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ABSTRACT  

This paper proposes a novel passive vibration control configuration, namely the tuned mass-

damper-inerter (TMDI), introduced as a generalization of the classical tuned mass-damper 

(TMD), to suppress the oscillatory motion of stochastically support excited mechanical 

cascaded (chain-like) systems. The TMDI takes advantage of the “mass amplification effect” 

of the inerter, a two-terminal flywheel device developing resisting forces proportional to the 

relative acceleration of its terminals, to achieve enhanced performance compared to the 

classical TMD. Specifically, it is analytically shown that optimally designed TMDI 

outperforms the classical TMD in minimizing the displacement variance of undamped single-

degree-of-freedom (SDOF) white-noise excited primary structures. For this particular case, 

optimal TMDI parameters are derived in closed-form as functions of the TMD mass and the 

inerter constant. Furthermore, pertinent numerical data are furnished, derived by means of a 

numerical optimization procedure, for a 3-DOF classically damped primary structure base 

excited by stationary colored noise, which exemplify the effectiveness of the TMDI over the 

classical TMD to suppress the fundamental mode of vibration for MDOF structures. It is 

concluded that the incorporation of the inerter in the proposed TMDI configuration can either 

replace part of the TMD vibrating mass to achieve lightweight passive vibration control 

solutions, or improve the performance of the classical TMD for a given TMD mass. 
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1 INTRODUCTION 

The idea of attaching an additional free-to-vibrate mass to dynamically excited 

structural systems (primary structures) to suppress their oscillatory motion is historically 

among the first passive vibration control strategies in the area of structural dynamics [1-4]. 

This idea relies on designing or “tuning” the mechanical devices that link the added mass to 

the primary structure to achieve a “resonant” out-of-phase motion of the mass. In this context, 

Frahm [1] introduced the use of a linear spring-mass attachment to suppress the oscillations 

of harmonically excited primary structural systems in naval and mechanical engineering 

applications. This early “dynamic vibration absorber” was able to reduce the oscillations of 

single-degree-of-freedom (SDOF) primary structures within a narrow range centered at a 

particular (pre-specified) frequency of excitation. Later, Ormondroyd and Den Hartog [2] 

enhanced the effectiveness of the above absorber to dissipate the kinetic energy of primary 

structures subject to harmonic excitations by appending a viscous damper (dashpot) in 

parallel to the linear spring. Further, a semi-empirical “optimum” design procedure has been 

established by Den Hartog [3] and Brock [4] to “tune” the damping and stiffness properties 

for an a priori specified mass of this spring-mass-damper attachment such that the peak 

displacement of harmonically excited undamped SDOF primary structures is minimized (see 

also [5]). This design/tuning procedure relies on the “fixed point” assumption which states 

that all frequency response curves of the resulting two-DOF dynamical system pass through 

two specific points; the location of these points being independent of the damping coefficient 

of the dashpot. The thus tuned spring-mass-damper attachment, commonly termed in the 



literature as the “tuned mass-damper” (TMD), achieves the suppression of the oscillatory 

motion of harmonically excited primary structures over a wider range of exciting frequencies 

compared to a spring-mass attachment. Recently, the fixed point-based tuning procedure was 

shown to be very close to the “exact” solution for the optimal tuning of the classical TMD 

[6]. 

Although alternative arrangements of linear springs and dashpots (viscous dampers) 

have been considered in the literature to attach a mass to primary structures (see e.g. [7,8] and 

references therein), the above discussed “classical” TMD configuration (mass attached via a 

spring and a dashpot in parallel) is the most widely studied in the literature and the most 

commonly used one for passive vibration control of various mechanical and civil engineering 

structures and structural components. In particular, motivated mostly by earthquake 

engineering applications, substantial research work has been devoted to investigate the 

potential of using the classical TMD to mitigate the motion of stochastically support-excited 

primary structures. Using standard analytical techniques, optimal TMD parameters (damping 

and stiffness coefficients of the linking spring-damper elements) can be readily obtained in 

closed-form as functions of the TMD mass to minimize the response variance of undamped 

SDOF primary structures subject to white noise support excitation [9,10]. However, for the 

case of damped SDOF primary structures subjected to stochastic support excitations, the 

derivation of optimal TMD parameters by analytical approaches becomes a challenging task 

[11]. To this end, numerical optimization techniques are commonly employed for optimum 

design of TMDs to minimize the response variance for such primary structures (see e.g. [12-

15]). Alternatively, simplified approximate solutions for the problem at hand have been 

reached by making the assumption of “lightly” damped primary structures (e.g. [16,17]). 

Along similar lines, several researchers proposed different approximate simplified and 

numerical methods for the design of TMDs for damped linear multi-degree-of-freedom 



(MDOF) primary structures under stochastic base excitation widely used to model 

seismically excited multi-storey building structures (see e.g. [18-21] and references therein). 

In recent years, several different strategies have been employed to enhance the 

performance of the classical TMD for passive vibration suppression of stochastically support 

excited structural systems including the use of multiple classical TMDs (see e.g. [22,23] and 

references therein), the incorporation of non-linear viscous dampers to the classical TMD 

configuration [24], and the consideration of hysteretic TMDs (see e.g. [25]). These strategies 

do offer enhanced performance compared to the classical TMD, however, optimum 

design/tuning becomes a challenging and computationally involved task, especially for 

damped MDOF primary structures. Furthermore, analytical and numerical results reported in 

the extensive relevant literature suggest that the effectiveness of the TMD for vibration 

mitigation of base-excited structures increases by increasing the attached TMD mass. This is 

particularly the case for high intensity support excitations (e.g. [13,21]). 

In this regard, this paper proposes an alternative passive vibration control solution 

considering the use of a recently developed two-terminal flywheel (TTF) mechanical device, 

dubbed the “inerter” by Smith [26], in conjunction with the classical TMD configuration. In 

theory, the “ideal” inerter is a linear device with two terminals free to move independently 

which develops an internal (resisting) force proportional to the relative acceleration of its 

terminals.  Employing rack and pinion gearing arrangements to drive a rotating flywheel, 

certain inerter/TTF prototypes have been physically built [26-28]. In fact, inerter/TTF devices 

are currently used for vibration control of suspension systems in high performance vehicles 

[29-30]. Further, the performance of various passive vibration control configurations for 

support excited building structures employing inerters placed in between the ground and the 

superstructure in a “base isolation” type of arrangement has been studied by Wang et al. 

[31,32]. It has been established that inerter devices are effective in controlling the response of 



rigid superstructures exposed to vertical band-limited white noise ground motions. 

Furthermore, passive vibration control systems comprising inerters in conjunction with 

springs and dampers have been considered by Lazar et al. [33] for vibration isolation of 

SDOF and of two-DOF primary systems subjected to recorded earthquake excitations applied 

along the vertical direction. 

The present research work is motivated by the fact that an inerter/TTF device with 

approximately 1 kg of physical mass can have a constant of resisting force within the range of 

60–200 kg depending on the size of the flywheel [27]. Thus, the aim of the herein proposed 

tuned mass-damper-inerter (TMDI) configuration is to exploit the mass amplification effect 

of the inerter. Attention is focused on introducing the underlying equations of motion for 

linear SDOF and MDOF primary structures, to demonstrate that the TMDI constitutes a 

generalization of the classical TMD and to provide analytical and numerical evidence 

demonstrating its enhanced performance compared to the TMD. The remainder of this paper 

is organized as follows: Section 2 introduces the TMDI for the case of linear SDOF primary 

structures exposed to stochastic support excitation. The governing equations of motion are 

derived for damped primary structures and analytical expressions for optimum TMDI 

parameters minimizing the displacement variance for the special case of undamped white 

noise excited SDOF primary structures are obtained. Section 3 proposes a TMDI 

configuration to suppress oscillations following the fundamental mode of vibration of 

support-excited damped MDOF chain-like primary structures. A numerical optimization 

procedure for optimum design of the TMDI system for these primary structures is also 

discussed. Section 4 provides numerical data to demonstrate the effectiveness and 

applicability of the TMDI vis-à-vis the classical TMD for classically damped MDOF chain-

like primary structures. Section 5, summarizes the main conclusions of this work. 

 



2 PROPOSED TUNED MASS-DAMPER-INERTER (TMDI) 
CONFIGURATION FOR SINGLE-DEGREE-OF-
FREEDOM (SDOF) SUPPORT-EXCITED PRIMARY 
STRUCTURES 

Consider a linear damped single-degree-of-freedom (SDOF) dynamical system 

(primary structure) modeled by a linear spring of stiffness 1k , a mass 1m , and a viscous 

damper with damping coefficient 1c , based-excited by an acceleration stochastic process 

( )ga t . To suppress the oscillatory motion of this primary structure it is herein proposed to 

consider the classical tuned mass-damper (TMD), in conjunction with a two terminal 

flywheel (inerter) device as shown in Fig. 1. The TMD consists of a mass TMDm  attached to 

the primary structure via a linear spring of stiffness TMDk  and a viscous damper with damping 

coefficient TMDc . The inerter device connects the TMD mass to the supporting ground. It is 

noted in passing that the idea of placing the damper in between the TMD mass and the 

ground instead of in between the TMD mass and the primary structure has been explored in 

the literature (e.g. [34]). However, such “non-traditional” TMD topologies are not considered 

in this work.   

 

 

Figure 1. Single-degree-of-freedom (SDOF) primary structure incorporating the proposed tuned mass-

damper-inerter (TMDI) configuration. 

In Fig. 1, the inerter is depicted by a hatched box which should be interpreted as a 

mechanical two-terminal device similarly to springs and dampers. To facilitate this 



interpretation, Fig. 2 depicts an inerter device whose terminals are subject to an equal and 

opposite externally applied force F in equilibrium with the internally developed force. 

 

Figure 2.Schematic representation of the two-terminal flywheel device (b is the mass-equivalent constant of 

proportionality) 

By definition, the following relationship holds for the ideal linear inerter (e.g. [26,28]) 

 1 2( - )F b u u= , (1) 

where 1u  and 2u  are the displacement coordinates of the two terminals and a dot over symbol 

signifies differentiation with respect to time t. In the above equation, the constant of 

proportionality b attains mass units and fully characterizes the behavior of the inerter. In the 

next section, equations of motion are derived for the two degree of freedom system of Fig. 1 

by assuming that the physical mass of the inerter and of the TMD damper and spring are 

negligible compared to the masses 1m  and TMDm . 

 

3.1 Governing equations of motion 

The governing equations of motion of the linear dynamical system shown in Fig.1 can be 

readily written in matrix form as 

 

1 1 1 1 1 1 1

0
0

TMD TMD TMD TMD TMD TMD TMD TMD TMD
g

TMD TMD TMD TMD

m b x c c x k k x m
a

m x c c c x k k k x m
+ − −⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫

+ + = −⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + − +⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭
,    (2) 

derived by considering equilibrium of forces and by application of D’Alembert’s principle. In 

the above equations, 1x  and TMDx  are the displacement processes relative to the motion of the 

ground of the primary structure mass and of the TMD mass (see also Fig.1).  



 Denote by 1ω  and 1ζ  the natural frequency and the ratio of critical damping of the 

primary structure expressed by  

 1 1
1 1

1 1 1

and
2

k c
m m

ω ζ
ω

= = ,  (3) 

respectively. Further, let TMDω  and TMDζ  be the natural frequency and the critical damping 

ratio of the TMD defined as 

 and
2

TMD TMD
TMD TMD

TMD TMD TMD

k c
m m

ω ζ
ω

= = , (4) 

respectively. It is common practice in the analysis and design of systems equipped with 

classical TMDs to consider the dimensionless mass ratio µ and the dimensionless frequency 

ratio υ expressed by 

 
1 1

andTMD TMDm
m

ωμ υ
ω

= = , (5) 

respectively. Furthermore, an additional dimensionless parameter ߚ is herein introduced 

defined by the ratio of the mass of the primary structure over the inerter constant b. That is, 

 
1

b
m

β =    (6) 

Considering the normalized acceleration input stochastic process ( ) 2
1/ga t ω , the 

complex frequency response function (FRF) in terms of the relative displacement x1 of the 

primary structure of Fig.1 can be written as 

 

21
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2 2

2
2 2 2 2

12
1 1

( )

(1 ) 2 (1 )

(1 2 )( 2 ) ( 2 )

g

TMD TMD TMD

TMD TMD TMD TMD TMD TMD

xG
a

i

i i i

ω ω

β μμ ω ω ζ μ ω ω
μ

ω ω β μ β μζ ω ω ζ ω ω ω ζ ω ω ω
ω ω μ μ

= =

+
+ − + +

+ +− + − + − +

, (7) 



in the domain of frequency ω. In the latter equation and hereafter i denotes the imaginary unit 

( 1i = − ). The FRF 1( )G ω  can be viewed as the frequency domain counterpart of the time-

domain equations of motion Eqs.(2) (see also [5]).  

 It is important to note that by setting b=β=0 in Eqs. (2) and (7) the equations of 

motion and the FRF in terms of the relative displacement 1x , respectively, for a damped 

SDOF primary system equipped with the classical TMD are retrieved. In this respect, it is 

seen that the proposed tuned mass-damper-inerter (TMDI) configuration for passive 

vibration control can be interpreted as a generalization of the classical TMD. In the 

following section, optimum TMDI design parameters (υ and TMDζ ) are derived in closed-

form to suppress the vibratory motion of undamped SDOF primary structures under white 

noise support excitation. The latter is a well-studied in the literature special case for which 

analytical formulae for the optimal “tuning” of the classical TMD exist (see e.g. [10]). 

 

3.2 Optimum design of TMDI for undamped primary 
structures under white noise support excitation 

 Assuming a stationary stochastic support excitation process ( ) 2
1/ga t ω  represented in 

the frequency domain by a double-sided spectral density function (power spectrum) S(ω), the 

variance of the relative displacement process 1x  of the primary structure of Fig. 1 is written 

as 

 22
1 1( ) ( )G S dσ ω ω ω

+∞

−∞
= ∫ . (8)  

In the latter equation, the “transfer function” 2
1( )G ω  is the squared modulus of the FRF 

defined in Eq.(7).  

Given μ and β mass ratios, it is sought to determine optimum values for the stiffness 

TMDk  and damping TMDc  constants of the considered TMDI configuration, or equivalently υ 



and TMDζ  dimensionless parameters (see Eqs. (3) and (4)), which minimize the variance 2
1σ  

in Eq. (8) for the case of undamped SDOF primary structures under white noise support 

excitation. To this aim, note that for an undamped primary structure ( 1ζ =0) the transfer 

function in Eq.(8) can be written as 

 
( )( )

4 2
2 2 1 0

1 4 3 2 4 3 2
4 3 2 1 0 4 3 2 1 0

( ) b b bG
a a a a a a a a a a

ω ωω
ω ω ω ω ω ω ω ω

+ +
=

+ + + + − + − +
 (9) 

where 

 

4 4 2
0 1

2 2 2 2 2 2
1 1 1

2

2

(1 ) ;
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;

TMD

b

b

b

ω υ μ
β μ μζ μ ω υ ω υ

μ

β μ
μ

= +

+ +
= + −

⎛ ⎞+
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⎝ ⎠

 (10) 

and 

 

2 2 2
0 1 1 1 2

3 4 2
1 1

; 2 ; ( (1 )) ;

2 (1 ) ; .

TMD

TMD

a a i a

ia a

β μω υ ζ ωυ υ β μ
μ

ζ β μ υ β μ
ω μω

+
= = − = − + + +

+ + +
= =

 (11) 

Assuming a constant power spectrum over all frequencies S(ω)=S0 (ideal white noise) and 

using standard analytical techniques to evaluate the integral in Eq.(8) (see e.g. [35]) the 

variance 2
1σ  for an undamped primary system equipped with a TMDI is expressed as 

 
2 2

2 1 2 3
1 0 1 2

2
2 ( )TMD

C C CS μ β βμσ π ω
ζ υμ β μ
+ +

=
+

,  (12) 

in which 

 

4 4 2 2 2
1

2 2
2

2 2 2 2
3

1 (1 ) (1 ) [ 2 4 (1 )] ;

1 (1 )[ (1 (1 )) 1] ;

1 (1 )[ ( 2 (1 ) (1 ) 1)] .

TMD

TMD

C

C

C

υ μ υ μ μ ξ μ

υ μ μ μ υ μ

υ μ μ μ ξ μ υ μ

= + + + + − + +

= + + + + −
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 (13)  



Assuming constant mass ratios μ and β, the variance 2
1σ  of Eq. (12) is minimized in terms of 

the TMD frequency ratio υ and damping ratio TMDζ  by enforcing the following two 

conditions 

 
2 2
1 10 and 0

TMD

σ σ
υ ζ

∂ ∂
= =

∂ ∂
 . (14) 

These conditions yield a system of two equations from which the “optimal” tuning 

parameters υ and TMDζ  of the proposed TMDI configuration are found in terms of the mass 

ratios µ and ߚ as 

 
( )[ ( 1) (2 )(1 )]1

1 2 (1 )
β μ β μ μ μ

υ
β μ μ μ

+ − + − +
=

+ + +
, (15) 

and  

 
( ) (3 ) (4 )(1 )

2 2 (1 )[ (1 ) (2 )(1 )]TMD
β μ β μ μ μ

ζ
μ β μ β μ μ μ

+ − + − +
=

+ + − + − +
. (16) 

Further, by substitution of the above optimal TMDI tuning parameters into Eq. (12) the 

following expression for the achieved minimum variance of the relative displacement process 

1x  is obtained 

 2
1,min 0 1

(1 )[ (3 ) (4 )(1 )](1 )
( )(1 )

S μ β μ μ μσ π ω μ
β μ β μ

+ − + − +
= +

+ + +
. (17) 

It is important to note that by setting b=β=0 in Eqs. (15)-(17) the optimal tuning 

formulae of the classical TMD which minimize the relative displacement variance of an 

undamped SDOF primary structure subjected to white noise support excitation reported in the 

literature [10] can be retrieved. In the following section, the potential of the TMDI to 

suppress the oscillatory motion of white noise support excited undamped SDOF primary 

structures is assessed vis-à-vis the classical TMD. 

 



2.3 Assessment of TMDI effectiveness vis-à-vis the classical 
TMD for undamped primary structures under white 
noise support excitation 

To facilitate comparison between the proposed TMDI configuration of Fig. 1 and the 

TMD, the previously derived formulae for the optimal tuning of the TMDI are juxtaposed 

with the known formulae corresponding to the classical TMD in Table 1. In Figs. (3) and (4), 

Eqs. (15) and (16) are plotted, respectively, for four different values of the mass ratio μ and 

for β ratios within a suggested interval of practical interest [0,1], with β=0 being the limiting 

value for which the TMDI degenerates to the classical TMD. It is observed that the influence 

of the apparent “mass amplification” effect due to the additional inerter device incorporated 

in the proposed TMDI is more prominent for lower values of the mass ratio μ. Specifically, 

for μ>0.6 the “optimum” frequency ratio υ decreases slightly as β increases, while for μ<0.4 

the ratio υ increases significantly for values of β up to about 0.3 to 0.4 and then decays for 

higher values of β. More importantly, the achieved “optimum” damping ratio TMDζ  increases 

monotonically (and almost linearly) for all considered values of μ as the normalized inerter 

constant β increases. However, the rate of this increase deteriorates for higher values of μ. 

These trends suggest that the incorporation of an inerter device to the classical TMD is more 

beneficial for relatively smaller values of the mass ratio μ (i.e. for relatively lower vibrating 

TMD masses) as it allows for “driving” viscous dampers with higher kinetic energy 

absorption capabilities (i.e. damping ratios).  

Table 1. Closed-form expressions for optimal tuning of the proposed TMDI configuration for undamped SDOF 

primary structures subject to white noise base excitation vis-à-vis the classical TMD case. 

 Classical TMD (b=0) Proposed TMDI (b>0) 

Variance of 1x  2 1
1 0 1 2 TMD

C
Sσ π ω
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2 2
2 1 2 3
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2
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+
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Figure 3. Optimum TMD frequency ratio for various values of ߚ and several mass ratio values 

 

Figure 4. Optimum TMD damping ratio for various values of ߚ and several mass ratio values 

The above argument is confirmed by the numerical data of Fig. 5 in which the 

minimum relative displacement variance of the primary structure achieved by means of 

TMDI ( )2
1,min 0bσ >  is plotted (Eq.(17)), normalized by the minimum variance achieved via 

the classical TMD ( )2
1,min 0bσ =  for the same values of the mass ratios μ and β as previously 

considered. In all cases, the displacement response variance decreases significantly as the 

parameter ߚ increases demonstrating that the proposed TMDI configuration is more effective 

to suppress oscillations compared to the classical TMD. Further, the effectiveness of the 

TMDI increases considerably as lower values of the mass ratio μ (µ<0.4) are considered, 

commonly adopted in practical TMD implementations.  



 

Figure 5. Minimum variance ratio between the proposed model (b>0) and the classical TMD (b=0) 

In fact, although in most practical applications of the TMD the considered mass ratio 

µ rarely exceeds values of 0.2~0.3, it can be shown that the proposed TMDI configuration is 

more effective than the classical TMD in suppressing the relative displacement variance of 

the primary structure for all values of the mass ratio μ within the interval (0,4]. Specifically, 

by relying on Eq. (17), it can be shown that 

 
2

1,min,
2

1,min,

( 0)
1

( 0)
b
b

σ
σ

>
<

=
 (18) 

for 

 0 <   3 and  > 0μ β≤ , (19) 

and for 

 
24 33 4 and 0

3
μ μμ

μ
β + −

< < ≤≤
−

. (20) 

In view of the above analytical and numerical data, it can be concluded that the use of 

the inerter in the proposed configuration reduces significantly the minimum variance of an 

undamped SDOF subjected to white noise base acceleration in comparison with classical 

TMD. In the following section, the optimum tuning parameters υ and TMDζ  obtained for 

undamped SDOF primary structures (Eqs. (15) and (16)) are used to facilitate the optimum 

design of a novel TMDI configuration to suppress the oscillatory motion of support excited 

multi-degree-of-freedom (MDOF) primary structures. 



 

3 PROPOSED TUNED MASS-DAMPER-INERTER (TMDI) 
CONFIGURATION FOR MULTI-DEGREE-OF-
FREEDOM (MDOF) SUPPORT-EXCITED PRIMARY 
STRUCTURES 

Consider a linear proportionally (classically) damped multi-degree-of-freedom 

(MDOF) system with masses jm  (j=1,2,…n), linked together by linear springs of stiffness 

coefficients jk  (j=1,2,…n) and viscous dampers with damping coefficients jc  (j=1,2,…n) as 

shown in Fig. 6, where n  is the number of the DOFs of the system, based-excited by an 

acceleration stochastic process ( )ga t . To suppress the motion of this “chain-like” MDOF 

primary structure according to its, presumably dominant, fundamental (first) mode shape of 

vibration, it is proposed to consider a tuned mass-damper (TMD) attached to the “lead” 1m  

mass in conjunction with an inerter device connecting the TMD mass to the penultimate 2m  

of the primary structure (Fig. 6). From a practical viewpoint, note that by eliminating the 

inerter (b=0), the above tuned mass-damper-inerter (TMDI) configuration coincides with 

TMD arrangements commonly used to control the fundamental mode of vibration of 

seismically excited “regular” multi-storey building structures. These arrangements involve 

the attachment of an additional TMD mass to the top building floor (e.g. [19]), or, 

equivalently, the “isolation” of the upper stories from the rest of the building such that they 

vibrate independently (e.g. [20]). In the latter case, the total mass of the upper isolated stories 

becomes the TMD mass. In this regard, as in the case of the SDOF primary structure 

presented in previous sections, the herein proposed TMDI configuration can be interpreted 

as a generalization of the commonly used TMD arrangements for passive vibration control of 

support-excited MDOF primary structures.    



 

Figure 6. Multi-degree-of-freedom (MDOF) primary structure incorporating the proposed tuned mass-

damper-inerter (TMDI) configuration. 

 

4.1 Governing equations of motion 
Given that the dynamical structural system of Fig. 6 is linear, the derivation of its 

governing equations of motion can be significantly facilitated by considering passive 

mechanical “admittances” Q defined as the ratio of force over velocity in the Laplace domain 

(e.g. [36]). This is a common practice in topology studies of mechanical system networks. In 

this respect, the considered MDOF primary structure equipped with the TMDI configuration 

of Fig. 6 can be interpreted as a system of n+1 masses inter-connected by “networks” 

represented by admittances Q as shown in Fig. 7.  

 

Figure 7. Multi-degree-of-freedom (MDOF) primary structure incorporating the proposed tuned mass-

damper-inerter (TMDI) configuration: mechanical admittance representation. 

In particular, the mechanical admittances shown in Fig.7 are expressed in terms of the 

standard Laplace variable s by  



 ( )( ) ; ( ) ; ( ) 1...jTMD
TTF TMD TMD j j

kkQ s bs Q s c Q s c j n
s s

= = + = + = , (21) 

where TTFQ  is the admittance corresponding to the inerter (two terminal flywheel), TMDQ  is 

the admittance corresponding to the TMD-spring-and-damper-in-parallel “network” 

connecting the TMD mass to the lead mass 1m of the primary structure and jQ  are the 

admittances of the n spring-plus-dashpot-in-parallel “networks” linking the n masses of the 

primary structure together and with the ground (see Figs. 6 and 7). By relying on the previous 

expressions, the n+1equations of motions of the linear MDOF dynamical system of Fig. 6 

can be written in the Laplace domain as 

 ( ) ( ) ( )s s A s= −B X Mδ , (22)  

where  
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δ  is the unit column vector, ( )A s  is the Laplace transform of the support acceleration 

process ( )ga t , M is the diagonal mass matrix of the system written as 

 1

0 0
0

0
0 0

TMD

n

m
m

m

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M , (24) 

and ( )sX is the Laplace transform of the vector  

 { }1 2( ) ( ) ( ) ( ) T
TMD nx t x t x t x t=x  (25) 



collecting the relative displacements of the n+1 masses included in the considered system. In 

the latter equation, the superscript “T” denotes matrix transposition. 

The frequency response function (FRF) ( )1H ω  relating the (input) support excitation 

in terms of acceleration to the (output) relative displacement of the lead mass 1m  of the 

primary structure is reached by evaluating the ratio  

 1
1

( )( )
( )

x sH s
A s

=   (26) 

along the imaginary axis s=iω. In the latter equation, 1( )x s  is the Laplace transform of 1( )x t

which is analytically found by solving Eq. (22). That is, 

 ( ) ( ) ( )s s A s-1X = -B Mδ . (27) 

In the following section, the ( )1H ω  FRF is utilized to obtain “optimal” TMDI parameters 

for the suppression of the oscillatory motion of the dynamical system of Fig. 6 according to 

its fundamental mode of vibration.  

  

4.2 Optimum design of TMDI to control the first mode of 
damped MDOF primary structures under stochastic 
base excitation 

Consider the dimensionless modal mass ratio defined by 

 
1

TMD
M

m
M

μ = , (28) 

where 1M  is the generalized mass of the fundamental mode shape of the uncontrolled 

(primary) chain-like MDOF structure of Fig. 6 given by the expression 

 1M = Τ
1 1φ Μφ . (29) 

In the last equation 1φ  is the fundamental mode shape vector (eigenvector) normalized by the 

modal coordinate corresponding to the lead mass 1m  (see also [19]). Further, similarly to the 



case of SDOF primary structures discussed in section 2.3, a second dimensionless (modal) 

mass ratio involving the constant of the inerter b is defined as  

 
1

M
b

M
β = . (30) 

Assuming a stationary non-normalized stochastic support excitation process ( )ga t  

represented in the frequency domain by a one-sided spectral density function (power 

spectrum) A(ω), it is sought to determine “optimal” design values for the frequency ratio υ 

and the damping ratio TMDζ   defined in Eqs. (4) and (5), respectively, to minimize the 

variance of the process 1x  (relative displacement of the lead mass 1m ) given the mass ratios 

Mμ  and Mβ  (see also [13],[19]). To this aim, the following dimensionless cost function or 

“performance index” (PI) is considered 

 0

TMDIJPI
J

= , (31) 

 where 0J  and TMDIJ  denote the relative displacement variance of the lead mass ( 1m ) for an 

uncontrolled primary structure exposed to the support acceleration ( )ga t and for the same 

primary structure equipped with the proposed TMDI configuration, respectively. Specifically, 

 2
10
( ) ( )TMDJ A dω ω ω

∞Ι = Η∫ , (32) 

where 2
1( )H ω  is the squared modulus of the function defined in Eq. (26) evaluated on the 

imaginary axis of the Laplace s-plane. 

In all of the ensuing numerical work, a standard MATLAB® built-in “min-max” 

constraint optimization algorithm employing a sequential programming method is used to 

minimize the PI of Eq. (31) for the design parameters υ and TMDζ  [15]. The required “seed” 

values of υ and TMDζ  used to initiate the optimization algorithm are determined by 



substituting Mβ β→ and Mμ μ→  in Eqs. (15) and (16), respectively. These values 

minimize the considered PI for an undamped linear SDOF primary structure under white 

noise support excitation, as detailed in Section 2. Further, the constraints  

 0.5 4.50 0 1.00TMDandυ ζ< < < <  (33) 

are enforced to the sought TMDI design parameters relying on physical considerations. 

 

4 NUMERICAL APPLICATION OF THE TMDI FOR 
DAMPED MDOF SYSTEMS 

In this section optimum design parameters are derived following the procedure 

discussed in Section 3.2 for the TMDI passive vibration control configuration of Fig. 6. A 3-

DOF primary structure (n=3) is considered whose inertial and elastic properties are shown in 

Table 2. The undamped natural frequencies of the considered primary structure obtained from 

standard modal analysis are ω1= 6.37rad/s, ω2= 13.02rad/s, and ω3= 20.57rad/s. Further, the 

fundamental mode shape normalized by the modal coordinate of the lead mass 1m  is 

computed as { }1.000 0.593 0.286 T=1φ  and the corresponding generalized mass is equal 

to M1= 16.9x103 kg (Eq. (29)).  The damping coefficients of the considered primary structure 

are assumed to be stiffness proportional (“classically” damped system), determined by the 

expression  

 ( )1

1

2 1, 2,3j jc k jζ
ω

= = , (34) 

in which 1ζ is the critical damping ratio of the fundamental mode shape taken equal to 0.02. 

Table 2. Inertial and elastic properties of the considered 3-DOF primary structure 

j Mass mj (kg) Stiffness kj (N/m) Damping cj (Ns/m) 

1 10 x 103 10 x 105 6280 



2 15 x 103 25 x 105 15670 

3 20 x 103 35 x 105 21980 

 

Figure 8. One-sided power spectrum representing the acceleration support excitation αg(t). 

 

The input action is represented by the stationary “colored noise” power spectrum 

A(ω) plotted in Fig. 8. Incidentally, this spectrum is compatible in the “mean sense” with the 

elastic spectrum of the European seismic code for peak ground acceleration 0.36g 

(g=981cm/s2) and ground type “B” [37]. It has been derived by a methodology described in 

Giaralis and Spanos [38].  

 

1.1 Optimum design of the classical TMD as a special case of the TMDI configuration 

As discussed in Section 3, by setting 0b → , or equivalently 0Mβ → (Eq. (30)), the 

proposed TMDI configuration depicted in Fig. 6 becomes the classical TMD used to suppress 

oscillations according to the fundamental mode of vibration for MDOF primary structures. 

Therefore, optimal design TMD parameters for the frequency ratio υ and the damping ratio 

TMDζ  can be determined by following the procedure outlined in section 3.2. For example, set 

0Mβ =  and let the TMD mass be equal to 450 kg, that is, 1% of the total mass of the 3-DOF 

primary structure with properties given in Table 2. The modal mass ratio becomes 

0.0267Mμ = (Eq.(28)). Next, the “seed” values υ= 0.967 and 0.081TMDζ = are computed 

from Eqs. (15) and (16) respectively to initialize the adopted optimization algorithm to 



minimize the cost function of Eq. (31) (see section 3.2). The obtained values for the 

frequency ratio υ and damping ratio TMDζ  for the particular case considered are shown in 

Figs. 9 and 10, respectively. Similar computations are performed for different values of the 

TMD mass within a commonly used in engineering applications range: 1% to 10% of the 

total mass of the primary structure, corresponding to 450kg to 4500kg of mass. The optimal 

frequency ratio υ and damping ratio TMDζ  parameters obtained from the adopted optimization 

procedure are plotted as functions of the TMD mass in Figs. 9 and 10, respectively (b=0 

classical TMD curve). Further, the achieved value of the performance index of Eq. (31) for 

the classical TMD (b =0) are plotted in Figure 11 as a function of the TMD mass. 

 

Figure 9. Optimum frequency ratio as a function of the TMD mass for various values of the inerter constant b to 

control the fundamental mode of vibration of the 3-DOF primary structure of Table 2. 

 

Figure 10. Optimum damping ratio as a function of the TMD mass for various values of the inerter constant b to 

control the fundamental mode of vibration of the 3-DOF primary structure of Table 2. 



 

Figure 11. Achieved performance index versus the TMD mass for various values of the inerter constant b. 

 

It is noted that the numerical data presented in Figs. 9 to 11 for the classical TMD are 

in alignment with similar results reported in the literature obtained by alternative numerical 

optimization techniques (see e.g. [13,19,23] and references therein). Specifically, increased 

values of the TMD mass require higher damping ratios TMDζ  values and lower TMD 

frequency ratios to achieve optimal tuning. Consequently, larger TMD mass is more effective 

in controlling the dynamic response of the primary structure according to its fundamental 

mode shape, at the cost of an increase total weight of the structural system. However, the rate 

of decay of the PI (proportional to the variance of the relative displacement of the 1m  mass) 

decreases rapidly (i.e. PI “saturates”) as the TMD mass increases. It reaches a practically 

constant value for TMD mass larger than 5% the total mass of the considered primary 

structure. 

 

1.2 Optimum design of the TMDI configuration (b>0) 

Let an inerter device be incorporated to the considered 3-DOF primary structure with 

the properties listed in Table 2 according to the proposed TMDI configuration of Fig. 6. The 

previously considered optimization procedure is used to derive optimum TMDI parameters (υ 

and TMDζ ) minimizing the cost function of Eq.(31) for the input power spectrum of Fig. 8. 



The same range of pre-specified TMD mass (1% to 10% of the total mass of the primary 

structure) is considered as in the previous section, while three different values of the inerter 

constant b are taken: 2000, 4000, and 6000 kg. Optimal TMDI parameters are plotted in Figs. 

9 and 10 in which the case of the classical TMD (b=0) is also included for comparison 

purposes. Further, in Fig. 11 curves of the performance index of Eq. (31) achieved by the 

different TMDI systems considered are superposed to numerical results corresponding to the 

classical TMD (b =0). It can be readily seen from the herein reported numerical data that the 

value of the Performance Index, or equivalently the variance of the relative displacement of 

the 1m mass, is reduced as the value of the inerter b increases. In fact, in all cases considered, 

the proposed TMDI configuration outperforms the classical TMD in terms of minimizing the 

adopted cost function. The achieved improved performance of the TMDI over the classical 

TMD is reported in the rightmost column of Table 3 for several selected cases. The 

performance improvement is considerably higher for relatively small TMD mass values (less 

than about 3% of the total mass of the primary structure) while it becomes less significant for 

TMD mass values greater than 6% of the total mass of the primary structure. Note that 

similar trends were found in the case of the undamped SDOF primary structure for which 

optimal TMDI parameters have been derived in closed form (Fig. 5). Therefore, it can be 

concluded that the effectiveness of an inerter device to suppress the displacement response 

variance beyond what can be achieved by the classical TMD increases for relatively small 

TMD masses. It is also noted that the enhanced performance of the TMDI system requires 

that the TMD mass is attached to the primary structure by “stiffer” connection arrangements 

and by considering viscous damping devices with higher damping coefficients.  

More importantly, the herein furnished data demonstrate that the “mass amplifying” 

effect of the inerter device can be effectively used to replace part of the oscillating TMD 

mass and, thus, to reduce the total weight of the structural system for the same level of 



performance in terms of keeping the oscillatory motion of the primary structure below a 

certain threshold. For example, as shown in Table 3, in the case of the considered 3-DOF 

primary structure, an optimally tuned TMDI with an inerter device of “mass” constant 

b=6000 kg and a TMD mass of 450kg achieves similar level of performance (more than 75% 

reduction to the displacement variance of the 1m  mass compared to the uncontrolled primary 

structure) as an optimally tuned classical TMD with four times heavier oscillating mass 

(1800kg). However, the physical mass of the considered inerter might be up to two orders of 

magnitude smaller than its b constant. Specifically, ratios of constant b over physical mass for 

inerters of up to 200/1 or more have been reported in the literature[27]. Adopting this ratio, 

the considered inerter has a physical mass of 6000/200= 30kg. Therefore, the total weight of 

the examined TMDI system remains about four times lighter than a classical TMD for similar 

vibration control performance assuming that the weight of the equipment used to attach the 

TMD mass to the primary structure and of the viscous damping devices are similar in both 

cases. The latter consideration may have significant advantages in certain real-life structural 

passive vibration control design scenarios necessitating the use of large TMD masses to 

achieve the desired vibration suppression effect, as is the case of building structures excited 

by severe earthquake induced strong ground motions (see e.g. [13, 20] and references 

therein).  

Table 3. Optimal TMDI parameters, Performance Index (PI) and percentage difference of PI achieved for 

different values of the TMD mass and the inerter constant b compared to the classical TMD (b=0). 

mTMD (kg) b  (kg) υ ζTMD PI 

Percentage difference 

of PI compared to the 

classical TMD (%) 

450 

(1%) 

 

0 0.97 0.105 0.369 - 

2000 2.31 0.307 0.317 14.1 

4000 3.16 0.582 0.270 27.0 



6000 3.84 0.852 0.235 36.5 

900 

(2%) 

 

0 0.94 0.146 0.290 - 

2000 1.73 0.280 0.272 6.1 

4000 2.28 0.454 0.243 16.3 

6000 2.73 0.671 0.220 24.4 

1350 

(4%) 

 

0 0.92 0.175 0.250 - 

2000 1.48 0.310 0.246 1.4 

4000 1.89 0.452 0.226 9.5 

6000 2.24 0.615 0.208 16.8 

1800 

(6%) 

 

0 0.89 0.200 0.225 - 

2000 1.32 0.301 0.224 0.6 

4000 1.66 0.455 0.213 5.4 

6000 1.94 0.594 0.198 11.8 

 

5 CONCLUDING REMARKS 

A novel passive vibration control configuration, namely the tuned mass-damper-

inerter (TMDI), has been proposed to suppress the oscillatory motion of stochastically 

support excited linear structural (primary) systems combining an inerter device with the 

classical tuned mass-damper (TMD). The inerter is a two-terminal-flywheel-based 

mechanical device developing resisting forces proportional to the relative acceleration of its 

terminals by a constant b (mass units), which can be up to two orders of magnitude higher 

than the physical mass of the device. The herein proposed TMDI configuration involves 

taking advantage of the “mass amplification effect” of the inerter by using it as an additional 

connective element between the TMD oscillating mass and the ground for single-degree-of-

freedom (SDOF) primary structures, and between the TMD oscillating mass and the primary 

structure for chain-like (cascaded) multi-degree-of-freedom (MDOF) primary structures. In 



fact, it was shown that the TMDI can be viewed as a generalization of the classical TMD for 

both SDOF and MDOF support excited primary structures. Therefore, all established in the 

literature procedures for optimum design (“tuning”) of the classical TMD are readily 

applicable to achieve “optimal” performance for the new TMDI configuration. 

In this regard, the governing differential equations of motion have been derived in the 

time and in the frequency domain for TMDI equipped damped linear SDOF primary 

structures and in the Laplace domain for damped chain-like MDOF primary structures 

incorporating a TMDI to suppress the fundamental mode of vibration. Optimal TMDI design 

parameters minimizing the relative displacement variance of undamped SDOF primary 

structures under white noise support excitation have been derived analytically in closed form 

as functions of the TMD mass and the inerter constant b. It has been proved that the optimum 

designed TMDI configuration is more effective than the classical TMD for a fixed value of 

the TMD mass in suppressing the displacement variance of white noise excited undamped 

SDOF primary structures. Further, the effectiveness of the TMDI increases for relatively low 

values of the TMD mass. 

Moreover, for damped MDOF primary structures, a standard optimization procedure 

has been considered to obtain optimum TMDI and classical TMD designs (as a special case 

of a TMDI with b=0) which minimize the displacement variance of the “lead” mass (most 

remote mass from the support) of the primary structure. Pertinent numerical data have been 

reported for the case of a 3-DOF damped primary structure base excited by a stationary 

colored stochastic process. These data evidence that the incorporation of the inerter in the 

proposed TMDI configuration can either replace part of the TMD vibrating mass to achieve a 

significantly lighter passive vibration control solution (TMD mass replacement effect), or 

improve the TMD performance for a fixed TMD mass (TMD mass amplification effect). The 

latter effect is more significant for relatively small TMD masses in which case the inclusion 



of the inerter accommodates viscous dampers with much higher damping coefficients 

compared to an optimally tuned classical TMD. 

Overall, the herein reported analytical and numerical data provide evidence that the 

proposed TMDI configuration offers a promising solution for passive vibration control of 

stochastically support-excited systems. This is due to the mass amplification effect stemming 

from the unique mechanical properties of the inerter device which improves the effectiveness 

of the classical TMD for vibration suppression in all cases considered. Further on-going 

research efforts by the authors are directed towards establishing alternative 

configurations/topologies to combine TMDs with inerter devices to control the dynamic 

response of various mechanical and civil engineering structures and structural systems for 

stochastic and deterministic excitations and for various response minimization criteria. 
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Table 1. Closed-form expressions for optimal tuning of the proposed TMDI configuration for undamped SDOF 
primary structures subject to white noise base excitation vis-à-vis the classical TMD case. 
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Table 2. Inertial and elastic properties of the considered 3-DOF primary structure 

j Mass mj (kg) Stiffness kj (N/m) Damping cj (Ns/m) 

1 10 x 103 10 x 105 6280 

2 15 x 103 25 x 105 15670 

3 20 x 103 35 x 105 21980 

 

 

 

 

 

 

 

 

 



Table 3. Optimal TMDI parameters, Performance Index (PI) and percentage difference of PI achieved for 
different values of the TMD mass and the inerter constant b compared to the classical TMD (b=0). 

mTMD (kg) b  (kg) υ ζTMD PI 
Percentage difference 
of PI compared to the 

classical TMD (%) 

450 

(1%) 

 

0 0.97 0.105 0.369 - 

2000 2.31 0.307 0.317 14.1 

4000 3.16 0.582 0.270 27.0 

6000 3.84 0.852 0.235 36.5 

900 

(2%) 

 

0 0.94 0.146 0.290 - 

2000 1.73 0.280 0.272 6.1 

4000 2.28 0.454 0.243 16.3 

6000 2.73 0.671 0.220 24.4 

1350 

(4%) 

 

0 0.92 0.175 0.250 - 

2000 1.48 0.310 0.246 1.4 

4000 1.89 0.452 0.226 9.5 

6000 2.24 0.615 0.208 16.8 

1800 

(6%) 

 

0 0.89 0.200 0.225 - 

2000 1.32 0.301 0.224 0.6 

4000 1.66 0.455 0.213 5.4 

6000 1.94 0.594 0.198 11.8 

 

 




