

City, University of London Institutional Repository

Citation: Bishop, P. G. & Bloomfield, R. E. (2003). Using a Log-normal Failure Rate

Distribution for Worst Case Bound Reliability Prediction. Paper presented at the 14th IEEE
International Symposium on Software Reliability Engineering (ISSRE 2003), 17 - 20 Nov
2003, Denver, Colorado.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/544/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Using a Log-normal Failure Rate Distribution for Worst Case Bound Reliability
Prediction

Peter G. Bishop
Adelard and Centre for Software Reliability

pgb@csr.city.ac.uk

Robin E. Bloomfield
Adelard and Centre for Software Reliability

pgb@csr.city.ac.uk

Abstract

 Prior research has suggested that the failure rates of
faults follow a log normal distribution. We propose a
specific model where distributions close to a log normal
arise naturally from the program structure. The log
normal distribution presents a problem when used in
reliability growth models as it is not mathematically
tractable. However we demonstrate that a worst case
bound can be estimated that is less pessimistic than our
earlier worst case bound theory.

1. Introduction

 In an earlier paper [2] we derived a worst-case bound
on the expected failure rate of a program. It assumed that:
1. removing a fault does not affect the failure rates of

the remaining faults
2. the random failure frequencies of the faults can be

represented by λ1 .. λΝ, which do not change with
time (i.e. the input distribution I is stable)

3. any fault exhibiting a failure will be detected and
corrected immediately

 If a program contains N residual faults and has been
tested for time t, [2] showed that the expected failure rate
is bounded by:

te

N
t

⋅
≤)(θ

 In addition, if ρ(λ,Ι) is the density of faults with failure
rate λ under input profile I, it was shown that:

 �
∞ −=

0
),()(λλλρθ λ deIt t (1)

 In this paper we present theoretical and empirical
evidence that the fault density function ρ(λ,Ι) will be log-
normal. We then examine how this information can be
used to make a less pessimistic estimate for the worst case
bound.

2. Theoretical and empirical support for a
log-normal distribution.

 Mullen [8] has argued that a log-normal failure rate
distribution should be expected for software. The
argument is based on the central limit theorem where, if
we take products of arbitrary distributions, the result
distribution tends to a log-normal, i.e.:

 ��
�

�
��
�

� −−⋅= 2

2

2
))(ln(

exp
2

)(
σ

µλ
πλσ

λρ N
.

where λ is the failure rate, N is the number of faults and
µ, σ define the peak and spread of the distribution.
 This is a variant of the more usual application of the
central limit theorem where the sum of arbitrary
distributions tends towards a normal distribution.
 Mullen showed that reliability growth curves assuming
a log-normal distribution were a better statistical fit than
alternative models. For example, he showed that the IBM
reliability data gathered by Adams [1] was a better fit than
the power law model used by Adams. He also showed
that the reliability growth of the Stratus operating system
was a good fit to a log normal.

3. Specific model that tends to a log-normal
failure distribution

 In this paper we suggest a specific model for software
failure that tends to a log-normal failure distribution due
to the structure of the program. The model makes the
following assumptions:
1. A fault is located in a single “basic block” j within

the program (where a “basic block” is sequence of
non-branching program statements)

2. A fault is equally likely be located in any basic block
i in the program.

3. The failure rate of the fault λ(j) is proportional to the
execution rate of the basic block X(j).

4. The probability of failure per execution f is a constant
for all blocks j that contain a fault.

 These assumptions are similar to those made in an
earlier paper [3] where we estimate the effect of changing
the operational profile by relating it to the execution rates
of the basic blocks.

3.1. Predicting basic block execution rates

 A simple model of program execution could model the
programs as a simple branching tree of decision points
controlling access to the associated basic blocks. In this
model, a basic block will be located some number of
branch decisions, B, from the root of the tree.
 We then need to estimate the likely execution
probability at branch depth B. A naive model might
simply assume there was an equal chance of taking either
branch so the execution rate at depth B is simply 1/2B. In
practice however, there are likely to be variations (i.e. one
branch is more likely to be taken than the other). To
assess the impact of varying branch probabilities, a
simulation model was implemented where:
• The program is modelled as a binary branching tree.
• The branch probability at each node is taken from a

uniform distribution between 0 and 1 so that any
branch value is equally likely.

• The execution probability distribution at depth B is
derived with a Monte Carlo simulation.

The execution rate after B random branches is computed.
This process is repeated many times, and the number
within each log10 interval of execution rate are counted.
 The following figure shows the results of the
simulation.

0

10

20

30

40

50

1E-16 1E-12 1E-08 1

Block execution rate X(i)

Percent
per log10
interval

B=5

B=10
B=15

B=20

1E-4

Figure 1: Execution rate distribution for different branch

depths

 It can be seen that:
• for small values of B the distribution is skewed
• for larger B, the distribution seems to become closer to

the log normal model and the spread increases

It follows from assumptions 1 and 2, that faults randomly
located within the program structure should have
execution rates that are typical of the overall execution
rate profile. If the branching model is correct, these
execution rates will be log-normally distributed. If there is
a constant probability of failure per execution,
(assumptions 3 and 4) the failure rates of the faults will
also be log-normally distributed.
 In fact it might not be necessary to assume a constant
failure probability per execution (assumption 4). It would
be sufficient if there was an independent distribution of
failure probabilities per block execution. This would
introduce another distribution into the product needed to
compute the failure rate distribution. Given certain
constraints on the new distribution, the result will still
tend to a log-normal.

4. Validation of the model assumptions

 To check the assumptions inherent in the model, we
implemented a validation test environment based on the
“space” pre-processor program (PREPRO) [9]. This is an
offline program written in C that was developed for the
European Space Agency. The program computes
parameters for an antenna array and is quite complex as it
contains over 10 000 lines of non-commented code. The
faults found within the code are documented and can be
readily inserted for experimental purposes.
 A test-bed was developed to measure:
• the execution rate of each program block under a

given profile
• the failure rates of the known program faults
• both of the above under a range of operational profiles
 To measure execution rates, we used the TCOV utility
available on the Sun Solaris operating system. The
instrumented version of PREPRO was run in a simple test
harness written in Perl. This script invoked a random test
data generator program (COPIA) which produces an input
file for PREPRO. The test generator program was
developed in [9] but has been adapted to take a “seed”
value so that the pseudo random test sequence is
repeatable.
 To measure the basic block error rates under a given
profile, a more complex test environment was developed.
The PREPRO program contains a number of “define”
statements which, if set, will result in the relevant fault
being compiled into the program. The output of the
erroneous program could be compared with an “oracle”,
where no faults are compiled in.
 We observed that the “oracle” program crashed in
about 1% of test cases. As we were not in a position to
identify the cause of these crashes, these test failures were
excluded from later analyses of the failure rates of faults.
 The random test generator COPIA uses an input table
that can vary the probability of selecting the various

elements of the pre-processor input language. Different
operational profiles were generated by altering the values
in this table. We used two different profiles in our
experiments (labeled P1 and P2).

4.1. Comparison of the PREPRO execution rate
profile with a log-normal

 To assess whether the log normal is a good fit for
execution rates, we computed the mean and variance of
lnX over all basic blocks under profile P2. If the execution
rates are log normally distributed, then the log-normal
parameters would be µ = E(lnX) and σ = √Var(lnX). The
distribution log execution rates are shown below together
with the log-normal curve derived from the mean and
variance. The results are shown in the figure below.

0.001

0.01

0.1

1

-10 0 10

ln X(i)

Prob

measured

log normal fit

Figure 2: Distribution of ln X(i) (block execution rate)

compared to a log normal fit (profile P2)

A Kolmogorov-Smirnov test gave a 93% probability
that the observed execution rates were log-normally
distributed. A similar result was obtained for profile P1.
The predicted σ values are also fairly similar for both
input profiles (2.5 and 2.4 for P1 and P2 respectively),
even though the execution rates of individual blocks can
change by an order of magnitude under the two profiles.

In some ways it is surprising the fit is so good. In
particular, the peak value is skewed and greater than
predicted, and the measured values can deviate markedly
from the predicted value in the tails of the distribution.
There are a number of possible explanations for these
deviations:
• The program flow graph is not a simple tree structure.

Inspection of the code shows that there is often a
central code thread that diverges through multiple
branches then recombines. This “beads on a string”

structure can affect the proportion of code at each
branch depth, especially if the thread of central code is
long compared to the side branches. The peak value
occurs when X(i)=1. This suggests that there is a
disproportionate amount of code in the central thread.

• The log-normal distribution prediction only applies at
deep levels of nesting in the program structure; for
shallow levels of nesting, the distribution is more
skewed, and approximates to a power law when the
branch depth is only one or two levels deep.

• The “branching tree” model assumes there are no
loops or subroutine calls. This would imply that the
block execution rate per test for a block is no more
than unity. As rates of between 10 and 100 are
observed in the distribution, this assumption is clearly
invalid. On the other hand, variable execution rates
due to loops and subroutines could be viewed as
additional distributions that, under the central limit
theorem, would also lead to a log-normal (but with
rates greater than unity).

4.2. “Typicality” of the execution rate of faulty
code blocks

 It is assumed that the execution rates of faults are
“typical”, i.e. are drawn randomly from the execution rate
profile of program blocks. This would imply that there is
a constant fault density throughout the code blocks,
regardless of how deeply nested the code blocks are
within the program. This assumption might be challenged
because infrequently executed blocks might be more
error-prone as they are less likely to be tested. On the
other hand, module testing and code review work equally
well at any depth, so there are reasons for believing that
the fault density does remain constant.
 If the assumption of a constant fault density is correct,
the execution rate distribution of the known faults should
be similar to that for all blocks in the program. To test this
assumption, we measured the error rates in PREPRO
under profile P2 for 28 of the known faults.
 In Figure 3 below, the distribution of the execution
rates of the faulty blocks is superimposed on the
execution rate distribution for all accessible blocks. Note
that “all accessible blocks” excludes the defensive code
blocks that cannot be reached under the input profile. A
Kolmogorov-Smirnov two-sample test was performed to
compare the execution rate distributions of faulty blocks
against all executed blocks. This showed there was a 42%
chance they were drawn from the same distribution. So
the hypothesis of “typicality” cannot be rejected at the
90% confidence level.

0

5

10

15

20

25

30

35

40

45

0.0001 0.001 0.01 0.1 1 10 100 1000

Execution rate (X)

Percent
Blocks per
log10 interval

Faulty blocks
All blocks

Figure 3: Comparison of PREPRO execution rates: all
blocks X(i) vs. faulty blocks X(j)

4.3. Probability of failure per execution

 Using the measurements of the probability of failure
λ(j) and execution rates X(j) of the faulty block j we could
compute the probability of failure:

 Pfail(j) = λ(j) /X(j)

 The two distributions for Pfail for input profiles P1
and P2 are shown in the figure below.

0

2

4

6

8

10

12

14

0.01 0.03 0.1 0.3 1

Profile P1
Profile P2

P fail (j)

Faults

Figure 4: Variation in the Probability of failure per block

execution: Pfail(j)

 Clearly Pfail is not the constant f assumed in the
model. The study indicates that for profile P1, Pfail(j) can
vary by two orders of magnitude, and the variance of
ln(Pfail) is 0.69.
 The analysis performed with the second operational
profile P2 produced very similar results. This was
observed even though the execution rates for specific
blocks changed very significantly (an order of magnitude
increase or decrease).

 The result suggests that the distribution of block
failure probabilities is independent of the block execution
rates. A log-normal distribution will still be produced if
we take a product of independent distributions of different
types, provided no single distribution is “dominant”, i.e.
the variance of any single distribution is much less than
the variance of all distributions combined.
 The block execution rates are close to log-normal (see
Figure 2) and variance of logarithm of execution rates is
around 2.4. Since the variance of ln(Pfail) is only 0.69,
we infer that Pfail distribution is not dominant with
respect to the execution rate distribution and hence we
expect the product of these two distributions to be close to
a log-normal.

4.4. Distribution of failure rates

 If we assume the execution rate has a log-normal
distribution (shown by the solid line in Figure 2), and we
take the Pfail distribution in Figure 5, we can take the
product of these distributions to predict the expected
failure rate distribution. Figure 5 compares the predicted
failure rate distribution against the actual failure rate
distribution observed under profile under profile P2.

0

2

4

6

8

10

12

14

0.0001 0.001 0.01 0.1 1

Defect failure rate λ(j)

Defects
per log10
interval of
failure
rate

P2
log-pred

Figure 5: Failure distribution vs. log-normal prediction

(profile P2)

 It can be seen that the predicted distribution of failure
is close to the observed distribution and lends support to
the proposition that the failure rate distribution is likely to
be log-normally distributed even if the failure probability
per block execution is not constant.

5. Extension to worst case bound theory for
log-normal distribution

 The analysis in this paper and previous research [8]
suggests that the distribution of failure rates will be close
to log normal. If we make an additional assumption that
the failure rates of the faults have a log normal
distribution we should be able to use equation (1) to
derive a less pessimistic worst case bound. Unfortunately
there is no analytic solution to reliability growth models
based on a log-normal distribution. However for a worst
case bound, we can apply Hölder’s inequality theorem [4]
to establish a worst case bound for the integral of equation
(1).
 The log normal probability distribution function for the
failure rate λ is:

 ��
�

�
��
�

�

σ
µ−λ−⋅

πλσ 2

2

2
))(ln(

exp
2

1

 This is the equivalent of a normal distribution in log–
linear space with the width of the distribution given by σ
and the “mean” by µ. The overall failure rate, θ, with this
distribution is just the usual integral of λ, the total number
of faults (N) and the probability distribution for λ:

 θ = λ��
�

�
��
�

�

σ
µ−λ−⋅

πλσ
λ

�
∞

d
2

))(ln(
exp

20
2

2

N

There is an analytic solution for this:

)
2

 exp(
2 σµθ +⋅= N (2)

 This represents the failure rate of the program prior to
testing, but we are particularly interested in how the mean
failure rate after time t. This is given by:

λ
σ

µλ
πσ

θ λ d
2

))(ln(
exp

2
1

)(
0

2

2
teNt −

∞

� ��
�

�
��
�

� −−⋅= (3)

 This integral is known to be mathematically intractable
(see for example [8] and its absence from tables of
integrals and transforms). The usual approaches of
variable substitution and expansion do not lead to usable
results. Although the integral for the variation of the mean
failure rate with time is intractable we can obtain an
approximation using a version of Hölder’s inequality [4]
for integrals. This states that:

a

b

xf x() g x()⋅
�
	

d
a

b

xf x()() p�
	

d
�
�

�
�
�

1
p

a

b

xg x()()q�
	

d
�
�

�
�
�

1
q

⋅≤

 (4)
where:

1

11 =+
qp

and 1>p

 If the exponential terms in (3) are substituted for f(x)
and g(x) in (4), a bounding formula can be derived that is
a function of p. It can then be shown that for the limiting
case where p = 1, the following bound applies:

 t
N

t
⋅σ⋅π

≤θ
2

)(
 (5)

 This is similar in form to the original bounding
formula [2], i.e.:

 te
N

t
⋅

≤θ)(
 (6)

 The main difference is that (6) represents the worst
case bound, regardless of the failure rate distribution,
while (5) is a bound that assumes a log-normal
distribution with a spread of σ. With this additional
assumption about distribution, the Holder bound is
normally less pessimistic as illustrated in the following
table:

 e 2.718

1 2 =σσπ 2.507

084.1 2 =σσπ 2.718

2 2 =σσπ 5.014

3 2 =σσπ 7.520

Table 1: Comparison of failure bound constants

 It can be seen that for σ < 1.084, the Holder bound is
actually more pessimistic than the worst case bound
formula. For complex software σ is typically 2 or 3 (see
Table 2), so the Holder bound can be 2 or 3 times less
pessimistic than the worst case bound while still
remaining conservative.

 As the N/e⋅t formula is the true worst case bound, we
can combine the limits in (5) and (6) as follows:

)2,max(
)(

σπ⋅
≤θ

et
N

t
 (7)

6. Application of the theory

 An example of the application of the bounding
formulae to the Stratus 2 reliability growth data [8] is
shown below.

10 4 10 5 10 6

10 2

10 3

10 4

10 5

Operating time (hours)

10

Log normal limit (t=0)

Worst
case
(N/e.t)

Holder
boundlog normal fit

MTTF
(hours)

Figure 6: Comparison of MTTF predictions

(Stratus 2 data)

 Figure 6 shows the log normal fit using the N, σ and µ
values given in [8], the log normal integral (equation 3)
was computed in Mathcad using numerical integration
methods. The graph also shows the corresponding Holder
and worst case bound predictions, together with the
limiting value of the log normal integral at t=0 (derived
from equation 1).
 The Holder bound should be tangential to the log-
normal fit at some point, so the long term prediction is
quite accurate. The Holder bound only requires an
estimate of σ, and as shown in the earlier simulation
study, the spread of the failure rate distribution depends
on program complexity and maximum branch depth in the
program. In addition, analyses by [8] show there are quite
consistent values of σ for different IBM and Stratus
operating systems [8] as shown in Table 2.

Software σσσσ

Stratus 1 3.28

Stratus 2 2.68

IBM product 2.1 3.27

IBM product 2.2 3.51

IBM product 2.3 3.44

IBM product 2.4 2.56

IBM product 2.5 3.50

Table 2: Sigma values for software products [8]

 While the actual size and complexity of these different
products is not known, an operating system is likely to
contain at least 1000 kilo lines of code (kloc). By contrast,
we have shown earlier that the σ value for PREPRO, with
around 10 kloc, is only 2.2. It may therefore be feasible to
make a priori estimates of σ (as well as N) based on
empirically derived relationships between σ and code
size. In addition, if we can estimate µ, then the full
reliability growth equation (3) can be used to estimate the
reliability using numerical methods. This is discussed
further in next section.

7. Estimation of log-normal parameters

 If reasonably good estimates of N and σ exist, and we
can also measure the failure rate at t=0, θ0, equation (2)
can be used to obtain an estimate for µ, i.e.:

��
�

�
��
�

�
−=)

2
exp(ln

2
0 σθµ

N
 (8)

 There is an extensive literature on methods for
estimating N (which typically scale fairly linearly with the
number of lines of code [5, 6, 7]). However we also need
to estimate the σ parameter with sufficient accuracy to
make long term reliability predictions
 If we take the results of our simulation study in
Figure 1, and plot the peak value against branch depth B,
we observe empirically that there is a square root
relationship as shown in Figure 7 below.

0

5

10

15

20

25

30

35

40

45

0 10 20 30

Branch depth B

% per log10
interval

Peak value

0.916 B− 0.5

Figure 7: Empirical relation between peak value and

branch depth B

 As we know that for a log normal distribution the peak
value is proportional to 1/σ- (see equation 3), the spread
of the log normal distribution (σ) appears to be
proportional to the square root of B. Empirically, the
constant of proportionality is 0.916 per log10 interval of
failure rate. For a log-normal distribution, the peak value
for the loge interval at the peak holds 1/√(2π)σ of the
faults so, rescaling, the empirical relationship is:

 BB 84.0
2

)10ln(916.0 =⋅=
π

σ (9)

 For the simulation is Section 2, we assumed a single
binary tree structure tree as illustrated below.

B=0

B=1
B=2

Figure 8: Single branching tree program model

 In this case, the number of blocks at branch level B is
2B and the total number of branches is 2B−1. If we know
the total number of branches in the program is nB, we can
infer that the maximum branch depth B for the program
is:

)(log2 BnB ≈

Substituting into equation (9):

)(log84.0 2 Bn≈σ

 However this is based on an unrealistic model of
program structure. If we examine actual program
structures, we see that the structure is often more like
“beads on a string” as illustrated in Figure 9 below:

Figure 9: “Beads on a string” flow graph

 If there are b beads on the string, effectively there are b
separate subnets containing nB/b branches each, hence:

)/(log84.0 2 bnB≈σ (10)

 An example of the effect of beads on the expected
value of sigma is shown in Table 3 below.

Number of beads (b) Number of
Branches

(nB)
1 10 100 1000

1000 2.66 2.17 1.53 0.00
10 000 3.07 2.66 2.17 1.53

100 000 3.43 3.07 2.66 2.17
1 000 000 3.76 3.43 3.07 2.66

10 000 000 4.06 3.76 3.43 3.07
Table 3: Predicted σ values

 It can be seen that the predicted σ values are close to
those given in Table 2. For example, if a typical operating
system contained a million lines of code, and there was a
decision every 10 lines, the number of branches would be
nB=100 000, so a σ value range from 2.67 to 3.44 would
be expected (depending on the value of b). This is in
reasonable accord with the measured σ values in Table 2
where the values range from 2.5 to 3.50.
 We can also compare the predicted σ value against the
results of the PREPRO analysis in Section 4. Here we
know that the program size is 10 000 lines, and an
analysis of the code indicates there are around 600 branch
points and the average number of beads is unlikely to be
greater than 10. From equation (10) we would expect σ
values ranging between 2.05 and 2.57. This can be

compared with the log-normal fit to the execution rate
distribution where the fitted values for σ lie between 2.4
and 2.5.

8. Discussion

 This paper uses the central limit theorem to assert that
a log-normal distribution failure rate should arise
naturally from the program structure. In theory, the pre-
conditions for a log-normal may not exist if there is a
“dominant” distribution in the product of terms.
Empirically, the actual distributions observed in our
PREPRO analysis and prior research [8] suggest that log-
normal distributions do arise in practice.
 The program structural model used is relatively
simplistic as it does not model subroutine calls and loops.
Given the incomplete nature of the model it is surprising
that the σ estimates are close the measured results.
However the omission of subroutines and loops might not
have a major effect. Multiple subroutine calls increases
the total execution rate of the subroutine, and (in
execution rate terms) moves the subroutine closer to the
top of the tree. For example, a subroutine call in every
“leaf” of the tree is equivalent to having the subroutine
subnet executed once per test. Loops increase the
execution rate of blocks within the loop subnet, and hence
shift the block execution rate distribution “to the right”
but the subnet distribution rates are still log-normal
distributed. For example, in Figure 4, block execution
rates can exceed 100 per test (due to internal loops), but
the overall distribution is still close to a log-normal
 Given the approximations inherent in the branch model
we cannot be sure that equation (10) is generally
applicable. However the equation suggests that σ is
relatively insensitive to program size and structure. This
could explain the remarkable level of consistency
observed in the Adams reliability data [1] for IBM
operating systems. This high level of consistency could
simplify the process of estimating the log-normal
parameters (e.g. it may be possible to use generic σ values
for particular types and sizes of programs).
 Given the relatively small changes in σ predicted
theoretically (and observed in practice), it should be
feasible to use the Holder bound (equation 5) rather than
the more pessimistic worst case bound (equation 6). Both
of these bounding equations can still be pessimistic for
small values of t. A better reliability prediction we use the
full log-normal integral (equation 3). We can estimate µ
using equation (10), but this requires more accurate
estimates for σ to correctly model the growth curve. For
example, an error of 10% error in a σ estimate of 3,
changes the failure rate “peak” of the log-normal
distribution by a factor of two. If the parameter

uncertainties are large, it is probably safer to use the
Holder bound.

9. Conclusions and further work

 Prior research suggests that a log-normal failure rate
distribution is likely to exist in software. We have put
forward a specific software failure model that leads to
log-normal distribution of failure rate for software faults
(given software of sufficient complexity).
 The assumptions underlying the model have been
evaluated on a relatively small program, and this seems to
support the hypothesis that block execution rates and the
failure rate of faults will follow a log-normal distribution.
 If failure rates are log-normally distributed, we can
derive less pessimistic worst case bound predictions for
reliability growth. If we could obtain a realistic prior
estimate of the log-normal parameters (σ and µ) then
more realistic growth predictions would be possible.
 Based on our branching tree model we have derived an
equation that predicts an increase of σ as the branch depth
increases (roughly as the square root of the maximum
branch depth). While the branching tree model does mot
include all the structures present in actual programs, the
predicted σ values are fairly consistent with the values
derived in [8] and our own internal study of the PREPRO
software. Further work is needed to:
1. Check the hypothesis of log-normally distributed

execution rates and defect failure rates.
2. Establish whether there is predictable relationship

between the log-normal distribution parameters and
program structure.

10. Acknowledgements

 This work was funded by the UK (Nuclear) Industrial
Management Committee (IMC) Nuclear Safety Research
Programme under British Energy Generation UK contract
PP/114163/HN with contributions from British Nuclear
Fuels plc, British Energy Ltd and British Energy Group
UK Ltd. The paper reporting the research was produced
under the EPSRC research interdisciplinary programme
on dependability (DIRC).

References

[1] E.N. Adams, “Optimising Preventive Maintenance of
Service Products”, IBM Journal of Research and
Development, Vol. 28, No. 1, Jan. 1984.

[2] P.G. Bishop and R.E. Bloomfield, “A Conservative
Theory for Long-Term Reliability Growth Prediction”,
IEEE Trans. Reliability, vol. 45, no. 4, pp 550-560, Dec.
1996.

[3] P.G. Bishop, “Rescaling Reliability Bounds for a
New Operational Profile”, International Symposium on
Software Testing and Analysis (ISSTA 2002), (Phyllis G.
Frankl, Ed.), ACM Software Engineering Notes, vol. 27
(4), pp 180-190, Rome, Italy, 22-24 July, 2002.

[4] G.H. Hardy, J.E. Littlewood, G. Polya, “Hölder's
Inequality and Its Extensions”, Sections 2.7 and 2.8 in
Inequalities, 2nd ed. Cambridge, England: Cambridge
University Press, ISBN: 0521358809, pp. 21-26, 1988.

[5] J.R. Gaffney, “Estimating the Number of Faults in
Code”, IEEE Trans. Software Engineering, vol. SE-10,
no. 4, 1984.

[6] T.M. Khoshgoftaar and J.C. Munson, “Predicting
software development errors using complexity metrics”,
IEEE J of Selected Areas in Communications, 8(2), pp
253-261, 1990.

[7] Y.K. Malaiya and J. Denton, “Estimating the Number
of Residual Defects”, HASE'98, 3rd IEEE Int'l High-
Assurance Systems Engineering Symposium, Maryland,
USA, November 13-14, 1998.

[8] R.E. Mullen, “The Lognormal distribution of
Software Failure Rates: Origin and Evidence”, Proc 9th
International Symposium on Software Reliability
Engineering (ISSRE 98), 1998

[9] A. Pasquini, A.N. Crespo and P Matrella, “Sensitivity
of reliability growth models to operational profile errors”,
IEEE Trans. Reliability, vol. 45, no. 4, pp 531–540, Dec.
1996.

