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Abstract 
 
 Prior research has suggested that the failure rates of 
faults follow a log normal distribution. We propose a 
specific model where distributions close to a log normal  
arise naturally from the program structure. The log 
normal distribution presents a problem when used in 
reliability growth models as it is not mathematically 
tractable. However we demonstrate that a worst case 
bound can be estimated that is less pessimistic than our 
earlier worst case bound theory. 

1. Introduction 

 In an earlier paper [2] we derived a worst-case bound 
on the expected failure rate of a program. It assumed that: 
1. removing a fault does not affect the failure rates of 

the remaining faults 
2. the random failure frequencies of the faults can be 

represented by λ1 .. λΝ, which do not change with 
time (i.e. the input distribution I is stable) 

3. any fault exhibiting a failure will be detected and 
corrected immediately 

 If a program contains N residual faults and has been 
tested for time t, [2] showed that the expected failure rate 
is bounded by: 
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 In addition, if ρ(λ,Ι) is the density of faults with failure 
rate λ under input profile I, it was shown that: 
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 In this paper we present theoretical and empirical 
evidence that the fault density function ρ(λ,Ι) will be log-
normal. We then examine how this information can be 
used to make a less pessimistic estimate for the worst case 
bound. 

2. Theoretical and empirical support for a 
log-normal distribution. 

  Mullen [8] has argued that a log-normal failure rate 
distribution should be expected for software. The 
argument is based on the central limit theorem where, if 
we take products of arbitrary distributions, the result 
distribution tends to a log-normal, i.e.: 
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where λ is the failure rate, N is the number of faults and 
µ, σ define the peak and spread of the distribution. 
 This is a variant of the more usual application of the 
central limit theorem where the sum of arbitrary 
distributions tends towards a normal distribution.  
 Mullen showed that reliability growth curves assuming 
a log-normal distribution were a better statistical fit than 
alternative models. For example, he showed that the IBM 
reliability data gathered by Adams [1] was a better fit than 
the power law model used by Adams. He also showed 
that the reliability growth of the Stratus operating system 
was a good fit to a log normal. 

3. Specific model that tends to a log-normal 
failure distribution 

 In this paper we suggest a specific model for software 
failure that tends to a log-normal failure distribution due 
to the structure of the program. The model makes the 
following assumptions: 
1. A fault is located in a single “basic block” j within 

the program (where a “basic block” is sequence of 
non-branching program statements)  

2. A fault is equally likely be located in any basic block 
i in the program. 

3. The failure rate of the fault λ(j) is proportional to the 
execution rate of the basic block X(j). 

4. The probability of failure per execution f is a constant 
for all blocks j that contain a fault. 



 These assumptions are similar to those made in an 
earlier paper [3] where we estimate the effect of changing 
the operational profile by relating it to the execution rates 
of the basic blocks. 

3.1.  Predicting basic block execution rates  

 A simple model of program execution could model the 
programs as a simple branching tree of decision points 
controlling access to the associated basic blocks. In this 
model, a basic block will be located some number of 
branch decisions, B, from the root of the tree.  
 We then need to estimate the likely execution 
probability at branch depth B. A naive model might 
simply assume there was an equal chance of taking either 
branch so the execution rate at depth B is simply 1/2B. In 
practice however, there are likely to be variations (i.e. one 
branch is more likely to be taken than the other). To 
assess the impact of varying branch probabilities, a 
simulation model was implemented where: 
• The program is modelled as a binary branching tree. 
• The branch probability at each node is taken from a 

uniform distribution between 0 and 1 so that any 
branch value is equally likely. 

• The execution probability distribution at depth B is 
derived with a Monte Carlo simulation.  

The execution rate after B random branches is computed. 
This process is repeated many times, and the number 
within each log10 interval of execution rate are counted. 
 The following figure shows the results of the 
simulation.  
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Figure 1: Execution rate distribution for different branch 

depths 
 
 It can be seen that: 
• for small values of B the distribution is skewed 
• for larger B, the distribution seems to become closer to 

the log normal model and the spread increases 

It follows from assumptions 1 and 2, that faults randomly 
located within the program structure should have 
execution rates that are typical of the overall execution 
rate profile. If the branching model is correct, these 
execution rates will be log-normally distributed. If there is 
a constant probability of failure per execution, 
(assumptions 3 and 4) the failure rates of the faults will 
also be log-normally distributed. 
 In fact it might not be necessary to assume a constant 
failure probability per execution (assumption 4). It would 
be sufficient if there was an independent distribution of 
failure probabilities per block execution. This would 
introduce another distribution into the product needed to 
compute the failure rate distribution. Given certain 
constraints on the new distribution, the result will still 
tend to a log-normal. 

4. Validation of the model assumptions 

 To check the assumptions inherent in the model, we 
implemented a validation test environment based on the 
“space” pre-processor program (PREPRO) [9]. This is an 
offline program written in C that was developed for the 
European Space Agency. The program computes 
parameters for an antenna array and is quite complex as it 
contains over 10 000 lines of non-commented code. The 
faults found within the code are documented and can be 
readily inserted for experimental purposes. 
 A test-bed was developed to measure: 
• the execution rate of each program block under a 

given profile 
• the failure rates of the known program faults 
• both of the above under a range of operational profiles 
 To measure execution rates, we used the TCOV utility 
available on the Sun Solaris operating system. The 
instrumented version of PREPRO was run in a simple test 
harness written in Perl. This script invoked a random test 
data generator program (COPIA) which produces an input 
file for PREPRO. The test generator program was 
developed in [9] but has been adapted to take a “seed” 
value so that the pseudo random test sequence is 
repeatable. 
 To measure the basic block error rates under a given 
profile, a more complex test environment was developed. 
The PREPRO program contains a number of “define” 
statements which, if set, will result in the relevant fault 
being compiled into the program. The output of the 
erroneous program could be compared with an “oracle”, 
where no faults are compiled in.  
 We observed that the “oracle” program crashed in 
about 1% of test cases. As we were not in a position to 
identify the cause of these crashes, these test failures were 
excluded from later analyses of the failure rates of faults. 
 The random test generator COPIA uses an input table 
that can vary the probability of selecting the various 



elements of the pre-processor input language. Different 
operational profiles were generated by altering the values 
in this table. We used two different profiles in our 
experiments (labeled P1 and P2). 

4.1. Comparison of the PREPRO execution rate 
profile with a log-normal 

 To assess whether the log normal is a good fit for 
execution rates, we computed the mean and variance of 
lnX over all basic blocks under profile P2. If the execution 
rates are log normally distributed, then the log-normal 
parameters would be µ = E(lnX) and σ = √Var(lnX). The 
distribution log execution rates are shown below together 
with the log-normal curve derived from the mean and 
variance. The results are shown in the figure below. 
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Figure 2: Distribution of ln X(i) (block execution rate) 

compared to a log normal fit (profile P2) 
 

A Kolmogorov-Smirnov test gave a 93% probability 
that the observed execution rates were log-normally 
distributed. A similar result was obtained for profile P1. 
The predicted σ values are also fairly similar for both 
input profiles (2.5 and 2.4 for P1 and P2 respectively), 
even though the execution rates of individual blocks can 
change by an order of magnitude under the two profiles.  

In some ways it is surprising the fit is so good. In 
particular, the peak value is skewed and greater than 
predicted, and the measured values can deviate markedly 
from the predicted value in the tails of the distribution. 
There are a number of possible explanations for these 
deviations: 
• The program flow graph is not a simple tree structure.  

Inspection of the code shows that there is often a 
central code thread that diverges through multiple 
branches then recombines. This “beads on a string” 

structure can affect the proportion of code at each 
branch depth, especially if the thread of central code is 
long compared to the side branches. The peak value 
occurs when X(i)=1. This suggests that there is a 
disproportionate amount of code in the central thread. 

• The log-normal distribution prediction only applies at 
deep levels of nesting in the program structure; for 
shallow levels of nesting, the distribution is more 
skewed, and approximates to a power law when the 
branch depth is only one or two levels deep. 

• The “branching tree” model assumes there are no 
loops or subroutine calls. This would imply that the 
block execution rate per test for a block is no more 
than unity. As rates of between 10 and 100 are 
observed in the distribution, this assumption is clearly 
invalid. On the other hand, variable execution rates 
due to loops and subroutines could be viewed as 
additional distributions that, under the central limit 
theorem, would also lead to a log-normal (but with 
rates greater than unity). 

4.2. “Typicality” of the execution rate of faulty 
code blocks 

 It is assumed that the execution rates of faults are 
“typical”, i.e. are drawn randomly from the execution rate 
profile of program blocks. This would imply that there is 
a constant fault density throughout the code blocks, 
regardless of how deeply nested the code blocks are 
within the program. This assumption might be challenged 
because infrequently executed blocks might be more 
error-prone as they are less likely to be tested. On the 
other hand, module testing and code review work equally 
well at any depth, so there are reasons for believing that 
the fault density does remain constant.  
 If the assumption of a constant fault density is correct, 
the execution rate distribution of the known faults should 
be similar to that for all blocks in the program. To test this 
assumption, we measured the error rates in PREPRO 
under profile P2 for 28 of the known faults.  
 In Figure 3 below, the distribution of the execution 
rates of the faulty blocks is superimposed on the 
execution rate distribution for all accessible blocks. Note 
that “all accessible blocks” excludes the defensive code 
blocks that cannot be reached under the input profile.  A 
Kolmogorov-Smirnov two-sample test was performed to 
compare the execution rate distributions of faulty blocks 
against all executed blocks. This showed there was a 42% 
chance they were drawn from the same distribution. So 
the hypothesis of “typicality” cannot be rejected at the 
90% confidence level. 
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Figure 3: Comparison of PREPRO execution rates: all 
blocks X(i) vs. faulty blocks X(j) 

4.3. Probability of failure per execution 

 Using the measurements of the probability of failure 
λ(j) and execution rates X(j) of the faulty block j we could 
compute the probability of failure: 
 
 Pfail(j) = λ(j) /X(j) 
 
 The two distributions for Pfail for input profiles P1 
and P2 are shown in the figure below.  
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Figure 4: Variation in the Probability of failure per block 

execution: Pfail(j) 
 

 Clearly Pfail is not the constant f assumed in the 
model. The study indicates that for profile P1, Pfail(j) can 
vary by two orders of magnitude, and the variance of 
ln(Pfail) is 0.69. 
 The analysis performed with the second operational 
profile P2 produced very similar results. This was 
observed even though the execution rates for specific 
blocks changed very significantly (an order of magnitude 
increase or decrease). 

 The result suggests that the distribution of block 
failure probabilities is independent of the block execution 
rates. A log-normal distribution will still be produced if 
we take a product of independent distributions of different 
types, provided no single distribution is “dominant”, i.e. 
the variance of any single distribution is much less than 
the variance of all distributions combined. 
 The block execution rates are close to log-normal (see 
Figure 2) and variance of logarithm of execution rates is 
around 2.4. Since the variance of ln(Pfail) is only 0.69, 
we infer that Pfail distribution is not dominant with 
respect to the execution rate distribution and hence we 
expect the product of these two distributions to be close to 
a log-normal. 

4.4. Distribution of failure rates 

 If we assume the execution rate has a log-normal 
distribution (shown by the solid line in Figure 2), and we 
take the Pfail distribution in Figure 5, we can take the 
product of these distributions to predict the expected 
failure rate distribution. Figure 5 compares the predicted 
failure rate distribution against the actual failure rate 
distribution observed under profile under profile P2. 
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Figure 5: Failure distribution vs. log-normal prediction 

(profile P2) 
 

 It can be seen that the predicted distribution of failure 
is close to the observed distribution and lends support to 
the proposition that the failure rate distribution is likely to 
be log-normally distributed even if the failure probability 
per block execution is not constant. 



5. Extension to worst case bound theory for 
log-normal distribution 

 The analysis in this paper and previous research [8] 
suggests that the distribution of failure rates will be close 
to log normal. If we make an additional assumption that 
the failure rates of the faults have a log normal 
distribution we should be able to use equation (1) to 
derive a less pessimistic worst case bound. Unfortunately 
there is no analytic solution to reliability growth models 
based on a log-normal distribution. However for a worst 
case bound, we can apply Hölder’s inequality theorem [4] 
to establish a worst case bound for the integral of equation 
(1). 
 The log normal probability distribution function for the 
failure rate λ is: 
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 This is the equivalent of a normal distribution in log–
linear space with the width of the distribution given by σ 
and the “mean” by µ. The overall failure rate, θ, with this 
distribution is just the usual integral of λ, the total number 
of faults (N) and the probability distribution for λ: 
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There is an analytic solution for this: 
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 This represents the failure rate of the program prior to 
testing, but we are particularly interested in how the mean 
failure rate after time t. This is given by: 
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 This integral is known to be mathematically intractable 
(see for example [8] and its absence from tables of 
integrals and transforms). The usual approaches of 
variable substitution and expansion do not lead to usable 
results. Although the integral for the variation of the mean 
failure rate with time is intractable we can obtain an 
approximation using a version of Hölder’s inequality [4] 
for integrals. This states that: 
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where: 
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 If the exponential terms in (3) are substituted for f(x) 
and g(x) in (4), a bounding formula can be derived that is 
a function of p. It can then be shown that for the limiting 
case where p = 1, the following bound applies:  
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 This is similar in form to the original bounding 
formula [2], i.e.: 
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 The main difference is that (6) represents the worst 
case bound, regardless of the failure rate distribution, 
while (5) is a bound that assumes a log-normal 
distribution with a spread of σ. With this additional 
assumption about distribution, the Holder bound is 
normally less pessimistic as illustrated in the following 
table: 
 

 e 2.718 

1     2 =σσπ  2.507 

084.1     2 =σσπ  2.718 

2     2 =σσπ  5.014 

3     2 =σσπ  7.520 

 
Table 1: Comparison of failure bound constants 

 
 It can be seen that for σ < 1.084, the Holder bound is 
actually more pessimistic than the worst case bound 
formula. For complex software σ is typically 2 or 3 (see 
Table 2), so the Holder bound can be 2 or 3 times less 
pessimistic than the worst case bound while still 
remaining conservative.  



 As the N/e⋅t formula is the true worst case bound, we 
can combine the limits in (5) and (6) as follows: 
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6. Application of the theory 

 An example of the application of the bounding 
formulae to the Stratus 2 reliability growth data [8] is 
shown below. 
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Figure 6: Comparison of MTTF predictions  

(Stratus 2 data) 
 

 Figure 6 shows the log normal fit using the N, σ and µ 
values given in [8], the log normal integral (equation 3) 
was computed in Mathcad using numerical integration 
methods. The graph also shows the corresponding Holder 
and worst case bound predictions, together with the 
limiting value of the log normal integral at t=0 (derived 
from equation 1). 
 The Holder bound should be tangential to the log-
normal fit at some point, so the long term prediction is 
quite accurate. The Holder bound only requires an 
estimate of σ, and as shown in the earlier simulation 
study, the spread of the failure rate distribution depends 
on program complexity and maximum branch depth in the 
program. In addition, analyses by [8] show there are quite 
consistent values of σ for different IBM and Stratus 
operating systems [8] as shown in Table 2. 
 

Software σσσσ 

Stratus 1 3.28 

Stratus 2 2.68 

IBM product 2.1 3.27 

IBM product 2.2 3.51 

IBM product 2.3 3.44 

IBM product 2.4 2.56 

IBM product 2.5 3.50 
 

Table 2: Sigma values for software products [8] 
 

 While the actual size and complexity of these different 
products is not known, an operating system is likely to 
contain at least 1000 kilo lines of code (kloc). By contrast, 
we have shown earlier that the σ value for PREPRO, with 
around 10 kloc, is only 2.2. It may therefore be feasible to 
make a priori estimates of σ (as well as N) based on 
empirically derived relationships between σ and code 
size. In addition, if we can estimate µ, then the full 
reliability growth equation (3) can be used to estimate the 
reliability using numerical methods. This is discussed 
further in next section. 

7. Estimation of log-normal parameters 

 If reasonably good estimates of N and σ exist, and we 
can also measure the failure rate at t=0, θ0, equation (2) 
can be used to obtain an estimate for µ, i.e.: 
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 There is an extensive literature on methods for 
estimating N (which typically scale fairly linearly with the 
number of lines of code [5, 6, 7]). However we also need 
to estimate the σ parameter with sufficient accuracy to 
make long term reliability predictions 
 If we take the results of our simulation study in 
Figure 1, and plot the peak value against branch depth B, 
we observe empirically that there is a square root 
relationship as shown in Figure 7 below.  
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Figure 7: Empirical relation between peak value and 

branch depth B 
 
 As we know that for a log normal distribution the peak 
value is proportional to 1/σ- (see equation 3), the spread 
of the log normal distribution (σ) appears to be 
proportional to the square root of B. Empirically, the 
constant of proportionality is 0.916 per log10 interval of 
failure rate. For a log-normal distribution, the peak value 
for the loge interval at the peak holds 1/√(2π)σ of the 
faults so, rescaling, the empirical relationship is: 
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 For the simulation is Section 2, we assumed a single 
binary tree structure tree as illustrated below. 
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Figure 8: Single branching tree program model 

 
 In this case, the number of blocks at branch level B is 
2B and the total number of branches is 2B−1. If we know 
the total number of branches in the program is nB, we can 
infer that the maximum branch depth B for the program 
is: 
 
 )(log2 BnB ≈  

 
Substituting into equation (9): 
 

 )(log84.0 2 Bn≈σ  
 
 However this is based on an unrealistic model of 
program structure. If we examine actual program 
structures, we see that the structure is often more like 
“beads on a string” as illustrated in Figure 9 below: 
 

 
 

Figure 9: “Beads on a string” flow graph 
 
 If there are b beads on the string, effectively there are b 
separate subnets containing nB/b branches each, hence: 
 

 )/(log84.0 2 bnB≈σ  (10) 
 
 An example of the effect of beads on the expected 
value of sigma is shown in Table 3 below. 
 

Number of beads (b) Number of 
Branches 

(nB) 
1 10 100 1000 

1000 2.66 2.17 1.53 0.00 
10 000 3.07 2.66 2.17 1.53 

100 000 3.43 3.07 2.66 2.17 
1 000 000 3.76 3.43 3.07 2.66 

10 000 000 4.06 3.76 3.43 3.07 
Table 3: Predicted σ values 

 
 It can be seen that the predicted σ values are close to 
those given in Table 2. For example, if a typical operating 
system contained a million lines of code, and there was a 
decision every 10 lines, the number of branches would be 
nB=100 000, so a σ value range from 2.67 to 3.44 would 
be expected (depending on the value of b). This is in 
reasonable accord with the measured σ values in Table 2 
where the values range from 2.5 to 3.50. 
 We can also compare the predicted σ value against the 
results of the PREPRO analysis in Section 4. Here we 
know that the program size is 10 000 lines, and an 
analysis of the code indicates there are around 600 branch 
points and the average number of beads is unlikely to be 
greater than 10. From equation (10) we would expect σ 
values ranging between 2.05 and 2.57. This can be 



compared with the log-normal fit to the execution rate 
distribution where the fitted values for σ lie between 2.4 
and 2.5. 

8. Discussion 

 This paper uses the central limit theorem to assert that 
a log-normal distribution failure rate should arise 
naturally from the program structure. In theory, the pre-
conditions for a log-normal may not exist if there is a 
“dominant” distribution in the product of terms. 
Empirically, the actual distributions observed in our 
PREPRO analysis and prior research [8] suggest that log-
normal distributions do arise in practice. 
 The program structural model used is relatively 
simplistic as it does not model subroutine calls and loops. 
Given the incomplete nature of the model it is surprising 
that the σ estimates are close the measured results. 
However the omission of subroutines and loops might not 
have a major effect. Multiple subroutine calls increases 
the total execution rate of the subroutine, and (in 
execution rate terms) moves the subroutine closer to the 
top of the tree. For example, a subroutine call in every 
“leaf” of the tree is equivalent to having the subroutine 
subnet executed once per test. Loops increase the 
execution rate of blocks within the loop subnet, and hence 
shift the block execution rate distribution “to the right” 
but the subnet distribution rates are still log-normal 
distributed. For example, in Figure 4, block execution 
rates can exceed 100 per test (due to internal loops), but 
the overall distribution is still close to a log-normal 
 Given the approximations inherent in the branch model 
we cannot be sure that equation (10) is generally 
applicable. However the equation suggests that σ is 
relatively insensitive to program size and structure. This 
could explain the remarkable level of consistency 
observed in the Adams reliability data [1] for IBM 
operating systems. This high level of consistency could 
simplify the process of estimating the log-normal 
parameters (e.g. it may be possible to use generic σ values 
for particular types and sizes of programs). 
 Given the relatively small changes in σ predicted 
theoretically (and observed in practice), it should be 
feasible to use the Holder bound (equation 5) rather than 
the more pessimistic worst case bound (equation 6). Both 
of these bounding equations can still be pessimistic for 
small values of t. A better reliability prediction we use the 
full log-normal integral (equation 3). We can estimate µ 
using equation (10), but this requires more accurate 
estimates for σ to correctly model the growth curve. For 
example, an error of 10% error in a σ estimate of 3, 
changes the failure rate “peak” of the log-normal 
distribution by a factor of two. If the parameter 

uncertainties are large, it is probably safer to use the 
Holder bound. 

9. Conclusions and further work 

 Prior research suggests that a log-normal failure rate 
distribution is likely to exist in software. We have put 
forward a specific software failure model that leads to 
log-normal distribution of failure rate for software faults 
(given software of sufficient complexity). 
 The assumptions underlying the model have been 
evaluated on a relatively small program, and this seems to 
support the hypothesis that block execution rates and the 
failure rate of faults will follow a log-normal distribution. 
 If failure rates are log-normally distributed, we can 
derive less pessimistic worst case bound predictions for 
reliability growth. If we could obtain a realistic prior 
estimate of the log-normal parameters (σ and µ) then 
more realistic growth predictions would be possible.  
 Based on our branching tree model we have derived an 
equation that predicts an increase of σ as the branch depth 
increases (roughly as the square root of the maximum 
branch depth). While the branching tree model does mot 
include all the structures present in actual programs, the 
predicted σ values are fairly consistent with the values 
derived in [8] and our own internal study of the PREPRO 
software. Further work is needed to: 
1. Check the hypothesis of log-normally distributed 

execution rates and defect failure rates. 
2. Establish whether there is predictable relationship 

between the log-normal distribution parameters and 
program structure. 
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