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ABSTRACT 
 
Abnormalities of the tumor vasculature and their consequences on the 

microenvironment of tumor cells impact on tumor progression and response to both 

blood-borne anti-cancer agents and radio-therapy, as well as making tumor blood 

vessels a target for therapy in their own right. Intravital microscopy of experimental 

tumors, most commonly grown in ‘window’ chambers, such as the dorsal skin fold 

chamber in mice and rats, enables investigations of tumor microcirculatory function. 

This is needed both to understand the molecular control of tumor vascular function 

and to measure the response of the vasculature to treatment. In particular, intravital 

microscopy enables parameters associated with blood supply, vascular permeability 

and oxygenation to be estimated, at high spatial and temporal resolution. In this 

chapter, methods used for measuring a range of these parameters, specific examples 

of their applications, the significance of findings and some of the limitations of the 

techniques are described. 
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6.1 Introduction 
 
Intravital microscopy is one of the few research techniques available to study 

functional aspects of the tumor microcirculation. Reliance of tumor growth and 

metastasis on tumor vascular function makes the tumor vasculature a sought after 

therapeutic target. Furthermore, abnormalities of the tumor vasculature and their 

microenvironmental consequences, such as hypoxia and raised interstitial fluid 

pressure, also impact on tumor progression and therapeutic response to various 

treatment modalities. Optimum progression on exploiting these targets requires an 

understanding of the processes involved in tumor vascularization, the functional 

abnormalities of the tumor vasculature and analysis of response to therapy. A large 

part of what is known to date in these areas has been revealed from studies using 

intravital microscopy, which has been a mainstay of tumor microcirculation research 

since the first demonstration, in 1924, of a surgically implanted transparent ‘window’ 

chamber for studies of growing tissue (Sandison, 1924).  

 

The dorsal skin fold chamber (DSFC), in mice or rats, is currently the most 

commonly used surgical preparation for studying the tumor microcirculation because 

it allows for both bright-field and fluorescence microscopy of developing tumor 

vasculature for periods up to several weeks. Its construction has changed little from 

the late 1970s (Papenfuss et al., 1979) and consists of a metal chamber (usually 

aluminium or titanium) supporting a skin flap, in which dermal layers from one or 

both sides of the flap are removed for optical clarity. A tumor fragment or cell 

suspension is implanted onto the exposed striated muscle layer (panniculus carnosus) 

and protected by a glass coverslip (Koehl et al., 2009). Developments of this model 

include the cranial chamber (Monsky et al., 2002), mammary gland chamber (Shan et 
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al., 2003), lung observation chamber (Hatakawa et al., 2002) and ‘body wall’ chamber 

that allow access to tissues for orthotopic tumor transplantation (Tsuzuki et al., 2001, 

Ritsma et al., 2013). Uses for the DSFC and other chamber techniques in the field of 

tumor angiogenesis and microcirculation are continuously evolving, as developments 

are made for both 2- and 3-dimensional imaging in fluorescent/bioluminescent probe 

design, microscopy, camera systems and image acquisition/analysis technology. Thus, 

intravital microscopy is set to continue playing an important role in this field for 

many years to come. Potential limitations associated with use of the DSFC are 

highlighted in Box 1.  

 

BOX 1 It is important to recognize some fundamental limitations of intravital 

microscopy techniques for tumor studies, which are not overcome by modern 

technology. Specifically referring to the DSFC, tumors are essentially sub-cutaneous 

and tumor size is limited by the dimensions of the chamber, which exerts considerable 

tissue pressure. The surgery is relatively time-consuming and can induce bleeding, 

inflammation and growth of granulation tissue. Over-stretching of the skin and over- 

or under-tightening of retaining screws can cause problems and chambers may sag 

with time after surgery. As with other animal experiments, general anaesthesia can 

cause major haemodynamic changes. In order to avoid these, conscious mice can be 

restrained in specially designed jigs for microscopy, noting that the restraint itself will 

also impact on the animal’s physiology. Consideration also needs to be given to 

temperature control, toxicity of contrast agents and photo-toxicity. 
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In this chapter, we discuss some of the methods used for functional studies of the 

tumor microcirculation that relate to tumor blood supply, vascular permeability and 

oxygenation. 

 

6.2 Tumor blood supply 

 

6. 2.1 Significance  

The tumor blood supply plays a critical role in cancer therapy, knowledge of which is 

central to understanding the angiogenic process, by which most tumors vascularise. 

Blood flow is a major determinant of the delivery rate of oxygen and nutrients to 

tissue and so is intimately related to tumor growth and progression. In cancer therapy, 

blood flow to a tumor determines drug delivery. Tumor oxygenation levels, which are 

critically dependent on oxygen delivery, classically impact on radio-sensitivity and 

response to certain chemotherapeutic drugs. Therefore, quantitative measures of a 

tumor’s blood supply are essential for understanding the role of the tumor 

microcirculation in tumor progression and treatment outcome. In addition, the tumor 

microcirculation is a direct target for anti-angiogenic and vascular disrupting cancer 

therapy, for which quantitative measures of tumor blood supply are required for 

relevant and sensitive pharmacodynamic end-points. 

 

6.2.2 Functional measures of tumor blood supply 

Definitions 

The most definitive measure of a tissue’s blood supply is blood flow rate.  This is 

defined as the rate of delivery of arterial blood to the capillary beds within a particular 

mass of tissue. The units are mls of blood per unit mass of tissue per minute (ml.g-
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1.min-1) or per unit volume of tissue per minute (ml.ml-1.min-1). Small, lipid-soluble, 

metabolically inert molecules, which rapidly cross the vascular wall and diffuse 

through the extra-vascular space, are useful as blood flow markers. In this case, the 

fraction of marker crossing the capillary vascular wall from the blood in a single pass 

through the tissue (extraction fraction, E) is close to 1.0 and for fully perfused tissue 

the accessible volume fraction (α) of the tissue is also close to 1.0. For a short period 

after intra-venous injection, net uptake rate of this type of marker into tissue is 

determined primarily by blood flow rate.  Use of this type of marker has normally 

employed radioactive isotope labeling for ease of detection and sensitivity, which 

enables concentration of the marker to be used at true tracer levels. Quantitative 

estimation of tissue blood flow rate can be made from measurement of an arterial 

input function and a tissue response function (Tozer et al., 2009). If suitable 

radioactive isotopes such as 14C or 125I are used to label the tracer, high spatial 

resolution maps of blood flow rate can be obtained by measuring tissue radioactivity 

with autoradiograpy or phosphor imaging, at the end of the experiment. Similar 

computational methods are commonly applied in clinical positron emission 

tomography (PET) (Lammertsma et al., 1990) and, using markers at non-tracer 

concentrations, in dynamic contrast-enhanced magnetic resonance imaging (DCE-

MRI) (Tofts et al., 1999). These methods are more difficult to apply to intravital 

microscopy, especially when using conventional 2-D fluorescence microscopy, 

mainly because of the difficulty in relating measured fluorescence intensity to true 

marker concentration (Waters, 2009). In order to investigate blood supply to tumors 

growing in the DSFC, two parameters that are related to blood flow rate have been 

measured instead, namely red blood cell velocity (RBC velocity) and the so-called 

blood supply time (BST). It should be noted that there is no direct relationship 
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between either RBC velocity or BST and blood flow rate, as defined above. This is 

most easily seen from the classical relationship known as the central volume principle 

(Stewart, 1894) that relates tissue blood flow rate (F in ml.g-1.min-1) to fractional 

blood volume of the tissue (V in ml.g-1): 

  τ = V/F…………………………Equation 1 

where τ is the capillary mean transit time (the average time taken for blood to pass 

through a particular capillary bed). From this equation, it can be seen that τ is only 

indirectly proportional to F, if V is constant and τ can only provide a quantitative 

measure of F if V can be measured simultaneously. Notwithstanding this caveat, 

measurements of both RBC velocity and BST have revealed important insights into the 

tumor microcirculation. 

 

Red blood cell velocity (RBC velocity)    

RBC velocity can be measured relatively easily by intravital microscopy using either 

commercially or freely available tracking algorithms (Reyes-Aldasoro et al., 2008a, 

Reyes-Aldasoro et al., 2011) (Figure 1). Tracking techniques require fast camera 

frame rates and fluorescence labeling of a fraction of circulating red blood cells, 

which normally entails injecting a small volume of red blood cells that have been 

labeled ex vivo with a membrane-binding dye1 into the animal’s circulation and 

tracking their passage through individual vessel segments over time. Alternatively, if 

the passage of red cells along a particular vessel segment is relatively sparse, slit 

devices can be used to monitor the interference pattern of light reaching the camera, 

caused by the traversing red cells. A fluorescent plasma marker, such as a FITC-

                                                
1 A membrane marker commonly used is DiI (1,1'-dioctadecyl-3,3,3'3'-
tetramethylindocarbocyanine perchlorate), an indocarbocyanine dye retained in lipid 
bi-layers. 
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labelled dextran is usually employed, so that red cells appear dark on a bright 

background. By matching the interference patterns recorded via the individual slits, 

which record at known distances along a vessel segment, RBC velocity can be 

calculated (Jain et al., 2013). This technique, known as temporal correlation 

velocimetry, was developed by Intaglietta and colleagues and has been used for many 

decades (Intaglietta and Tompkins, 1973). Similar principles have recently been 

applied on a pixel-by-pixel basis, where optical signals at each spatial location are 

compared with neighbouring locations over time, so that a series of cross-correlations 

are used to calculate both speed and direction of blood flow (Fontanella et al, 2013) in 

the form of 2-dimensional maps.  When used with conventional single photon 

microscopy, the true RBC velocity is approximated by the measured RBC velocity in 

the plane of the image. Measurement of RBC velocity has been used primarily to 

monitor effects of treatment such as anti-angiogenic agents (Strieth et al., 2006), 

vascular disrupting agents (Tozer et al., 2001), photodynamic therapy (Schacht, 

Abels, 2006) and liposomes encapsulating chemotherapeutics (Chen et al., 2004, 

Strieth et al., 2004). In addition, RBC velocity has been used to monitor the process of 

vascular normalization (Akerman et al., 2013) that can occur after various cancer 

treatments, most notably following anti-angiogenic therapy, where vascular pruning 

and/or a reduction in vascular permeability can lead to improved tumor perfusion and 

delivery of low molecular weight chemotherapeutic drugs (Carmeliet and Jain, 2011). 

 

Measurements of RBC velocity have also been combined with measurements of red 

blood cell flux (number of red blood cells traversing a vessel segment per unit time) 

to calculate tumor microvascular haematocrit (Brizel et al., 1993). Red cell flux is 

highly variable in the tumor microcirculation and intravital microscopy studies have 



 9 

shown that large temporal changes in red cell flux can occur over short time-scales 

(tens of minutes). These acute fluctuations were shown to temporally co-ordinate with 

measured changes in oxygen partial pressure in the nearby tumor parenchyma, 

especially in poorly vascularized tumor regions, demonstrating that acute periods of 

severe tumor hypoxia, which could impact on tumor progression and therapy, can 

occur quite commonly (Kimura et al., 1996). 

 

Measurements of RBC velocity (RBCv) have also been combined with morphological 

measurements of blood vessel segments to calculate each segment’s volume blood 

flow rate (Fseg), assuming that the RBCs are traveling with the bulk plasma flow and 

using the formula: 

Fseg = RBCv * π/4 *d^2………………Equation 2  

where d is vessel segment diameter   

This should not be confused with blood flow rate (F) as defined above, which refers 

to the delivery rate of blood per mass or volume of tissue.  

 

RBC velocity can also be used as an approximation for vessel wall shear rate. This 

parameter is particularly important for understanding the angiogenic process, which is 

influenced by endothelial cell transduction of mechanical signals from flowing cells 

across their lumenal surface (Egginton, 2011).  

 

Recently, a method for estimating RBC velocity and related parameters in 3-

dimensional intravital images, utilizing multi-photon fluorescence microscopy 

(MPFM) imaging, has been developed (Kamoun et al., 2010). This method involves a 

fluorescent plasma marker, as above, and scanning the central axes of blood vessels at 
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high frequency. The angle of the resulting streaked signals in the space-time plot 

provides a measure of RBC velocity.  

 

Blood supply time (BST) 

The blood supply time (BST), although related to RBC velocity, is calculated 

from the dynamics of plasma, rather than red blood cell, flow. Developed by Rofstad 

and colleagues (Øye et al., 2008), intravital microscopy is used to rapidly image the 

first-pass of a high molecular weight contrast agent (e.g. 155 kDa TRITC-dextran) 

through the tumor microcirculation, following intravenous injection. Typical images 

used for this type of analysis are shown in Figure 2. BST is defined, for each pixel 

within the vascular image, as the time difference between the frame showing 

maximum fluorescence intensity in the pixel and the frame showing maximum 

fluorescence intensity in the tumor-supplying artery. This enables pixel-by-pixel maps 

of BST to be constructed for regional analysis of spatial blood flow heterogeneity. 

Repetition of this process over 20 minute time intervals within the same tumors also 

demonstrated substantial temporal heterogeneity in BST in A-07 human melanoma 

tumors (Brurberg et al., 2008). The same group has used this technique to investigate 

the effects of chronic cycling hypoxia (Gaustad et al., 2013), differing angiogenesis-

related gene profiles (Simonsen et al., 2013) and anti-angiogenic treatment (Gaustad 

et al., 2012) on blood flow in xenografted human melanomas.  

 

6.3 Tumor vascular permeability 

 

6.3.1 Significance 



 11 

The tumor blood vessel wall constitutes an obvious barrier between tumor tissue and 

blood-borne anti-cancer agents and controls protein transport between blood and 

tissue. However, high vascular permeability to macromolecules is a characteristic 

feature of the tumor vasculature, with established links to tumor angiogenesis, 

progression and poor treatment outcome (McDonald and Baluk, 2002, Lunt et al., 

2009). Changes in barrier function may provide an early pharmacodynamic end-point 

for treatment with anti-angiogenic or vascular disrupting drugs (Tozer et al., 2005). 

Therefore, methods for estimating tumor vascular permeability parameters are of 

great interest.  

 

6.3.2 Estimation of vascular permeability 

Definitions 

Vascular permeability of tumor blood vessels can be studied using intravital 

microscopy. Typically, this involves monitoring the clearance kinetics of a 

fluorescently labeled molecule (usually an albumin or dextran) from the blood vessels 

to the interstitium, following intra-venous injection. However, a simple qualitative 

assessment of leakage rate, as is commonly carried out, can be misleading because of 

the influence of blood flow rate on the time-course of the fluorescence concentration 

in the capillary (Cvess) and hence the amount of leakage. The high spatial resolution of 

intravital microscopy is a major advantage over other imaging methods, allowing a 

direct estimation of the vascular permeability-surface area product (PS-product) in ml 

plasma per unit mass or volume of tissue per min (ml.g-1.min-1 or ml.ml-1.min-1), 

where P is permeability and S is the vascular surface area per volume of tissue. 

 

Application in intravital microscopy 
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Analysis of intravital microscopy data can conveniently be carried out using a so-

called ‘Patlak plot’ (Patlak et al., 1983) to obtain the PS-product. Here, the time-

course of the ratio of the extra-vascular tissue image intensity to Cvess (Ct/Cvess) is 

plotted against the time-course of the ratio ∫Cvess / Cvess, such that the curve produced 

tends to linearity, as it would have done had Cvess been constant over the whole time-

course of the measurements. The slope of the line provides an estimate of PS-product, 

as illustrated in Figure 3. Furthermore, intravital microscopy provides images of 

vascular and tumor morphology that can be used to estimate S, from which P can be 

readily calculated (Reyes-Aldasoro et al., 2008b).  

 

It is only correct to use the Patlak plot when extravasation is effectively irreversible 

(uni-directional) over the time-course of the experiment but this condition is usually 

met by using a high molecular weight contrast agent, for which P is relatively low. 

Estimation of PS-product using intravital microscopy does suffer from the same 

difficulties associated with obtaining accurate quantification of fluorescence intensity, 

as mentioned for blood flow rate, F, above (Yuan et al., 1993). 3D imaging of 

fluorescence, especially using multi-photon fluorescence techniques, have alleviated 

some of these problems (Reyes-Aldasoro et al., 2008b). Studies of tumor vascular 

permeability using this and other analytical methods within intravital microscopy 

have revealed specific features of the tumor vasculature. Early studies established that 

tumor vascular permeability is elevated compared with most normal tissues 

(Gerlowski and Jain, 1986), although there is an inherent variability between different 

tumor models (Yuan et al., 1994). Use of different molecular size markers, allowed 

estimation of pore sizes in the tumor vascular wall (Hobbs et al., 1998). The effect of 

a blocking antibody against vascular endothelial growth factor (VEGF) on vascular 
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permeability to albumin was investigated in tumors growing in both cranial windows 

and the DSFC (Yuan et al., 1996) and a high molecular weight fluorescent dextran 

was used to establish that the vascular disrupting agent, combretastatin A4 phosphate 

(CA4P), rapidly compromised the barrier function of micro-vessels in a rat sarcoma 

model (Figure 3 and Reyes-Aldasoro et al., 2008b).    

 

 

6.4 Tumor oxygenation 

 

6.4.1 Significance 

Hypoxia was definitively recognized as a common feature of human tumors in the 

1990s, although its existence had been predicted several decades earlier (Thomlinson 

and Gray, 1955). The ability of oxygen to radiosensitise cells was also discovered at 

this time (Alper and Howard-Flanders, 1956), leading to a major interest in hypoxia 

and its influence on tumor progression and treatment outcome, which continues to this 

day. Research effort into developing methods to overcome hypoxia in tumors for 

therapeutic benefit has gradually evolved into one where the major focus is on 

targeting specific points in the oxygen-sensing pathway, many of which involve the 

hypoxia inducible transcription factors, HIF-1 and 2 (Semenza, 2012). HIF-1, in 

particular, is known to induce transcription of an expanding cohort of genes (> 70) in 

response to hypoxia, via binding to hypoxia response elements (HREs) in the 

promoter regions of the genes. The hypoxia-responsive genes, such as the genes for 

vascular endothelial growth factor (VEGF) and glucose transporter 1 (GLUT1), are 

generally associated with tumor progression. Despite stimulation of angiogenesis in 

response to hypoxia, the neo-vasculature fails to overcome this condition and regions 



 14 

of both chronic (diffusion-limited) and acute (perfusion-limited) hypoxia persist. 

Indeed, as tumors grow they tend to become more hypoxic. There is considerable 

interest in understanding more about the hypoxic condition in tumors, in order to 

optimize therapeutic approaches.   

 

6.4.2 Functional measures of tumor oxygenation 

Definitions     

At normal hemoglobin concentrations (150 g per l blood) and under normal 

conditions, the oxygen concentration in blood is approximately 9 mM. Tissue oxygen 

concentration is dependent on the balance between oxygen consumption and delivery. 

Oxygen delivery (concentration per unit time) depends on blood flow rate, 

hemoglobin concentration in RBCs, hemoglobin oxygen saturation (sO2), 

haematocrit, distance from the nearest capillaries and the oxygen diffusion coefficient 

in tissue. The oxygen partial pressure (pO2) in arterial blood is approximately 13 kPa 

(99 mm Hg). The oxygen partial pressure (pO2) in mixed venous blood is 

approximately 5 kPa (38 mm Hg). Cells become significantly radioresistant when 

oxygen levels drop below approximately 0.5 kPa (4 mmHg). HIF-1-alpha (HIF-1-α) 

is activated when oxygen levels drop below approximately 1.0 kPa (8 mmHg). 

 

Hemoglobin oxygen saturation 

Oxy- and deoxy-hemoglobin absorb light differently across the visible and 

near-infra-red spectrum, such that spectra obtained from intravital microscopy of 

tissue microvessels can be deconstructed to estimate the oxygen saturation of 

hemoglobin (sO2) at distinct spatial locations within the vasculature (Shonat et al., 

1997, Nighswander-Rempel et al., 2002) (Gillies et al., 2003). The availability of 
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sophisticated optical filtering systems, such as acousto-optic or liquid crystal tunable 

filters, has significantly advanced this method, known as hyperspectral imaging. Both 

visual and near-infra-red light can be used in either absorbance or reflection mode. 

Hyperspectral intravital imaging has been pioneered for tumor biology by Sorg, 

Dewhirst and colleagues, initially to investigate the spatial relationship between 

microvascular sO2 and tumor response to hypoxia, using tumor cells engineered to 

express green fluorescent protein (GFP) under the control of a HRE (Sorg et al., 

2005). Other basic studies have investigated the relationship between fluctuations in 

tumor micro-vascular oxygenation and the location of arterio-venous shunts (Sorg et 

al., 2008), macrophage infiltration (Choe et al., 2010) and blood flow using the BST 

method described above (Lee et al., 2013). Studies of therapy have demonstrated 

reoxygenation of tumors following radiation treatment, which correlated with an 

increase in glycolysis (Zhong et al., 2013) and hypoxia-induction followed by re-

oxygenation induced by the vascular disrupting agent, Oxi4503 (Wankhede et al., 

2010). Examples of tumor microvascular sO2 values from Lee et al., 2013, are shown 

in Figure 4.  

 

Phosphorescence life-time imaging   

The phosphorescence induced by light excitation of porphyrin derivatives is rapidly 

quenched by oxygen, providing a method for estimating pO2 in tumors. Helmlinger et 

al. (Helmlinger et al., 1997) applied this technique to intravital microscopy of 

LS174T human colon adenocarcinoma xenografts and compared measurements with 

regional measurements of pH, using the pH-sensitive fluorochrome 2’, 7’ –bis-(2-

carboxyethyl)-5,6-carboxyfluorescein (BCECF). Phosphorescence life-time imaging 

provided pO2 measurements in intra- and extra-vascular tumor regions at 10 µm 
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spatial resolution. They found a complex relationship between pH and pO2 at a local 

level, although there was a strong correlation between mean pH and pO2 profiles. pO2 

gradients away from blood vessels were highly variable but consistently low in 

avascular areas and at distances greater than 150 µm from the supporting vasculature. 

Phosphorescence life-time imaging of a porphyrin derivative confined to the tumor 

vasculature also revealed the existence of longitudinal vascular gradients of pO2 from 

the arterial to the venous side of the tumor microcirculation, in the rat mammary 

adenocarcinoma (R3230AC) model (Dewhirst et al., 1999). This study neatly 

exploited two different excitation wavelengths to excite the porphyrin through 

different tissue depths away from the tumor-supplying arterioles in the fascial plane 

(approximately 50 and 200 µm for blue and green light respectively). Oxyphor G2 

was used in a subsequent study to compare oxygenation levels in three murine tumor 

models; K1735 malignant melanoma, RENCA renal cell carcinoma and Lewis lung 

carcinoma (Ziemer et al., 2005). The different patterns of oxygenation across the 

tumor types correlated well with the spatial distributions of oxygenation revealed by 

the oxygen-sensitive tissue binding of the nitroimidazole, EF5.     

 

Other phosphorescent markers have been developed more recently for in vivo 

application. A polymer-based nano-particle with both fluorescence and 

phosphorescence properties enabled a technique to be used for measuring the ratio of 

oxygen-sensitive phosphorescence against a fluorescence standard, thus negating the 

need for specialized equipment for phosphorescence life-time imaging (Palmer et al., 

2010). In this case, the nano-particle solution was suffused over the surface of the 

tumor, beneath the cover-slip of the DSFC, to provide an oxygen-sensitive overlay. 

The tissue pO2 values obtained were found to correlate significantly with estimates of 
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hemoglobin oxygen saturation, using the hyperspectral imaging technique described 

above, and to associate with HIF-1 activity assayed using a GFP-based reporter 

system. Other developments include a platinum(II)-octaethyl-porphyrin in a 

transparent thin film format. This has been tested in a hamster model, using the 

amelanotic melanoma A-Mel-3 growing in the DSFC (Babilas et al., 2005). The thin 

film was applied directly to the coverslip, so that it was in contact with both tumor 

and surrounding normal tissue and could be excited by a LED array. Following 

suitable calibration, tumor pO2 values were recorded, which were in good agreement 

with previous surface oxygen electrode measurements. 

 

6.5 Concluding remarks 

Intravital microscopy has played, and continues to play, a vital role in studies 

designed to develop an understanding of the functional aspects of the tumor 

microcirculation and its response to therapy. It is still a challenge to obtain fully 

quantifiable data on vascular function routinely and with sufficient spatial and 

numerical accuracy to allow detection of subtle changes with therapy. However, 

innovative technical developments continue apace and developments in micro-

endoscopy, for instance, hold the promise of translating quantitative intravital 

microscopy studies of tumor vascular function to deep-seated human tumors for 

therapeutic benefit. Simultaneous application of intravital microscopy with other 

imaging modalities in clinical use, such as MRI and PET, provides an opportunity to 

maximise the advantages and overcome the disadvantages of each modality.  
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FIGURES 

 

Figure 1 

Examples of tracks made by red blood cells (RBC) as they flow through the tumor 

microcirculation. Tracks were obtained from eight different mouse fibosarcomas, a) 

to h). Each RBC track is represented by a line, where the direction and colour 

represent RBC velocity. This figure is reproduced, with permission, from Reyes-

Aldasoro et al., Journal of Microscopy, 229:163-173, 2008. 
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Figure 2 

Top panels show a time-series of epi-fluorescence images taken of a mouse 
fibrosarcoma (fs188) growing in a mouse DSFC, following the intravenous injection 
of 80 mg/kg FITC-dextran. Times shown are relative to the appearance above 
background of fluorescence in a tumor supplying arteriole, indicated by * in each 
image. Similar images have been used to estimate the blood supply time (BST) – see 
main text for details. An expanded epifluorescence image and the corresponding 
transmitted light image are shown in the lower panels. The arrows in the 
epifluorescence image indicate vessel segments that have filled very rapidly with 
FITC-dextran, indicating that they are close to the arterial side of the micro-
circulatory network. The vessel segment indicated by the open arrow lies immediately 
adjacent to an unfilled vessel segment. It is impossible to discriminate between these 
two segments in the corresponding bright-field image, where the vessel pairing 
appears as a single vessel (open arrow). The closed arrow indicates a rapidly filled 
vessel, which is hardly distinguishable in the bright-field image.  
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Figure 3 

Panel A shows examples of a 3-D tumor volume (512 x 512 x 11 voxels 
corresponding to 1331.2 x 1331.2 x 50 µm3) of fluorescence intensity images 
acquired using multiphoton fluorescence microscopy, at various times following 
intravenous injection of 40 kDa FITC-dextran to a tumor-bearing rat. A total of 15 
volumes were acquired in a 60-minute time-frame, from a sub-cutaneously 
transplanted rat P22 sarcoma. Panel B a) shows example time-activity curves of the 
fluorescence intensities of intravascular tissues (Cvess(t)) and extravascular tissue 
(Ct(t)) versus time for two data sets, similar to those shown in A. Data were acquired 
following image segmentation into the intravascular and extravascular tissue regions. 
Data from one animal treated with the vascular disrupting agent, combretastatin A4 
phosphate (CA-4-P), and from one control, untreated animal are shown. Panel Bb) 
shows the same data, as in a), transformed, as described by Patlak (Patlak et al., 1983) 
and in the main text. The slope of the linear portion of the curve provides the estimate 
of the PS-product. Figures A and B are reproduced, with permission, from Reyes-
Aldasoro et al., Microcirculation, 15:65-79, 2008. 
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Figure 4 

Examples of tumor hemoglobin oxygen saturation (sO2) with tumor growth, estimated 

from hyperspectral imaging. (a) Brightfield images of the Caki-2 human renal 

carcinoma growing the DSFC, showing a tumor supplying artery (SA) and draining 

vein (DV). (b) sO2 maps corresponding to images in (a). Arrow-head indicates a 

venous branch from non-tumor tissue. Arrow indicates a vessel carrying shunted 

blood.  Figure reproduced in part, with permission, from Lee et al., Optics Letters, 

38:332-334, 2013. 

 


