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In this letter we show that the Rényi entanglement entropy of a region of large size ` in
a one-dimensional critical model whose ground state breaks conformal invariance (such as in

those described by non-unitary conformal field theories), behaves as Sn ∼ ceff(n+1)
6n log `, where

ceff = c−24∆ > 0 is the effective central charge, c (which may be negative) is the central charge
of the conformal field theory and ∆ 6= 0 is the lowest holomorphic conformal dimension in the
theory. We also obtain results for models with boundaries, and with a large but finite correlation
length, and we show that if the lowest conformal eigenspace is logarithmic (L0 = ∆I+N with N
nilpotent), then there is an additional term proportional to log(log `). These results generalize
the well known expressions for unitary models. We provide a general proof, and report on
numerical evidence for a non-unitary spin chain and an analytical computation using the corner
transfer matrix method for a non-unitary lattice model. We use a new algebraic technique for
studying the branching that arises within the replica approach, and find a new expression for the
entanglement entropy in terms of correlation functions of twist fields for non-unitary models.
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1 Entanglement Entropies

Entanglement is arguably the most non-classical property of a quantum state. It fundamentally
determines the performance of classical simulations of many-body quantum systems (e.g. DMRG
[1]) and guides the elaboration of new such simulation algorithms (see e.g. [2]). A physical def-
inition of bi-partite entanglement in quantum systems may be obtained in an operational way.
One establishes a preorder: two states’ entanglement are compared if the states are related by
classical communications, local unitary transformations or entanglement catalysis [3, 4]. Strik-
ingly, there exists a family of functions that form a faithful representation of this preorder on
the set of pure quantum states [5]: the Rényi entanglement entropies (EEs) Sn, n ≥ 1. Given
a state |Ψ〉 in a Hilbert space H, and a bi-partition H = A⊗ B, the Rényi EE Sn is the Rényi
entropy,

Sn =
1

1− n
log TrA(ρnA), (1)

of the reduced density ρA = TrB |Ψ〉 〈Ψ|; the von Neumann EE is the special case S = S1.
Knowing all the Sn of a state for a bi-partition into subsystems A and B completely determines
the entanglement between A and B present in this state.

Besides providing a measure of quantum entanglement, the Rényi EEs have a variety of inter-
pretations, which lead to deep connections between quantum entanglement and other physical
and geometrical concepts, and are at the source of much activity in this area. For instance, the
Rényi EEs can be thought of as an entanglement equivalent of the entropy of equilibrium ther-
modynamics, which gives an order representing the arrow of time. This has physical significance
for decoherence, where entanglement with the environment plays a role [6], and in high-energy
physics, where the von Neuman EE, which was first introduced within this context [7], provides
quantum corrections to Hawking’s black hole entropy.

Further, it has been observed in recent years that, in the context of many-body systems,
the Rényi EEs characterize the structure of quantum fluctuations and correlations in a more
universal way than other widely studied objects such as correlation functions of local order
parameters (see e.g. [8]). This is especially important near or at critical points, where microscopic
interactions give rise to emergent universal collective behaviors described by quantum field
theory (QFT), providing some of the most interesting phenomena of theoretical physics. One-
dimensional models are of particular interest in light of modern experimental techniques allowing
their realization and precise study [9], as they present surprising anomalous behaviours (e.g.
Luttinger liquids, the Kondo effect). One such anomalous effect is seen in the EE. It was found
that the ground state of critical one-dimensional models of infinite length, under a bi-partition
where subsystem A is a contiguous set of local degrees of freedom of length `, has Rényi EE
that diverges logarithmically at large ` as [10, 11, 12, 13]:

Sn =
c(n+ 1)

6n
log (`) +O(1) (2)

where the O(1) correction is non-universal. The number c is the “central charge”, the most
important characteristic of the universality class in one dimension, often interpreted as the
number of universal local degrees of freedom [14] (e.g. c = 1 for a Luttinger liquid, c = 1/2 in
the Ising universality class). Formula (2) shows an anomalous logarithmic breaking of the area
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law [15]. The generalization to system’s size L of the order of `, both large, is [10, 13]

Sn =
c(n+ 1)

6n
log

(
L

π
sin

(
`π

L

))
+O(1). (3)

Further, off criticality, the EE is finite for `, L =∞, but it diverges at large correlation lengths
ξ as [13] Sn = c(n+1)

6n log (ξ) + O(1); for the region A extending to the boundary of the system
all results are divided by 2; and there are results for excited states [16]. These formulas have
been extremely successful: combined with numerical evaluations of the EE using for instance
DMRG, they give the most powerful tool for detecting and distinguishing critical phases of
one-dimensional models, and determining their universality classes [17].

Finally, the Rényi EEs also have a striking geometrical interpretation within the duality
between universal d-dimensional QFT and d+1-dimensional statistical field theory that emerges
from Feynman’s path integral representation. Formula (1), re-interpreted within statistical field
theory, gives the Rényi EEs as purely geometrical quantities, which measure the effect of singular
geometries on classical thermodynamics [10]. In particular, for d = 1, Rényi entropies are related
to partition functions on spaces with point-like conical singularities at the positions representing
the boundary points of the subsystem A. That is, singular classical geometries are connected
to many-body quantum entanglement. For integer n these conical singularities can in fact be
represented using local observables, the “branch-point twist fields” T and T̄ [18, 13, 19], also
defined in quantum chains [20]. This re-interprets the Rényi EEs as local quantum correlations:

TrA(ρnA) ∝ 〈T (0)T̄ (`)〉. (4)

The local-observable representation has been instrumental to the generalization of the above
results away from criticality [19] and to other entanglement measures [21].

2 Spontaneous breaking of conformal invariance

Universal behaviours of one-dimensional critical models with unit dynamical exponent are often
described by (1+1-dimensional) conformal field theory (CFT), which possesses space-time con-
formal symmetry. The results reported above have been obtained within this context. However,
a tacit assumption is that the ground state corresponds to the unique conformally invariant
state of the CFT (the “conformal vacuum”). There are many examples where this assumption
fails: conformal invariance may be spontaneously partially broken. The goal of this letter is to
generalize the above to these situations. We provide explicit generalizations of (2) and related
formulae, as well as of the local-field representation (4).

In order to explain our results and their context, let us recall basic aspects of CFT [22].
Due to chiral factorization and locality, CFT has an extended algebraic structure based on two
independent copies of the Virasoro algebra, with generators Ln, L̄n, n ∈ Z satisfying the same
commutation relations,

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0. (5)

The number c is the central charge introduced above, which here is interpreted as breaking
local conformal invariance. In appropriate units, the Hamiltonian is L0 + L̄0 − c/12. The
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representation theory of the Virasoro algebra teaches us about the Hilbert space of the quantum
system. In particular, one defines the conformal vacuum |0〉 as the state invariant under all
regular conformal transformations, Ln |0〉 = 0, n ≥ −1, and model-dependent representation
theory gives L0 + L̄0 − c/12 eigenvalues in correspondence with physical energies.

The physical vacuum may be different from the conformal vacuum, and correspond to a
nonzero L0 eigenvalue, when the CFT model is non-rational (non-rational L0-eigenvalues) and/or
non-unitary (non-unitary representation of the Virasoro algebra).

For instance, certain statistical models, corresponding to non-rational CFT with non-compact
“target spaces”, have been studied in [23], where the conformal vacuum is non-normalizable (like
scattering states of quantum mechanics), thus effectively disappearing from the spectrum. Non-
rational CFT is well known to describe various long-standing problems such as two-dimensional
quantum particles moving in spatially random potentials [24, 25] and disordered systems [26].
For c = 0, there is a recent study of EE [27] using a high-energy holography approach.

Further, critical systems described by non-Hermitian Hamiltonians lead in some cases to
non-unitary CFT. Famously, the quantum group invariant integrable XXZ spin chain, with
non-hermitian boundary terms, has critical points associated with the minimal models of CFTs
with central charges c = 1 − 6

m(m+1) which is negative for m < 2 rational; see (among others)

the study by Pasquier and Saleur [28]. Another example is provided by the Hamiltonian (with
standard Hilbert space structure on (C2)L)

H(λ, h) = −1

2

L∑
j=1

(
σzj + λσxj σ

x
j+1 + ihσxj

)
, (6)

where σx,zi are the Pauli matrices acting on site i and λ, h ∈ R are coupling constants. This
model was shown by von Gehlen [29] to have a critical line in the λ−h plane, identified with the
Lee-Yang non-unitary minimal model (c = −22/5) [30]. In these examples, Hamiltonians are
non-Hermitian, yet have real energy spectra. The corresponding real L0 spectra possess negative
eigenvalues: ground states are not conformal vacua.

Non-Hermitian Hamiltonians with real spectra are of particular physical interest and sub-
ject to active current research especially in view of the successful application of PT-symmetry or
pseudo/quasi Hermiticity [32, 33, 31] (for the interplay with integrability see [34]). For instance
the critical line of the Hamiltonian (6) is related PT–symmetry breaking [35]. Experimental
studies and theoretical descriptions of new physical phenomena have emerged, including optical
effects (unidirectional invisibility, loss-induced transparency) [36], transitions from ballistic to
diffusive transport [37], and dynamical phase transitions [38, 39] (in particular using (6)). In-
terestingly, optical experiments allow experimental access to non-hermitian quantum mechanics
[40]. Non-Hermitian quantum mechanics is also used in non-equilibrium systems [41], quantum
Hall transitions [42], and quantum annealing [43].

3 Main results and discussion

Consider a quantum critical chain whose universal behaviour is described by CFT. As mentioned,
the energy spectrum follows from the spectra of L0 and L̄0. Assume that their eigenvalues are
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real, that they have the same lowest eigenvalue ∆ 6= 0, and that it is separated from the next
higher eigenvalue by a finite amount. That both L0 and L̄0 have the same lowest eigenvalue
is the expression that the ground state is translation invariant. Technically, we will also need
the lowest-eigenvalue eigenvector of L0 and L̄0 to generate isomorphic Virasoro modules. The
most famous examples of CFT with these properties are the non-unitary minimal series Mp,p′

with central charge given before Eq. (6) with m−1 = p′/p − 1, p′ > p + 1 and p = 2, 3, . . .; in
these cases it is known [22] that ceff = 1 − 6

pp′ > 0. The Hamiltonian (6), on its critical line,
corresponds to the Lee-Yang model M2,5.

We look for the Rényi EEs of the lowest-energy state of the model. For non-Hermitian
Hamiltonians this seems a priori ambiguous, as non-Hermitian operators have the same right-
and left-eigenvalues but different eigenvectors. However, we will argue below using PT symmetry
and chiral factorization of CFT, and see in explicit examples, that at quantum criticality, the
eigenvectors corresponding to the common lowest eigenvalue of H and H† are equal to each
other. With this unique vector and the standard Hilbert space structure, the Rényi EE is well
defined and unambiguous. Our first main finding is that (2) and related formulae hold with the
replacement c 7→ ceff := c− 24∆ > 0. We note that formula (2) would not make physical sense
when c < 0, such as in the Lee-Yang model corresponding to (6). This is reminiscent of the work
of Itzykson, Saleur and Zuber [44] who showed that the effective central charge ceff replaces c
in the expression of the ground state free energy found by Affleck [45] and Blöte, Cardy and
Nightingale [46]. Our second finding is that there is an additional term proportional to log(log `)
if the lowest L0-eigenspace is “logarithmic”; that is, if L0 has, on this space, the form ∆I + N
where I is the identity matrix and N is nilpotent of some degree r.

The finding that the effective central charge is involved instead of the central charge has
important consequences: (i) the values of ceff (not c) provide an order amongst critical ground
states in agreement with the ordering of their entanglement; and (ii) the determination of
a critical phase by the numerical evaluation of the EE gives access to ceff (not c). These
consequences further point to the fact that in general ceff , and not c, counts the physical,
universal number of local degrees of freedom. These findings also open a way to the elusive
proof of RG monotonicity of ceff , based on entanglement concepts, generalizing the proof in
unitary models [14] based on unitary QFT.

The fact the ceff occurs in place of c in important physical quantities suggests that a theory
for local physical observables should involve ceff instead of c more prominently. Unfortunately,
such a theory does not exist yet. Nevertheless, the classical singular geometry associated to
Rényi EEs gives us indications. According to the state-field correspondence of CFT, every state
is associated to a local field. Let φ represent the local field associated to the lowest-energy state.
Appealing to the operator product expansion, one may form, from the branch-point twist field
T , the composite field [47]

:T φ: (x) := n2∆−1 lim
ε→0

ε2(1− 1
n

)∆T (x+ ε)φ(x). (7)

Here the factor n2∆ ensures that the field has the standard CFT normalization. Using the above
findings, we will show that the generalization of (4), representing conical singularities and the
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Rényi entropies for integer n using local fields, is

TrA(ρnA) ∝ 〈:T φ: (`) :T̄ φ: (0)〉
〈φ(`)φ(0)〉n

. (8)

This and related formulae have important potential applications to the EE off criticality [57]
and the entanglement negativity [21], and suggests a path towards defining physical correlation
functions in non-unitary models.

4 CFT derivation

In this section we use new techniques related to, but simplifying, those of [10]. For simplicity we
consider TrA(ρnA) in the ground state of a critical chain with a boundary, the region A extending
a distance ` from the boundary. Within the replica trick, one write TrA(ρnA) = Zn/Z

n
1 , where

Zn is the partition function of a Euclidean CFT composed of n copies of the original model,
connected to each other cyclically along a cut representing the region A [10]. Here the path
integral lies on the half-plane {z : Re(z) > 0} and the cut runs from the origin to the point
`. Around the 2πn-angle conical singularity at z = `, the CFT description breaks down and
the lattice structure becomes important, thus we introduce an ultraviolet cut-off 0 < ε � `.

After the conformal transformation z 7→ w = i log
(
`−z
`+z

)
to the half-cylinder, the cut runs from

Im(w) = log ε/` (for ε→ 0) to Im(w) = 0. Quantizing with time running along the cut, we have

Zn = 〈a| e− log( `
ε
)Horb |b〉 , Zn1 = 〈a| e− log( `

ε
)Hrep |b〉 (9)

where Horb is the “orbifold”, and Hrep is the “replica” Hamiltonian; 〈a| and |b〉 are conformal
boundary states, the precise form of which is not important. The difference between Horb and
Hrep is in the continuity condition of the energy density: the chiral stress tensor T (j)(w) on the
jth copy is, respectively, cyclic, T (j)(w + 2π) = T (j+1)(w), or periodic, T (j)(w + 2π) = T (j)(w).
In both cases the total stress tensor T (w) =

∑n
j=1 T

(j)(w) gives rise to the Hamiltonian.
Fourier modes of stress tensors generate Virasoro algebras. With periodic conditions there

are n commuting Virasoro algebras L
(j)
k , k ∈ Z each of central charge c. The total Virasoro

algebra is Lrep
k =

∑n
j=1 L

(j)
k and Hrep = Lrep

0 +L̄rep
0 −nc/12. On the other hand, in the cyclic case,

there is a field that is continuously winding around the copies, Torb(w) = T (1+[w/2π])(wmod 2π),
generating a single Virasoro algebra Lk, k ∈ Z of central charge c. The total Virasoro algebra
is then a subalgebra of central charge nc generated by Lnk, k ∈ Z. Doing the Fourier transform
one finds

Lorb
k =

Lnk
n

+ ∆T δ0,k, (10)

and we have Horb = Lorb
0 +L̄orb

0 −nc/12. Equation (10) has been found in the context of the study
of orbifold CFT, see e.g. [54, 55, 56] and, more recently, in connection with the investigation of
the energy flow in critical systems out-of-equilibrium [48]. On the right-hand side of (10) the
shift is the dimension

∆T = ∆T̃ =
c

24

(
n− 1

n

)
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of the branch-point twist fields [18, 13] .

Since the lowest L
(j)
0 and L0 eigenvalues are ∆, in the limit `/ε → ∞ we find Zn ∝

e−2 log(`/ε) (∆̃−nc/12) and Zn1 ∝ e−2 log(`/ε) (n∆−nc/12) where

∆̃ =
∆

n
+ ∆T (11)

Therefore, TrA(ρnA) ∼
(
ε
`

) ceff
12 (n− 1

n) whereby we obtain

Sn =
ceff(n+ 1)

12n
log

`

ε
(12)

up to finite non-universal additive terms. Similar calculations can be performed for A a region
of length ` in an infinite chain, for system lengths L ∝ `, and for off-critical systems at large
correlation length, reproducing (2) and related formulae with the replacement c 7→ ceff , as
claimed.

Notice that the composite field :T φ: (x) (7) has conformal dimension (11) [47]. Hence from

pure scaling dimension analysis the result above (12) can be recast into TrA(ρnA) ∝ 〈:T φ:(`)〉
〈φ(`)〉n , and

for A a region of length ` in an infinite chain, to (8). This provides the local-field representation
of the Rényi entropy and of conical singularity in non-unitary models, as claimed. Indeed, for
non-unitary theories :T φ: is the lowest-dimension field with the correct twist property, hence
represents the integer-angle conical singularity. We emphasize that the elegant techniques used in
[13], where fields associated to conical singularities are studied using conformal transformations,
fail in the non-unitary case; a full understanding of such techniques is still missing.

The above derivation is easily adaptable to the cases where L0 (here standing for L0 or

L
(j)
0 for any j) is of “triangular form” on its lowest eigenspace, corresponding to a logarithmic

representation of the Virasoro algebra. Assume L0 takes, on its lowest eigenspace, the form
∆I+N where I is the identity matrix and N is nilpotent of degree r: N r = 0. Let 0 < p ≤ r−1

be the largest integer power such that 〈a|Np|b〉 6= 0. Then e−uL0 = e−u∆I
(∑r−1

k=0(−uN)k/k!
)

.

With u = log(`/ε)→∞ evaluating 〈a|e−uL0)|b〉 and keeping only the leading power ∝ up in the
sum we find

Sn =
ceff(n+ 1)

12n
log

`

ε
+ p log

(
log

`

ε

)
(13)

again up to finite non-universal additive terms. Again, we expect that this could be understood
in terms of the field :T φ: (x), which is now logarithmic, but this is beyond the scope of this paper.
The entanglement entropy of logarithmic CFT has been considered in [27] from a holographic
point of view, although the situation there seems sligthly different from that considered here.

Finally we, make a technical note on an aspect of the derivation which requires clarifications
from the viewpoint of non-Hermitian quantum mechanics. We observe that Euclidean QFT, as
used in our derivation, naturally associates the lowest-energy right- and left-eigenstates |ΨR〉
and 〈ΨL| to negative and positive infinite times, respectively – hence the replica trick, a priori,
actually evaluates the incorrect quantity TrA(ρ̃nA) with ρ̃A = TrB |ΨR〉 〈ΨL|, as these two eigen-
states are generically different. However, with PT symmetry, and because of chiral factorization,
we expect the equality |ΨR〉 = |ΨL〉 to hold at quantum critical points, in many CFT models.
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Indeed, consider the field φ associated to the ground state. By chiral factorization it is a prod-
uct of chiral and anti-chiral fields, ϕϕ̄ (this is true in all minimal models, but in general it may
be a linear combination of such terms). Within radial quantization centered on the field, with
coordinate z = eix+τ , the transformation z 7→ z̄ is a parity transformation. This transformation
exchanges ϕ ↔ ϕ̄, which preserves φ (in general, the linear combination is required to be sym-
metric). Hence, the ground state is parity invariant. By PT symmetry, it is T-invariant, and since
the T transformation in general maps left and right eigenvectors to each other, this shows the
claim. Certainly a more precise analysis would be interesting, but we have numerically verified
this for the model (6).

�

�

��

�

�

�
�
�

�
��

�

� �

�

Figure 1: Let the horizontal axis be a one-dimensional quantum system, then multiplication of
the four CTMs gives the reduced density matrix.

5 Model analysis

Consider an off-critical infinite system, with a subsystem A from the origin to infinity. For integer
n the quantity TrA(ρnA) may be evaluated using the corner transfer matrix (CTM) approach [51]
within the associated statistical model on a lattice. The CTMs A, B, C and D were introduced
by Baxter [52]: they are the partition functions of the four corners of the lattice with fixed states
on the edges of the corners (see FIG. 1).

The reduced density matrix is proportional to the product ABCD [51]. For integrable
models, the eigenvalues are known using Yang-Baxter equations, and one may evaluate TrA(ρnA)
explicitly. Generalizing previous results [53], we have evaluated the Rényi entropy (1) for the
Forrester-Baxter (FB) Restricted Solid On Solid Model (RSOS) on the square lattice [50]. This
model is a lattice realisation of all off-critical minimal modelsMp,p′(ξ), including the non-unitary
series. Having real (but not necessarily positive) Boltzmann weights, it satisfies the requirement
that |ΨR〉 = |ΨL〉. We recovered (12) with `/ε replaced by the correlation length ξ [49].

We have also numerically evaluated the von Neumann EE of the ground state of (6). This
is associated to the Lee-Yang minimal CFT, with ceff = 2/5. We exactly diagonalized (6) at
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Figure 2: Entanglement entropy for λ = 0.9 and L = 24. The dashed line is the fitting curve
ceff
3 log

(
L
π sin

(
`π
L

))
+ α with ceff = 0.4056, and α = 0.3952. The agreement is remarkable for

` < ξ/2.

various critical points. The critical line is defined by the values (λ, h) = (λ, hc(λ)) such that, at
L = ∞, the ground state energy Eφ(L) and the first excited state energy E0(L) coincide. The
model possesses a non-trivial velocity of sound v(λ, h), and at finite L one expects the critical
behaviour for ` � ξ(L) = v(λ, hc(λ))/ (E0(L)− Eφ(L)). A thorough study of the entropy for
λ = 0.9 and chains of length up to L = 24 gives the results reported in FIG. 2. We confirm with
great accuracy that (3) (with n = 1) holds with c 7→ ceff .

6 Conclusion

In this paper we have provided an analytic derivation using CFT techniques as well as numerical
confirmation of the scaling (12), its logarithmic extension (13), and its generalization beyond
criticality and for finite systems. The main conclusions are that for quantum systems which
possess a critical point described by a non-unitary conformal field theory, the logarithmic scaling
of the entanglement entropy is characterized by the effective central charge ceff rather than
the central charge c (which for may non-unitary theories would be negative or zero) and that
additional log(log(`)) corrections may arise in logarithmic CFTs.

Although the result seems rather natural and reminiscent of the behaviour of the ground state
energy of non-unitary critical systems, it is a powerful result in the context of entanglement. The
entanglement entropy provides universal information about the nature of critical points, but that
information (in general) is the effective central charge, rather than the central charge. Hence, for
many non-unitary systems, such as the non-unitary minimal models, the entanglement entropy
is encapsulating information both about the central charge and about the lowest dimensional
field in the theory. As far as we are aware, there is still no physical quantity that extracts the
central charge itself in non-unitary CFT models.
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Besides the observation above it is also important to emphasize how the results have been
obtained in the context of CFT. On the analytical side, we have used an approach which stands
half-way between the methods of Holzhey, Larsen and Wilczek [10] and those of Calabrese and
Cardy [13]. Our approach is more algebraic in that it relies on the generators (10) which provide
a realization of the Virasoro algebra on the Zn orbifold CFT. The use of this realization leads to
the occurrence of ceff in a very natural way, as well as to the extra double-logarithmic term for
logarithimic representations (wilst also leading to the usual results in the unitary case). They
also incorporate in a natural way the dimension of the twist field whose correlators generate
partition functions on the orbifold theory. Interestingly the dimension that occurs naturally in
our computation is that of the lowest dimensional twist field that can be constructed in the
theory. This has allowed us to also generalize the twist field description of the entanglement
entropy [13, 19] to non-unitary theories, and we believe this may form the basis for a deeper
understanding of the CFT of non-unitary models.

There are various interesting problems that we would like to pursue in the future. Certainly,
it is natural to consider the generalization of our results to quantum systems beyond criticality,
such as massive integrable models [57]. Another idea is that the fact that the natural object
to describe entanglement in non-unitary theories seems to be a ratio of correlation functions is
very suggestive; it is interesting to ask whether this may provide a more general prescription on
how to construct physical correlators in non-unitary models. We are currently pursuing these
paths.
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