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NOVELTY & IMPACT: Treatment-induced tumor vascular normalization is a 
common phenomenon but poorly understood. Differential VEGF isoform expression 
strongly influences vascular morphology and function. Using intravital microscopy, 
we found that the soluble 120 isoform of VEGF is associated with tumor 
susceptibility to vascular normalization induced by VEGFR-2-targeted treatment. 
Furthermore, normalization rendered tumor blood vessels resistant to subsequent 
treatment with the archetypal vascular disrupting agent, CA4P. Results suggest 
VEGF isoform expression can predict for tumor response to vascular-targeted 
therapy.  
 
ABBREVIATIONS USED: ANOVA (analysis of variance); α-SMA (alpha smooth 
muscle actin); CA4P (combretastatin A4 3-O-phosphate); CD31 (cluster 
differentiation 31 / platelet endothelial cell adhesion molecule); c-RET (intrinsic re-
arranged-during-transfection protein); DAB (3,3’-diaminobenzidine; DMEM 
(Dulbecco’s minimal essential medium); DMSO (dimethyl sulfoxide); Flk1 (fetal 
liver kinase 1); Flt1 (Fms-like tyrosine kinase 1); Flt3 (Fms-like tyrosine kinase 3); 
GIST (gastro-intestinal stromal tumors); HRP (horseradish peroxidase); IFP 
(interstitial fluid pressure); KDR (kinase insert domain receptor) NSCLC (non-small 
cell lung cancer); PDGFR-β (platelet derived growth factor receptor beta); pERK 
(phosphorylated extra-cellular signal-regulated kinases); RCC (renal cell carcinoma); 
RCV (red cell velocity); RTK (receptor tyrosine kinase); SCID (severe combined 
immune deficient); stem cell growth factor receptor/c-Kit (SCF R), VDA (vascular 
disrupting agent);  VEGF (vascular endothelial growth factor A); VEGFR-2 (VEGF 
receptor 2).  
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Abstract 

Anti-angiogenic therapy based on blocking the actions of vascular endothelial growth 

factor-A (VEGF) can lead to ‘normalization’ of blood vessels in both animal and 

human tumors. Differential expression of VEGF isoforms affects tumor vascular 

maturity, which could influence the normalization process and response to 

subsequent treatment. Fibrosarcoma cells expressing only VEGF120 or VEGF188 

isoforms were implanted either subcutaneously (s.c.) or in dorsal skin-fold ‘window’ 

chambers in SCID mice. VEGF120 was associated with vascular fragility and 

hemorrhage. Tumor-bearing mice were treated with repeat doses of SU5416, an 

indolinone receptor tyrosine kinase (RTK) inhibitor with activity against VEGFR-2 

and proven pre-clinical ability to induce tumor vascular normalization. SU5416 

reduced vascularization in s.c. implants of both VEGF120 and VEGF188 tumors. 

However, in the window chamber, SU5416 treatment increased red cell velocity in 

VEGF120 (representing vascular normalization) but not VEGF188 tumors. SU5416 

treatment had no effect on growth or necrosis levels in either tumor type but tended 

to counteract the increase in interstitial fluid pressure (IFP) seen with growth of 

VEGF120 tumors.  SU5416 pre-treatment resulted in the normally fragile blood 

vessels in VEGF120-expressing tumors becoming resistant to the vascular damaging 

effects of the tubulin-binding vascular disrupting agent (VDA), combretastatin A4 3-

O-phosphate (CA4P). Thus, vascular normalization induced by anti-angiogenic 

treatment can reduce the efficacy of subsequent VDA treatment. Expression of 

VEGF120 made tumors particularly susceptible to vascular normalization by 

SU5416, which in turn made them resistant to CA4P. Therefore VEGF isoform 

expression may be useful for predicting response to both anti-angiogenic and 

vascular-disrupting therapy.  
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Introduction 

Vascular endothelial growth factor-A (VEGF) is a key stimulator of tumor 

angiogenesis and the most well-studied target for anti-angiogenic therapy 1, 2. Anti-

VEGF monotherapy has been approved in a limited number of clinical settings, 

notably in advanced renal cell carcinoma. However, most success has been achieved 

by combining VEGF-targeted treatments with chemotherapeutic drugs 2. VEGF 

inhibition can effectively block tumor angiogenesis and slow tumor growth in mouse 

models of cancer 3. However, in animal models it has been shown also that there is a 

dose and time window at which vascular ‘normalization’ occurs following anti-

angiogenic therapy, involving re-modelling of the vasculature resulting in improved 

delivery of oxygen and therapeutic drugs to tumor tissue 4, 5. Detecting tumor 

vascular normalization in the clinic is challenging, requiring sophisticated imaging 

technology to monitor vascular morphology and function. Nevertheless, this 

phenomenon has been reported clinically with both the monoclonal antibody to 

VEGF, bevacizumab (Avastin; Genentech) 6, and the VEGF receptor tyrosine kinase 

(RTK) inhibitor, cediranib (Recentin; AstraZeneca) 7. If vascular normalization 

proves to be a common phenomenon in human tumors during/following anti-

angiogenic therapy, it could potentially explain the beneficial combination of anti-

angiogenic treatment with chemotherapy and provide further possibilities for 

therapeutic exploitation. In order for rational therapeutic exploitation to occur, further 

information is required regarding the nature of this phenomenon and its influence on 

subsequent therapy. 

RTK inhibitors form a large group of anti-cancer agents, many of them developed 

as anti-angiogenic agents targeted against VEGFR-2 (flk-1/KDR) but with a range of 

target specificities. SU5416 (semaxinib) is an indolinone, developed by Sugen as a 
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VEGFR-2 inhibitor, which binds to the tyrosine kinase domain of the receptor 8. It 

acts as an ATP-mimetic and is the predecessor of SU11248 (sunitinib or Sutent), 

which is approved for treatment of renal cell carcinoma and imatinib-resistant 

gastrointestinal stromal tumors (GIST) as monotherapy. Experiments using both cell-

free and cellular systems have shown that SU5416 inhibits other receptor tyrosine 

kinases, in addition to VEGFR-2, such as c-Kit, Flt3, c-MET and PDGFR, with 

variable potencies 8-11 although the complete specificity profile of SU5416, as for its 

related compounds, is unknown 12. SU5416 has been withdrawn from clinical testing 

but is a useful exemplar of a class of RTK inhibitors with activity against VEGFR-2 

and ability to induce tumor vascular normalization 13, 14.  

It is increasingly recognised that differential gene-splicing of VEGF gives rise to 

variations in vascular patterning in both normal embryology 15 and tumor 

angiogenesis 16, 17. The most prevalent VEGF protein isoforms consist of 121, 165 

and 189 amino acids in the human and 120, 164 and 188 in the mouse 18. These 

isoforms differ in molecular mass, solubility and heparin-binding affinity but all 

interact with the VEGF receptors, Flt1 (VEGFR-1) and Flk1/KDR (VEGFR-2) 19. All 

three isoforms can be found in human tumor tissue, with VEGF121 (soluble isoform) 

and 165 commonly the most prevalent 20, 21. Despite this prevalence, clinical studies 

suggest that the balance between all three isoforms is important for driving tumor 

angiogenesis and progression. For instance, matrix-bound VEGF189 expression has 

been reported to associate with increased vascularity, progression and prognosis in 

non-small-cell lung cancer (NSCLC), renal cell carcinoma (RCC) and colorectal 

carcinomas 22-24, whereas the soluble isoforms were reported to be associated with 

metastasis in melanoma and squamous cell carcinoma of the head and neck 25, 26. 

There is mounting evidence that the different VEGF isoforms can differentially 
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signal, perhaps due to their diverse abilities to bind co-receptors of VEGFR-2 such as 

the neuropilins, integrins and heparan sulphate proteoglycans 27. This implies that 

VEGF isoform expression could also influence response to specific treatments. 

However, little is known about this aspect of VEGF tumor biology and, in particular, 

nothing is known about how vascular patterning and function determines 

susceptibility to vascular normalization. Using mouse fibrosarcoma cell lines 

developed to express only single isoforms of VEGF under endogenous promoter 

control, we found that the corresponding solid tumors expressed the relevant isoforms 

and had disparate vascular characteristics, making them useful models for 

investigating factors associated with the process of vascular normalization induced by 

anti-angiogenic treatment17.   

The aims of the current study were i) to determine whether differential expression 

of individual VEGF isoforms (VEGF120 and VEGF188) which predicate for diverse 

tumor vascular morphology and function, is associated with differential susceptibility 

to normalization (morphological and functional end-points) following treatment with 

an archetypal receptor tyrosine kinase inhibitor (SU5416) and, if normalization 

occurs, ii) to determine how this process affects subsequent vascular susceptibility to 

disruption by a typical tubulin-binding VDA (CA4P). We reasoned that VEGF120-

expressing tumors would be particularly susceptible to vascular normalization and 

that this would alter their response to CA4P.  

 

Methods 

All experiments were conducted in accordance with the United Kingdom Home 

Office Animals (Scientific Procedures) Act 1986, with local ethical approval and in 
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line with recently published guidelines 28. CA4P was kindly provided by Professor 

GR Pettit, Arizona State University. 

 

VEGF isoform-specific tumor cell lines 

In-house-developed mouse fibrosarcoma cell lines, which produce only single 

isoforms of VEGF (120 and 188), under endogenous promoter control, were used in 

this study 17.  Cells were maintained in high glucose DMEM (Invitrogen, Paisley, 

UK) media containing L-glutamine, fetal calf serum, and the antibiotics G-418 and 

puromycin. Previous investigations showed that only the relevant VEGF isoforms 

were produced from each isoform-specific cell line 17.   

 

Subcutaneous tumor transplantation and tumor growth 

1 x 106 tumor cells in 0.05 ml were injected subcutaneously on the rear dorsum of 

severe combined immunodeficient (SCID) mice (8-12 week-old, 20-25g). Animals 

were grouped and treated with either a tyrosine kinase receptor inhibitor, SU5416 (50 

mg/kg, i.p), or drug vehicle (DMSO, 0.05 ml, i.p) every 3rd to 4th day (twice per 

week), starting on day 4 after tumor implantation). Caliper measurements were made 

to calculate tumor volume, V, where V = 0.52 x d1 x d2 x d3 and d1, d2 and d3 are 

the three orthogonal tumor diameters. Animals were sacrificed when the largest 

tumor diameter reached ~12 mm. 

 

Immunohistochemistry and histology 

Tumor-bearing mice were treated with SU5416 or vehicle, as described above, 

when tumors reached 6-7 mm in diameter. Some mice also received CA4P (100 

mg/kg at 10 ml/kg i.p.) or saline vehicle, 21 h after the second dose of SU5416. 
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Tumors were excised 6, 24 or 48 h after the second dose of SU5416/vehicle and 

halved for zinc or formalin fixation or frozen in isopentane on dry ice. 2.5 hours prior 

to tumor excision in the 24 h group, mice received 60 mg/kg pimonidazole HCl 

(HypoxyProbe Kit, HPI Inc, Burlington, MA, USA) at 10 ml/kg i.p. for analysis of 

tumor hypoxia 29.  

5 µm thick sections from the centre of fixed paraffin-embedded tumor samples 

were stained for endothelial cells using rat anti-mouse CD31 monoclonal antibodies 

(Cat no. 557355, BD Pharmingen Intl, Oxford, UK for zinc-fixed or Cat No. DIA-

310, Dianova GmbH, Hamburg, Germany for formalin-fixed tissue). The 

HydroxyProbe kit was used to identify pimonidazole-protein adducts formed under 

severe hypoxia. Heat/pressure and microwave antigen retrieval were used for CD31 

and pimonidazole staining respectively. Sections were exposed to the primary 

antibody overnight at 4°C and standard signal amplification was achieved using an 

avidin-biotin complex (ABC)/horseradish peroxidase system (Vectastain, Vector 

Laboratories, Burlingame, CA, USA). The signal was visualized with DAB (Dako, 

Ely, UK) and sections were counterstained with haematoxylin.  

 CD31 staining in viable tumor regions was quantitatively analysed using an in-

house-developed segmentation algorithm to determine morphological characteristics 

of tumor vasculature 30. Additional formalin-fixed sections were stained with 

haematoxyin and eosin for necrosis scoring, whereby whole tumor sections were 

scanned by hand using a Nikon Optiphot-2 microscope and x20 objective. Using an 

eye-piece graticule marked with 25 random points (Chalkley grid) and blinded to the 

experimental groups, the observer counted the number of points falling on necrotic 

tissue. This number, as a % of total points counted, equated to necrosis, as a % of the 

total sectional area. Tissue sections were scanned at high power using an Aperio slide 
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scanner (ScanScope, Aperio ePathology Solutions, Oxford, UK) for hypoxia analysis. 

Viable tumor regions were outlined and % hypoxia in viable regions calculated from 

the number of positive brown pixels and total pixels in viable regions, after setting 

suitable threshold levels (ImageScope software, Aperio ePathology Solutions, 

Oxford, UK).    

Double immunofluorescent staining was performed on frozen 7-10 µm tumor 

sections, using the Pharmingen antibody above for CD31 and a mouse anti-mouse α-

smooth muscle actin (α-SMA) monoclonal antibody (Cat no. A5228, Sigma-Aldrich, 

Poole, UK). Biotin-streptavidin technology was used to visualize signals, using Texas 

red and FITC  (Vector Laboratories, Burlingame, CA, USA) to identify CD31 and α-

SMA respectively. Tumor sections were viewed using a x10 objective on a Leica 

DMI 4000B advanced fluorescence microscope and images across the whole of each 

section captured for quantitation of fluorescence using in-house-developed software. 

Briefly, this consisted of thresholding for each fluorescence channel and calculating 

the amount of α-SMA staining as a % of the amount of CD31 staining for each 

tumor. 

 

Phospho-receptor tyrosine kinase (RTK) analysis and western blotting  

Analysis of RTK phosphorylation in extracts of frozen tumor samples was performed 

using a mouse phospho-RTK array kit (39 RTK receptors, R&D Systems, Abingdon, 

UK), following the manufacturer’s instructions. Briefly, tumors were homogenized in 

ice cold PBS, with protease and phosphatase inhibitors, and microcentrifuged with 

1% Triton X-100. Protein in supernatants was quantified using the Pierce BCA 

protein assay kit (Thermo Scientific, Cramlington, UK). Array membranes were 

incubated with 300 µg of protein overnight at 4oC, washed and incubated with anti-
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phosphotyrosine HRP detection antibody for 2 h at room temperature. After washing, 

arrays were incubated with ECL plus reagents (GE-Healthcare, Chalfont St Giles, 

UK) and exposed to X-ray film. Developed films were scanned on a Bio-Rad GS-710 

densitometer (Bio-Rad Laboratories, Hemel Hempstead, UK) and the ratios of optical 

densities from SU5416-treated and vehicle-treated tumor samples calculated for 

assessment of the effect of treatment on each of the RTK phosphorylation levels. 

 

Proteins extracted from tumors in the 6 h group were analysed for phosphorylated 

ERKs (pERK) by western blotting. Equal protein amounts (50-100 mg/lane) were 

separated on 7% NuPAGE Novex gels (Invitrogen, Life Technologies, Paisley, UK), 

transferred to PVDF membranes and probed overnight with an antibody to pERK 

(Cell Signaling Technology, New England Biolabs, Hitchin, UK). Membranes were 

washed and incubated with HRP-conjugated secondary antibodies (Dako, Ely UK) 

and immunoreactive bands were visualized using ELC plus reagents (GE Healthcare, 

Little Chalfont, UK). Blots were re-probed with an anti-GAPDH antibody (Cell 

Signaling Technology) and films were scanned as described above. pERK band 

densities were normalized to GAPDH. 

 

Tumor interstitial fluid pressure 

Tumors were treated with two doses of SU5416, as described above. Interstitial fluid 

pressure (IFP) was measured just prior to the first dose of SU5416 and 24 h after the 

second dose using the wick-in-needle technique 31. Briefly, measurements were made 

using a 23G needle with side-port, connected to a pressure transducer (Model P23XL, 

Viggo-Spectramed, Windlesham, Surrey) via polyethylene tubing. The whole system 

was filled with heparinized saline and a nylon ‘wick’ was placed in the distal portion 



 12 

of the needle to ensure direct contact with the tissue. Measurements were taken in at 

least three locations in each tumor and the average value was taken to represent the 

tumor IFP.      

 

Intravital microscopy 

Surgery for intravital microscopy was carried out on male SCID mice (12-16 

week-old, 28-32g) under general anaesthesia with Hypnorm (fentanyl citrate and 

fluanisone; Janssen Animal Health) and Hypnovel (midazolam, Roche, Welwyn 

Garden City, UK), as described previously 32. Briefly, an aluminium window 

chamber (total weight ∼2g), designed to hold two parallel glass windows 200 µm 

apart to allow tumor growth, was implanted into a dorsal skin flap. A tumor fragment 

(∼0.5 mm in diameter; tumor cells expressing VEGF120 or 188) from a donor animal 

was implanted onto the surgically exposed panniculus muscle of one skin layer and 

the chamber closed with a glass window. Following recovery from anaesthesia, 

animals were kept in a warm room, 28-30 °C, until further experimentation. Animals 

received either SU5416 (50 mg/kg ip) or drug vehicle (DMSO 0.05 ml) starting at 

day 3 after implant and then every 3rd to 4th day until they reached ~ 3mm diameter (1 

– 2 weeks after surgery), when they were treated with a single dose of CA4P (30 

mg/kg iv at 3 mg/ml in 0.9% NaCl) or saline vehicle.  

Intravital microscopy was carried out from day 1 after surgery and at various 

times after administration of CA4P up to 24 h. Transmitted light images were 

acquired using a Nikon Eclipse E600FN microscope. Vascular length was analysed 

from images captured with a x10 objective, using in-house developed software, as 

described previously 32. Vascular length measurements were made in 2 selected 

regions of interest (ROIs) in each tumor. A single vessel was defined as a vessel 
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length between two branch-points. Red blood cell velocity (RCV) was also measured 

from the selected ROIs using a x20 microscope objective. For this, donor red blood 

cells, acquired via cardiac puncture from donor mice, were labelled with the 

fluorescent membrane marker, DiI (Molecular Probes, Cambridge Biosciences, UK), 

as described previously 33. The labelled cells (0.1 - 0.2 ml in PBS) were administered 

to recipient animals via a tail vein cannula just prior to CA4P/vehicle administration 

– a single injection being sufficient to visualise the red cells for at least 24 h. 60 s 

video sequences under epi-fluorescence were captured, at 25 frames/s, using a Sony 

DSR-30P digital videocassette recorder, from which the full time-course of tumor 

RCV was calculated using an in-house-developed tracking algorithm 34. Preliminary 

data for RCV effects of CA4P at a single time-point (24 h) after CA4P ± SU5416 

have been published as conference proceedings 35 

 

Statistics 

A one-way analysis of variance (ANOVA), followed by a Tukey Kramer hsd post-

test was used for comparing multiple groups; a students unpaired t-test was used for 

comparing two independent groups; a paired t-test was used for comparing IFP 

before and after treatment in the same tumor; a 2-way ANOVA followed by a 

Bonferroni post-test was used for analyzing multiple groups with more than one 

variable (treatment and tumor type) (Prism 5 for Mac OS X). Differences between 

groups, where time-courses were obtained, were analysed using a mixed design 

ANOVA for repeated measures (SPSS version 11.0.2, for the Apple Macintosh, 

SPSS Inc). In all cases, differences between groups were described as significant if 

the probability corresponding to the appropriate statistic was < 0.05. 
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Results 

Tumor vascular effects of chronic treatment with SU5416 

Figure 1 shows the effects of SU5416 on vascular morphology in sub-

cutaneous tumors at 24 and 48h after two doses of SU5416. SU5416 caused a 

significant reduction in CD31+ vascular area and vascular density per viable field 

(Figure 1A & B). The decreases observed were moderate and did not reach statistical 

significance for individual pairs of data (Figure 1A). The highly dense networks of 

small calibre vessels in the VEGF188 tumors (Figure 1A and B) have been reported 

previously 17. Morphometric analysis of the shape of individual vessels revealed no 

effects of SU5416 in either tumor type (data not shown). However, it was noted 

qualitatively that CD31 staining, especially in VEGF120 tumors, partially filled the 

lumen of larger vessels in vehicle-treated tumors, whereas this was less apparent in 

SU5416-treated tumors, as shown in Figure 1B. These larger vessels were more 

common in VEGF120 than in VEGF188 tumors and in SU5416-treated compared 

with vehicle-treated tumors (Figure 1B). In a different sub-set of vessels, SU5416-

induced vascular damage was clearly apparent, as evidenced by regions of tumor cell 

necrosis surrounding isolated small blood vessels (Figure 1C). 

Maturity of the tumor vascular wall was determined quantitatively by 

measuring the extent of α-SMA staining relative to that of CD31, using 

immunofluorescence in frozen tumor sections. VEGF188-expressing tumors 

expressed significantly higher relative levels of α-SMA staining than VEGF120-

expressing tumors (Figure 1D), indicative of greater vascular maturity, as previously 

reported 17. There was no effect of SU5416 treatment on vascular maturity, as 

measured by α-SMA staining, in either tumor type (Figure 1D).  
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Effects of SU5416 on sub-cutaneous tumors were insufficient to cause any 

slowing of tumor growth or necrosis induction (Figure 2A & B). However, there was 

a differential effect of the drug on IFP in the two tumor types. Figure 2C shows that 

IFP was higher in untreated VEGF120 than in VEGF188 tumors. IFP in VEGF120 

tumors increased further with time, in the vehicle-treated group, which was 

suppressed by SU5416 treatment, whereas SU5416 treatment had no effect on IFP in 

VEGF188 tumors (Figure 2C).  

 SU5416 treatment caused moderate suppression of phosphorylation of 

various receptor tyrosine kinases (RTKs), including VEGFR-2 and other known 

targets of the drug such as SCF R, Flt3, c-RET and PDGFR-β, as well as other RTKs, 

in both VEGF120- and VEGF188-expressing tumors for at least 48 h (Figure 2D and 

Supplementary Figure 1). We were unable to detect phosphorylated VEGFR-2 by 

western blotting of tumor extracts (data not shown). However, pERK was detectable 

and results for tumors excised at 6h are shown in Figure 2D. The protein array and 

western blotting analyses provide only semi-quantitative results that are not amenable 

to rigorous statistical analysis. However, taken together with the vascular 

morphology results (Figure 1), they indicate tumor activity of SU5416 in our 

systems. There is an indication that SU5416 was more effective in suppressing RTK 

phosphorylation in VEGF120 than in VEGF188 tumors (Figure 2D), however this 

would need further investigation to clarify.  

Figure 3 shows the effects of SU5416 on vascular morphology and function 

of tumors growing in window chambers. Figure 3A shows representative images of 

the tumor vasculature at the end of SU5416 or vehicle treatment. Figure 3B shows 

that there was significant vascular loss in VEGF188-expressing tumors following 

SU5416 treatment. The situation for VEGF120 tumors was more complex, with no 
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overall vascular loss (Figure 3B) but a tendency for rarefaction of the densely 

vascularised tumor border following SU5416 treatment (Figure 3A). Vascular loss in 

VEGF188 tumors was accompanied by an increase in the average length of 

individual vessels (Figure 3B), suggesting a ‘pruning’ effect of the drug on the 

smaller vascular branches. Interestingly, prior to treatment, red cell velocity (RCV) 

was higher in VEGF188-expressing tumors than in control VEGF120-expressing 

tumors (372 ± 82 µm/s and 188 ± 28 µm/s respectively). Most notably, SU5416 

treatment resulted in a significant increase in RCV in VEGF120 tumors, whereas 

there was no effect in VEGF188 tumors, so that RCV was equalised in the two tumor 

types after treatment (Figure 3C).  

Considering both sub-cutaneous and window chamber tumors, there was 

overall evidence for a small anti-vascular effect of SU5416 in both VEGF120- and 

VEGF188-expressing tumors. In contrast, SU5416 had no effect on vascular function 

in VEGF188 tumors (assessed by measurement of RCV), whereas vascular function 

in VEGF120 tumors was normalised to the level found in vehicle-treated VEGF188 

tumors.  

 

Effect of SU5416 pre-treatment on response to the vascular disrupting agent CA4P 

Typical low power images of tumors growing in dorsal skin-fold window chambers, 

at various times following a single dose of CA4P, are shown in Figure 4.  

Quantitative analyses of the effects of CA4P on visible vascular length and RCV are 

shown in Figure 5; these data were derived from two high power regions from each 

tumor as illustrated in Figure 4. Taken together, data in Figures 4 and 5 show a 

moderate decrease in the visible vascular length up to 1 hour after CA4P, which 

recovers to different extents by 3 hours. In VEGF120 tumors that did not receive 
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SU5416, this recovery was un-sustained and these tumors became highly avascular 

by 24 hours after CA4P, indicative of necrosis (Figures 4 and 5), which was typically 

accompanied by a severe hemorrhagic episode at approximately 6 hours (Figure 4). 

In VEGF188 tumors, there was a smaller decrease in visible vascular length within 

the first hour of CA4P treatment (not falling below 70% of pre-treatment levels), 

which was followed by partial recovery to approximately 85% of pre-treatment 

levels, sustained for the full 24-hour observation period. RCV decreased very rapidly 

in VEGF120 tumors reaching a minimum of less than 20% of the pre-treatment level 

by 3 hours, with no recovery by 24 hours. As for vascular length, CA4P had less 

effect on RCV in VEGF188 tumors (Figures 4 and 5), with complete recovery of 

velocity by 24 hours after treatment. A relative resistance of VEGF188 tumors to 

CA4P compared with VEGF120 tumors is consistent with our previous findings 17. 

However, the most striking effect was that pre-treatment with SU5416 protected 

sensitive VEGF120 tumors from the damaging effects of CA4P. In this case, both 

vascular length and red blood cell velocity recovered to near pre-treatment levels by 

24 hours (Figure 5) and the development of hemorrhage at 6 hours and avascular 

areas at 24 hours were completely abrogated by SU5416 pre-treatment (Figure 4). 

Some protection from the effects of CA4P by SU5416 pre-treatment was also 

observed in VEGF188 tumors, although this was less profound due to their innate 

resistance to the drug (Figure 5).   

Effects of SU5416 pre-treatment on vascular response of s.c. tumors to CA4P 

were also studied. Figure 6A shows quantitation of CD31 staining at 3 h after CA4P 

administration ± SU5416 pre-treatment. Surprisingly, CA4P treatment tended to 

increase CD31 staining compared with vehicle-treated tumors, which was 

significantly abrogated by SU5416 pre-treatment in VEGF120 but not VEGF188 
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tumors. Examination of staining patterns (Figure 6B) showed that there was extensive 

vascular damage in CA4P-treated tumors. In particular, endothelial layers were 

severely fragmented (Figure 6Bii) and iii) compared with i) and viii) compared with 

vii)). There were many large, distended vessels stacked with red blood cells, 

especially towards the centre of VEGF120 tumors (Figure 6Biii)). Fragmentation of 

vessels caused the algorithm to identify several ‘objects’ per vessel in the CA4P-

treated groups, as indicated by the yellow arrows in Figure 6Biv). Disrupted 

endothelial cells also resulted in CD31 staining spreading into vessel lumens (Figure 

6Bii)). These two effects explain the quantified data in Figure 6A. SU5416 pre-

treatment partially blocked the damaging effects of CA4P on vascular morphology in 

both tumor types (Figure 6Bv), vi), viii) and ix)), although this was only statistically 

significant in VEGF120 tumors (Figure 6A). 

Pimonidazole adduct staining indicated approximately 60% hypoxia in viable 

regions of both untreated VEGF120 and VEGF188 tumors, which was unaffected by 

SU5416 treatment (Supplementary Figure 2A and B). CA4P treatment caused 

increased staining of peripheral tumor regions but a decrease in staining in tumor 

centres, which was significant for VEGF188 tumors (Supplementary Figure 2A). 

These tumor regions suffered extreme vascular damage from CA4P (Figure 6) and it 

is likely that pimonidazole could not access them. Supplementary Figure 2C shows 

severely damaged central vessels with red cells haemorrhaging into the surrounding 

tissue. Pimonidazole adduct staining in CA4P-treated tumors that had been pre-

treated with SU5416 was equivalent to that in vehicle-treated tumors. Although not 

conclusive in their own right, these results are consistent with the protective effect of 

SU5416 against CA4P treatment shown in Figures 4, 5 and 6.  
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Discussion 

We have shown that mouse fibrosarcoma cells, which express only single 

isoforms of VEGF, produce solid tumors with different susceptibilities to two diverse 

therapeutic strategies for targeting tumor blood vessels. Specifically, VEGF120-

expressing tumors, which have fragile blood vessels that are poorly invested with 

pericytes, responded avidly to an acute treatment with the vascular disrupting agent, 

CA4P. These tumors suffered only a minor vascular loss following chronic treatment 

with the anti-angiogenic agent, SU5416, with no significant effect in window 

chamber preparations. However, the vasculature showed distinct signs of 

normalization (increase in RCV in window chamber preparations and modulation of 

IFP in s.c. tumors). VEGF188-expressing tumors, which have a higher vascular 

density and red cell velocity and greater pericyte coverage than VEGF120-expressing 

tumors in the unperturbed state, were able to recover more effectively than VEGF120 

tumors from the initial vascular-damaging effects of CA4P (window chamber 

results). The anti-angiogenic effects of SU5416 were also only moderate in 

VEGF188 tumors but there were no gross signs of vascular normalization in this 

tumor type. Most notably, SU5416-induced vascular normalization in VEGF120 

tumors was associated with an acquired resistance to CA4P, such that they responded 

more like untreated VEGF188 tumors in the window chamber assay. In contrast, 

SU5416 had no effect on red blood cell velocity in VEGF188 tumors, although 

response to CA4P was still moderately reduced by pre-treatment with SU5416. 

Overall our results suggest that tumors expressing high levels of VEGF120 are 

particularly susceptible to vascular normalization but that this process renders them 

insensitive to subsequent vascular disrupting approaches. 
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SU5416 was previously shown to elicit both a reduction in vascular density 

and vascular normalization in a rat glioma model transplanted into nude mice 13 and 

in a hamster melanoma model 14. A reduction in tumor growth rate was also observed 

in both these studies. In contrast, Ansiaux et al. 36 reported an absence of vascular re-

modeling and growth retardation in a transplanted liver tumor and fibrosarcoma 

mouse model in response to SU5416 treatment, illustrating variability in response to 

this agent between different tumor types. A daily dosing strategy was employed in all 

these studies. In the current study, we used an intermittent dosing strategy, consistent 

with that used clinically and based on evidence that a twice-weekly dosing strategy 

was as efficacious as a daily dosing strategy, in the A357 human melanoma tumor 

model 37. Prolonged biological activity for several days is due to sequestration of this 

hydrophobic drug in lipid membranes 38. Clinical trials with SU5416 were 

unsuccessful, with no or minimal decrease in microvascular density in advanced 

cancers of mixed origin and inflammatory breast cancer 39, 40. In our mouse 

fibrosarcomas, we also showed only moderate anti-angiogenic effects of SU5416, 

intermediate between those observed in the above pre-clinical studies, with no growth 

retardation in either tumor type. Window chamber experiments indicated that there 

was a greater effect of SU5416 in the periphery than in the centre of VEGF120 

tumors, which is consistent with observations in other tumor types 41. In 

subcutaneously implanted tumors, these effects were consistent with only a small 

inhibition of VEGFR-2 phosphorylation in both VEGF120 and VEGF188 tumors. 

RTK phosphorylation profiling of tumor samples also showed inhibition of other 

known and less well-known targets of SU5416, which is likely to have contributed to 

the vascular effects observed.  
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Vascular normalization was more apparent in VEGF120 tumors than 

VEGF188 tumors, as exemplified by the increase in red blood cell velocity in the 

former but not the latter tumor type. Normalization is a complex process that can 

occur following a range of treatment modalities 42. Indeed, it was first identified in 

the 1970s by Le Serve and Hellman 43 following treatment with the anti-metastatic 

drug razoxane, although it is most commonly associated with anti-angiogenic drugs 5. 

Although the molecular control mechanisms are poorly understood, morphological 

features can include a moderate reduction in microvascular density, change in vessel 

diameter and improved pericyte coverage, which may lead to an increase in blood 

flow, reduced vascular permeability and/or improved oxygenation 5. In VEGF120 

tumors the increase in red blood cell velocity was not associated with any detectable 

increase in pericyte coverage. This may be due to the known inhibitory effect of 

SU5416 on PDGFR-β, which was also demonstrated in the current study. On 

examination of tumor sections stained for CD31, we commonly observed CD31+ 

cells bridging the lumen of the larger vessels in VEGF120 tumors but less commonly 

so in VEGF188 tumors. VEGF120 lacks the C-terminal heparin-binding motifs of the 

larger isoforms and its consequent diffusibility is thought to account for misguidance 

of endothelial cell migration 44, which could explain our observation. These 

endothelial cell ‘bridges’ were reduced and wider caliber open vessels were more 

evident following SU5416 treatment. These effects could at least partially explain the 

increase in red cell velocity observed. In addition, we found higher interstitial fluid 

pressure (IFP) in VEGF120 compared with VEGF188 tumors, which is most likely 

related to our previous finding of highly permeable vessel walls in the former 17. 

SU5416 pre-treatment affected IFP differently in the two tumor types, preventing the 

increase in IFP that was observed over time in VEGF120 tumors. SU5416 also 
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prevented the characteristic hemorrhagic response of VEGF120 tumors to CA4P in 

window chambers, indicating a reduction in vascular permeability. A reduction in 

IFP has previously been proposed as a driver for tumor vascular normalization, 

possibly via oedema reduction 13.  

SU5416-induced vascular normalization resulted in VEGF120 tumors 

acquiring resistance to subsequent treatment with CA4P. This effect was substantial, 

with a complete abrogation of the hemorrhagic response in window chambers, at 

approximately 6 h after treatment, and abrogation of the subsequent loss of 

vascularity by 24 hours. Various features of vascular normalization could account for 

this effect. Firstly, CA4P causes a very rapid decrease in blood flow to tumors, within 

minutes of treatment, as shown in the current study. The SU5416-induced increase in 

red cell velocity in VEGF120 tumors may therefore have protected the tumors against 

blood flow dropping to levels that cause ischemic damage in response to CA4P. In 

addition, fragility of the vascular walls in VEGF120 tumors makes them particularly 

susceptible to damage by CA4P, resulting in an increase in vascular permeability, 

hemorrhage and tumor necrosis 17. Prevention of the hemorrhagic response to CA4P 

by SU5416 pre-treatment suggests that SU5146 reversed the well-known influence of 

VEGF on vascular permeability. This effect would not have been so apparent in 

VEGF188 tumors, where we have shown vessels to be less permeable and less prone 

to hemorrhage than in VEGF120 tumors 17. Although SU5416 had the greatest 

impact on response to normally CA4P-sensitive VEGF120 tumors, there was also a 

significant SU5416-induced reduction in response to CA4P in VEGF188 tumors, as 

seen in s.c., as well as window chamber tumors. This suggests that the decrease in 

vascularity associated with SU5416 treatment in this tumor type did cause some 

hemodynamic changes that were not detected with the assays used in these 
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investigations. Nevertheless, it is clear that by far the greatest effects on response to 

CA4P were found in VEGF120 tumors.  

Advances in cancer therapy rely to a large extent on understanding the 

mechanisms and consequences of combining targeted treatments, including vascular-

targeted treatments, with each other as well as with conventional therapy. VDAs 

represent a promising group of novel compounds for tumor vascular targeting but the 

severe tumor hypoxia that accompanies ischemia raises the concern that re-growing 

tumors from surviving cells will be particularly aggressive 45. In addition, VDAs have 

been shown to increase the number of circulating endothelial progenitor cells and 

tumor-infiltrating macrophages after treatment, processes that can contribute to tumor 

re-vascularization 46, 47. Consistent with these considerations, several pre-clinical 

studies have shown that combining VDAs with a subsequent anti-angiogenic 

treatment such as neutralising antibodies for VEGF (bevacizumab) or VEGFR-2 

(DC101) or a receptor tyrosine kinase inhibitor increases the tumor regrowth delay 

found for either agent alone 48-50. Our study sounds a note of caution, suggesting that, 

if vascular normalization occurs following anti-angiogenic treatment, this would 

reduce the efficacy of a subsequent VDA treatment. 

In conclusion, although vascular normalization can increase the delivery of 

chemotherapeutic drugs to tumor tissue, it can also reduce the efficacy of VDA 

treatment. Predictive bio-markers are urgently required for personalized cancer 

treatments. We have shown that expression of individual isoforms of VEGF can 

influence susceptibility of tumor vasculature to the normalization process and 

therefore may be useful for predicting response to anti-angiogenic, as well as 

vascular-disrupting, therapy.  
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Figures 

 

Figure 1  

Effect of SU5416 on vascular morphology in sub-cutaneous VEGF120- and 

VEGF188-expressing tumors analysed at 24 or 48 h after the last dose of SU5416 or 

vehicle; see main text for dosing schedule. (A): Vascular density (number of vessels 

per field as defined by CD31 staining) and vascular area (% pixels positive for CD31) 
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in fixed tissue; n = 5-9 tumors per group; ≥ 7 high power ROIs per tumor; values are 

means ± 1 SEM. * represents a significant difference in vascular density between 

VEGF120- and VEGF188-expressing tumors. ^ represents an overall decrease in 

vascular density and vascular area with SU5416 treatment (2-way ANOVA with 

Bonferroni post-test; P < 0.05). There were no significant differences between 

individual pairs of data. (B): Examples of CD31 staining in fixed sections from 

tumors following vehicle or SU5416 treatment at different magnifications; i) and iv): 

vessels presented as narrow bands in untreated tumors, with isolated regions of large 

dilated vessels in SU5416-treated tumors (x10 objective) - individual vessels were 

commonly larger in VEGF-120 than in VEGF188 tumors. ii), iii), v) and vi): arrows 

represent endothelial cell ‘bridges’ in untreated tumors; rectangular regions in ii) and 

v) (x20 objective) are shown at higher power (x40 objective) in iii) and vi); scale bars 

are 100 µm. (C): Images from H&E stained sections of tumors treated with SU5416 

showing isolated regions of necrosis surrounding blood vessels (x40 objective). (D): 

Graph shows extent of α-SMA+ staining relative to extent of CD31+ staining in 

frozen tumor sections; n = 5-9 tumors per group; ≥ 5 ROIs (x10 objective) per tumor; 

values are means ± 1 SEM. Images show examples of double immunofluorescence 

staining for CD31 (red) and α-SMA (yellow-orange) for vehicle-treated tumors. * 

represents a significant difference in staining ratio between VEGF120- and 

VEGF188-expressing tumors (2-way ANOVA with Bonferroni post-test; P < 0.05). 

Scale bars are 250 µm.  
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Figure 2 

Effect of SU5416 on growth (A), % necrosis (B), interstitial fluid pressure (C) and 

receptor tyrosine kinase (RTK) phosphorylation (D) of VEGF120- and VEGF188-

expressing sub-cutaneous tumors; see main text for dosing schedule. Data are means 

± 1 SEM; n = 5-7 tumors per group in (A) and (B). At least 1000 random points per 

tumor were counted for necrosis calculation in (B) (see main text for details). The 

left-hand graph in (C) shows IFP for individual tumors and the mean ± 1 SEM prior 

to treatment. * represents a significant difference (P < 0.05; unpaired students t-test). 

The right-hand graph shows the effect of SU5416 in tumors, where IFP was obtained 
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before and after treatment in the same animal. Data are means ± 1 SEM for n = 8-14. 

* represents a significant difference in response of IFP to SU5416 between 

VEGF120- and VEGF188-expressing tumors (2-way ANOVA with Bonferroni post-

test). (D): i) shows the X-ray film optical densities derived from exposure of 

phospho-RTK detection array membranes, following incubation with protein from 

tumor extracts. Results are expressed as the ratio of optical densities for tumors from 

animals treated with SU5416 versus those treated with vehicle. Each bar represents 

mean ±1 SEM for 3-4 tumors. Tumors were excised 24 or 48 h after the last dose of 

SU5416 or vehicle. The 5 known SU5416 targets of 39 RTK receptors are shown: 

platelet-derived growth factor receptor beta (PDGFRb); stem cell factor receptor/c-

Kit (SCF-R); fms-like tyrosine kinase 3 (Flt3); VEGF receptor 2 (VEGFR2); c-RET 

receptor tyrosine kinase (c-RET). ii) shows western blots and resulting X-ray film 

optical densities for pERKs from tumor extracts for SU5416 or vehicle treatment at 6 

h after the last dose of SU5416 or vehicle. Each bar represents mean ± 1 SEM for 3-4 

tumors.  
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Figure 3 

Effect of SU5416 on vascular morphology and function in VEGF120- and 

VEGF188-expressing tumors growing in dorsal skin-fold window chambers; see 

main text for dosing schedule. A) shows images of the vasculature under transmitted 

light conditions using a x10 objective from 2 regions of interest (ROI) in a single 

representative tumor from each group (see Figure 4 for the tumor location of each 

region of interest); dotted lines demarcate tumor edges. Images on the far-right 

illustrate vessel demarcation for subsequent quantitation, using in-house-developed 

software, for the adjacent ROIs.  B) shows quantitation of total vessel length per 

tumor area and average length of individual vessels derived from images such as 

shown in A); data are means ± 1 SEM for n = 5-7 tumors per group. C) shows 

quantitation of red blood cell velocity in individual blood vessels determined from 

video images captured under epi-fluorescence using a x20 objective from 2 ROIs 
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such as those shown in A); data are means ± 1 SEM for n = 5-7 tumors per group; 

data were acquired from approximately 20 vessels per ROI. * represents a significant 

difference between groups (P < 0.05; 1-way ANOVA followed by Tukey-Kramer 

post-hoc test). 

 

Figure 4 



 38 

Representative low power images (x2.5 objective) of tumors growing in dorsal skin-

fold window chambers before and after treatment with a single i.v. dose of CA4P (30 

mg/kg), with/without chronic pre-treatment with SU5416 or vehicle. See main text 

for dosing schedules. Images at 0 h indicate the positions of the ROIs used for these 

tumors in the quantitative analysis of data shown in Figures 3 and 5. p represents 

hemorrhage; + indicates a large avascular region occupying most of the tumor 

volume. Graph shows quantitation of the extent of central avascular regions at 24 h 

after CA4P treatment. There were no completely avascular regions in VEGF120 

tumors treated with SU5416 or VEGF188 tumors treated with vehicle only. Data are 

means ± 1SEM; n = 5-7. * represents a significant difference between groups (P < 

0.05; 1-way ANOVA followed by Tukey-Kramer post-hoc test). 

 

Figure 5 
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Effect of chronic pre-treatment with SU5416 on morphological and functional 

vascular response of VEGF120- and VEGF188-expressing tumors growing in dorsal 

skin-fold window chambers to a single i.p. dose of CA4P (30 mg/kg); see main text 

for dosing schedules. Both tumors were significantly more resistant to CA4P 

treatment if they had been pre-treated with SU5416. * represents a significant 

difference (P < 0.05) between the full time-course for SU5416 and vehicle pre-

treatments (mixed design ANOVA with repeated measures). Data are means ± 1 

SEM for n = 5-7 tumors per group. 
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Figure 6 

Effect of chronic pre-treatment with SU5416 on morphological vascular response of 

sub-cutaneous VEGF120- and VEGF188-expressing tumors to a single i.p. dose of 

CA4P (30 mg/kg); tumors were assayed 3 h after CA4P treatment, see main text for 
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dosing schedules. (A): Number of objects per field (as defined by CD31 staining) and 

vascular area (% pixels positive for CD31) in fixed tissue; * represents a significant 

difference between groups (P < 0.05, unpaired students’ t-test). Data represent means 

± 1 SEM for n= 4-7 per group; ≥ 7 ROIs per tumor; parallel lines represent mean ± 1 

SEM for vehicle-treated tumors, as shown in Figure 1. (B) Example images from the 

different treatment groups showing CD31 staining in brown (x20 objective) and the 

corresponding computed vascular delineations for two of the images, where each 

colour represents a single object. Note that the software identified multiple objects 

from single vessels for the CA4P-treated tumor (yellow arrows), due to disrupted 

endothelial cell linings, whereas vessel identification is more accurate for the tumor 

pre-treated with SU5416. Scale bar represents 100 µm.  

 

 

 


