480 2472 1440 318 
3 * 3 480 2426 1439 316 
3 * 3 twice 487 2396 1439 315 
5 * 5  494 2381 1439 314 
5 * 5 twice 507 2359 1439 311 
7 * 7 506 2355 1439 311 
7 * 7 twice 519 2320 1439 307 
9 * 9 512 2325 1439 308 
9 * 9 twice 538 2286 1439 302 
FFT 459 2454 1440 317 
 
Table II. Elevation changes made to the 100 m Norwegian DEM for the spatial and FFT DEMs, clear 
differences are apparent between the changes made by the spatial mean and FFT filters.  
  
Filter Minimum (m) Maximum (m) Mean (m) Standard 

deviation 
3 * 3 -318 160 1 12 
3 * 3 twice -321 172 1 15 
5 * 5  -348 215 1 19 
5 * 5 twice -363 252 1 26 
7 * 7 -370 266 1 28 
7 * 7 twice -382 307 1 38 
9 * 9 -384 306 1 36 
9 * 9 twice -388 358 1 49 
FFT -66 69 0 9 
 
 
Spectral filtering highlighted topographic patterns in the magnitude and distribution of 
digital elevation data artefacts. The ability of this method to delineate high intensity 
frequency components was improved in less complex terrain, where the artefact 
frequency was more consistent, reflecting the strong terrain dependence of DEM 
artefacts. Examination of changes in the distribution of gradients in initial and filtered 
DEMs indicated that steeper gradients were most susceptible to artefacts in the 
original surface. Spatial organization of removed data identified valley and slope sides 
as areas of most change. Comparison of the spatial autocorrelation (calculated with 
Moran’s I and Gearys’s C) present in the initial and filtered DEMs indicated a 
reduction in spatial autocorrelation, thereby supporting a hypothesis that error was 
spatially autocorrelated (Table III). 
 
 
The extracted drainage network from the spectrally filtered DEM represents a more 
realistic and less artefacted dataset than either the original or the spatially filtered 
DEM. Parallel flow segments present within the original DEM drainage flow network 
were removed, and few linear segments remained (Figure 3b). 
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Table III. Spatial autocorrelation statistics for the elevation datasets, before and after FFT application. 
Note the opposing trends in coefficients.  
 

 Norway Lake District 
 With Error After Error 

Removal 
With Error After Error 

Removal 
Moran’s I 0.9955 0.9959 0.998800 0.998805 
Geary’s c  0.0045 0.0041 0.000173 0.000168 

 
 

 
Figure 6. FFT frequency data for the 100 m Norwegian DEM, note the strong crosshairs and the 
diagonal banding representing the data artefacts. 
 

 
  

5.2. Lake District 2 m DEM 
 
Spatial filters. Low-pass filters with a 3 × 3, 5 × 5, 7 × 7 and 9 × 9 kernel window 
were applied to the DSM. Again, all these filters smoothed the data (Figure 7a and 
Table IV) and made large alterations to the original surface (Table V), but only repeat 
cycles or the 7 × 7 or 9 × 9 filters removed data artefacts (Figure 7a). 
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Figure 7. Subset of the LiDAR DSM a) hillshade image of the 3*3 processed data b) elevation 
differences made by the 3*3 filter. The hillshade image shows that most of the artefacts have been 
removed, but also shows a much smoothed surface, areas of largest elevation changes b) were made 
around the trees on the west of the dataset.  Equivalent data for the FFT data are shown in c) hillshade 
data and d) elevation differences between the original and FFT DSM.  Although the diagonal artefacts 
have been removed, other surface features have been introduced to the data, most noticeably 
surrounding the woodland area. Largest elevation changes were made in areas where artefacts were 
most apparent in the original dataset.  
 
All mean filters smoothed the DSM elevation frequency distribution and reduced data 
range and standard deviation. A single pass of a 3 × 3 filter made elevation changes of 
up to 29 m, yet 98.5% of cells had their elevation changed by less than 1 m (Table V). 
An interesting trend within the smoothed data is the maximum reduction of altitudes 
as filter size and applications increased. This is likely to represent the increasing role 
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of locally high altitudes as filter neighbourhood size increases. This trend was not 
observed in Norway, which had a higher and rougher relief and where elevation 
values had a normal distribution. This may reflect the frequency distribution of the 
LiDAR data, which is positively skewed and platykurtic, suggesting that smoothing 
data through averaging is not the most appropriate technique when data do not 
conform to a normal distribution. 
 
Table IV. DSM descriptive statistics for original and resultant 2 m LiDAR DSM for the different size 
and repetition of spatial mean and FFT filters.  Increasing size and application of filters lead to trends 
in the standard deviation and range of elevation data.  FFT data maintain the range and standard 
deviation of the original data.    
 
Filter Minimum (m) Maximum (m) Mean (m) Standard 

deviation 
Original DEM 90.40 335.04 208.73 64.47 
3 * 3 90.89 334.93 208.73 64.46 
3 * 3 twice 91.31 334.86 208.73 64.45 
5 * 5  91.51 334.79 208.73 64.45 
5 * 5 twice 92.19 334.48 208.73 64.44 
7 * 7 92.03 334.52 208.73 64.44 
7 * 7 twice 92.96 333.88 208.73 64.42 
9 * 9 92.53 334.07 208.73 64.42 
9 * 9 twice 93.69 333.25 208.74 64.39 
FFT 90.45 335.08 208.73 64.47 
 
Table V. Elevation changes made to the 2 m LiDAR DSM for the spatial and FFT DEMs, clear 
differences are apparent between the changes made by the spatial mean and FFT filters.  
 
Filter Minimum (m) Maximum (m) Mean (m) Standard 

deviation 
3 * 3 -21.82 29.01 0 0.67 
3 * 3 twice -17.96 29.68 0 0.70 
5 * 5  -17.61 32.32 0.001 0.81 
5 * 5 twice -12.01 32.48 0.001 0.81 
7 * 7 -11.77 33.51 0.002 0.91 
7 * 7 twice -8.48 33.37 0.003 1.00 
9 * 9 -9.46 33.61 0.004 1.00 
9 * 9 twice -6.88 33.88 0.006 1.12 
FFT -3.85 4.11 0 0.21 
 
 
Examination of the spatial distribution of elevation changes highlighted that most 
change occurred within forested areas, with local altitude changes being strongly 
influenced by tree height with local reductions in elevations at the edge of the canopy 
and local increases in elevations in the middle of the canopy (Figure 7b). 
 
Propagation of data artefacts was explored in flow direction and extracted 
hydrological network data from a single pass of a 3 × 3 mean filter. The filter did 
mute diagonal artefacts in flow direction data but was unable to remove them. The 
filtered DSM introduced parallel and linear stream segments where local surface 
heterogeneity was reduced (Figure 8). 
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Figure 8. Flow accumulation networks draped on the hillshaded original DSM for the original (red 
lines), 3*3 filtered (yellow lines) and FFT filtered (blue lines) DSM for the Loughrigg data set.  The 3 
* 3 filtered DSM network shows multiple linear flow segments, which are not present in the original or 
FFT networks.  
 
The spatial filters were more effective at removing artefacts present in the Loughrigg 
data than the Norwegian dataset. However, mean filter limitations were still apparent, 
making large alterations to data distribution and range, reducing data resolution and 
precision. 
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Spectral filtering. The FFT frequency data contained two components that were 
identified to have an orientation reflecting that of the data artefacts (Figure 9). 
Removing these components from the frequency data, reduced artefact magnitude in 
some areas of the study area, most noticeably within forested areas, but its 
effectiveness was not uniform throughout the DSM (Figure 7c). Alterations to 
elevation values were small (maximum 4·1 m) and again were nearly an order of 
magnitude less than those imposed by the spatial filters, with minimal differences 
made to data range and distribution (Figure 7d and Tables IV and V) and only 0·1% 
of cells were changed by more than 1 m. 
 
Examination of the spatial distribution of these elevation changes showed that artefact 
removal was most effective within forested areas of the study area. Elevation changes 
exhibited a strong NNE and SSW orientation, matching that of one set of data 
artefacts (Figures 4 and 7c). Although the spectral filtering performed well at 
identifying and removing these artefacts, it did not identify artefacts with a NNW–
SSE orientation. This reflects the relative magnitude of both artefact components, 
where the more dominant NNE and SSW orientations were distinctive within the 
frequency domain, and were consequently identified and removed. Lower magnitude 
NNW–SSE artefacts could not be differentiated within the frequency domain and 
consequently remain in the data. 
 
Comparison of data spatial autocorrelation before and after the spectral filtering 
showed a slight increase, which suggests either that artefacts reduced the natural 
spatial autocorrelation in the landscape, or that the inverse transform itself introduced 
artefacts that increased the data spatial autocorrelation (Table III). The latter is the 
more likely, as unlike the Norwegian dataset, the resultant DSM contained surface 
elements that were not present within the original data, suggesting that the data 
artefacts were not accurately delineated within the FFT frequency data. 
 
Implications for artefact propagation were again explored using surface slope, flow 
direction and flow accumulation networks. Striped artefacts were less well defined in 
the FFT modified flow direction data than in the original or the spatially filtered data. 
This improvement in appearance of flow direction data will minimize error 
propagation from striped artefacts in any subsequent analysis. The extracted flow 
network from the resultant DSM is very similar to the original network and contains 
no parallel or linear flow segments (Figure 8). 
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Figure 9. FFT frequency data of the 2 m LiDAR DEM showing strong crosshairs and diagonal high 
frequency components. 
 
 
6. Discussion 
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Traditional spatial mean filters and spectral filtering were compared in order to assess 
their ability to discriminate between signal and error within two striped digital 
elevation datasets. 
 
The application of spectral filtering showed marked improvements in artefact removal 
where the magnitude of artefact error is distinguishable in the Fourier frequency data. 
This is apparent in the Norwegian DEM, where artefacts form a dominant component 
of the FFT frequency dataset. Here spectral filtering showed considerable advantages 
over traditional mean filtering techniques, where data edits were restricted to artefact 
frequencies (Figure 5d). We propose that under these conditions, and after 
examination of the FFT data, artefacts should be removed and delineated using 
spectral filtering over traditional smoothing filters, where loss of precision and 
variance within original data is minimized. 
 
Where an error component is not distinguishable from other low or high frequency 
data, application of spectral filtering does not perform as effectively and may not be 
appropriate. This is apparent through examination of the 2 m LiDAR DSM, although 
diagonal artefacts are present in the data they were not entirely distinguishable within 
the frequency domain. Spatial filtering also failed to remove these artefacts, whie 
maintaining reasonable data resolution (Figure 7a). Even though performance of the 
spectral filtering in the LiDAR case study may appear disappointing it simply reflects 
complexities of signal processing, where unless signal and error can be differentiated, 
error alone cannot be removed. Under these conditions spatial mean smoothing may 
be appropriate and is proposed by some researchers as a method of incorporating data 
variance where errors are hidden within data variability. Spatial filtering is less 
appropriate in a case where local artefact or error magnitude is large. Here, erroneous 
elevation values will bias any mean calculations, where artificially high or low values 
will compromise mean averaging. In such cases spectral filtering would be more 
appropriate where these large magnitude data values can be removed from the dataset. 
 
It should be noted that the size and scale of the sample DEM controls the relative 
frequencies of any error components, where small frequency artefacts are unlikely to 
be distinguishable with a large and varied topography where data and artefact 
frequency is matched with natural variability in the land surface. However, within a 
smaller and smoother topography their relative magnitude will be greater, and 
consequently more likely to be visible within the frequency domain. Many traditional 
filters also perform less effectively in complex terrain. However, the spectral filtering 
still performs well, when artefact frequency is persistent throughout a DEM. Unlike 
traditional filtering techniques, spectral filtering does not attempt to identify or 
remove error within a local neighbourhood, but simply represents the distribution of 
frequencies present within the data. Spatially or frequency persistent artefacts will be 
evident in the FFT data. This was apparent in the study results, where in the 
Norwegian DEM, the relative magnitude and frequency of data artefacts were large 
enough to distinguish them from the natural variability within the data. In contrast, 
within the Lake District DSM only in some areas was such delineation possible. 
 
The results presented here suggest that DEM artefact or error removal using spectral 
filtering is more advantageous than mean spatial filters for geomorphological 
applications when maintaining topographic structures and data range and standard 
deviation is important. Traditional mean spatial filters make considerable changes to 
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the morphometric characteristics of a landsurface, lowering peaks, smoothing ridges 
and raising valleys. These changes will clearly have implications for any subsequent 
DEM applications where the shape and nature of the terrain surface is considered. 
Although spectral filtering also alters the terrain surface, modifications to the 
distribution and structure of elevation values are minimal and made using information 
on the spatial and frequency characteristics of the original elevation data. Results also 
indicate that the inverse FFT better estimates replacement data values than mean 
filters; indicated through improvements to extracted flow networks, where spectrally 
filtered DEMs remove and do not introduce linear or parallel flow paths. Comparative 
results from the mean filters showed that despite substantial modifications to the 
elevation dataset, inadequacies in the flow network data remained. 
 
Limitations in the application of spectral filters still exist, primarily the delineation of 
artefact or error components within the FFT frequency data. Unlike traditional 
filtering techniques where data editing is automated, this is the most critical stage of 
the filtering and the least automated. Examination of frequency histograms of FFT 
frequency data provides opportunities for future work to automate delineation of 
uncharacteristic frequency components, using exact frequency ranges. 
 
7. Conclusions  
 
Spatial mean filters were shown to make large alterations to the distribution and range 
of elevations within the study DEM and DSM, which raises several issues about their 
suitability for digital elevation data processing. Although a range of spatial filters 
were applied to the two datasets none were found to be capable of identifying and 
removing artefacts within the digital elevation data effectively. 
 
Spectral filtering identified the implicit spatial and explicit spectral characteristics of 
the striped artefacts present within the digital elevation data. The technique avoided 
global smoothing and simply altered data identified as uncharacteristic. However, care 
is encouraged when differentiating between high frequency landscape components 
and high frequency data artefacts. 
 
The technique presented here is considered to provide an effective mechanism for 
visualizing and removing spa- tially and spectrally organized digital elevation 
artefacts, such as the striped artefacts shown here, and may be of particular relevance 
in the processing of LiDAR data. Future work will explore the appropriateness of the 
technique for different data resolutions, error types and different surface complexities. 
We will also explore the use of data windowing to identify and remove any aliasing 
effects present when analysing large datasets. 
 
The use of spectral filtering to remove striped data artefacts has been shown to 
provide considerable advantages over traditional spatial filters for DEM applications 
where data artefacts are distinguishable from data in the frequency domain, 
particularly those interested in the structure and form of the land surface. Spectral 
filtering makes minimal alterations to the distribution and structure of the terrain 
surface, preventing loss of data precision and variability.  
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