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The SHIP Safety Case Approach

P.G. Bishop and R.E. Bloomfield,
Adelard,

London, E3 2DA, England

Abstract

This paper presents a safety case approach to the justification of
safety-related systems. It combines methods used for handling
software design faults with approaches used for hazardous plant. The
general structure of the safety argument is presented together with
the underlying models for system failure that can be used as the basis
for quantified reliability estimates. The approach is illustrated using
plant and computer based examples.

Introduction

The SHIP project was sponsored under the EU Environment Programme (Major
Industrial Hazards). The objective of the project was to assure plant safety in the
presence of design faults but it was tackled from a novel standpoint. In software,
all faults are design faults so techniques developed for software might well be
applicable to the design of complete systems.

This paper describes a central element of this research—the SHIP safety case. The
concept of a “safety case” grew out of work in the nuclear industry and is now a
familiar term in many industries. For example, in the UK the CIMAH regulations
implement the EC Directive on Major Hazards (the Seveso Directive) and require
a report on the safety of the installation that addresses the dangerous substances
involved; the installation itself; the management system; and the potential for
major accidents. In SHIP, the safety case concept has been formalised and
extended to cover both hardware and software systems.

Elements of a safety case

We define a safety case as:

“a documented body of evidence that provides a convincing and valid
argument that a system is adequately safe for a given application in a given
environment”
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The development of the SHIP safety case is based on: a simple model of the system
behaviour; the available evidence; and an argument which translates evidence into
claims about behaviour.

General Safety Case Structure

The safety case should be developed in parallel with the design. It will evolve and
become more detailed as the system is developed. At each stage, the basis for the
safety arguments should be clear. The safety case should:

• make an explicit set of claims about the system

• provide a systematic structure for marshalling the evidence

• provide a set of safety arguments that link the claims to the evidence

• make clear the assumptions and judgements underlying the arguments

• provide for different viewpoints and levels of detail

There is much work on the structuring and representation of arguments in
mathematical logic [Gentzen69] and in formal methods [Hoare69, Jones90]. In the
safety field we have the traditional representation such as fault trees [Vesely81]
and the safety arguments in the Safety Argument Manager (SAM) [McDermid94].
The safety case structure developed in SHIP draws on this work. In addition we
have formalised the basic argument structure, so that the safety argument could in
principle be checked, supported and maintained by tools if the approach is further
developed. Within this structure we consider the basic types of argument that can
be deployed.

Within the SHIP model, a safety case consists of the following elements: a claim
about a property of the system or some subsystem; evidence which is used as the
basis of the safety argument; an argument linking the evidence to the claim, and
an inference mechanism that provides the transformational rules for the argument.
This is summarised in the figure below.

Claim

Argument

Evidence

Evidence

Evidence

Inference rule

Inference rule

Figure 1: Argument Structure
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The actual nature of the argument and the inference mechanism can vary
depending on the system design and the safety case strategy. For example an
argument could be:

• Deterministic, where the evidence can be axioms, the inference
mechanism is the rules of predicate logic, and the safety argument is a
proof using those rules.

• Probabilistic, where the evidence could be component failure rates and
assumptions of independence, and the inference mechanism is statistical
analysis.

• Qualitative, where the evidence might be adherence to standards, design
rules, or guidance. The inference mechanism is some form of acceptance
criterion based on this.

In addition the overall argument should be robust, i.e. the argument can be sound
even if there are uncertainties or errors.

Structuring a Safety Case

In practice it is unlikely that any safety case will be entirely deterministic or
probabilistic. It may consist of a number of claims about specific properties of the
system which may not necessarily be the same type. In addition it needs to be
viewed at various levels of detail. It is proposed that a safety case can be structured
as a hierarchy of claims as shown below:

Claim

Fact

Assumption

Sub-Claim

Claim

Evidence

Evidence

Evidence

References

References

Prob of
Violation

Sub-

Figure 2: Hierarchic Argument Structure

In this model, the evidence used at one level of the argument can be:

• facts, e.g. based on established scientific principles and prior research

 Adelard SafeComp95, Belgirate, Italy 11-13 October 1995 3
pp 437-451, published by Springer (ed. Gerd Rabe)



• assumptions, which are necessary to make the argument, but may not
always apply in the “real world”

• sub-claims, derived from a lower-level sub-argument

This is a recursive structure which can represent arguments at successively finer
levels of detail. This structure could evolve over the lifetime of the project. Initially
some of the sub-claims might actually be design targets, but as the system develops
the sub-claims might be replaced by facts or more detailed sub-arguments based on
the real system. Deviations in implementation can be analysed to see how this
affects a sub-claim, and how changes in sub-claim “ripple through” the safety
argument.

In order to simplify the evaluation of this structure, it is proposed that:

• any argument tree must be consistent in type using a single consistent set
of inference rules

• the evidence from sub-arguments must be consistent in type, or it must be
possible to transform the type

For example, if the top-level argument is probabilistic, and there is a deterministic
argument that some subsystem is free of design faults, the zero fault result is
transformed into a zero failure rate in the top-level evidence. Equally if the top-
level argument is deterministic, lower-level probability calculations can be linked
to probabilities of violating the assumptions. For example it might be possible
make a deterministic argument that a system is safe provided that “at least two
feed pumps will always be available”. A separate lower-level computation might
calculate the chance that this assumption will be invalid. This information might
then be used to qualify the claim (e.g. there is 0.999 chance/year of safe operation).

Deterministic Argument

A deterministic argument supports a claim or sub-claim by showing that, given
some assumptions and a model of the real world, certain hazardous behaviours are
“incredible”. A simple example for a chemical plant may be that the inventory of
two chemicals is not sufficiently large for a critical explosive mass to be present.
An example from the computer area would be a proof that a communications
protocol cannot deadlock.

In addition to deterministic claims about the behaviour of the system, weaker
deterministic arguments may be made about the faults in a system. These
arguments require evidence of the complete absence of certain classes of faults for
a particular system function or component. For example, the use of a CAD system
may exclude some forms of translation fault or the typing mechanisms in a high
level computer programming language may exclude certain errors.
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Deterministic arguments would normally require a formal model of the system and
a proof that the system is safe with respect to its safety requirements (the proof
could be a rigorous style argument rather than a machine-checked proof). The
supporting evidence could include:

• explicit validation of the model assumptions

• an independent check of the formal argument

In addition to arguments based on formal models, it may also be possible to claim
“fault-freeness” on the basis of exhaustive test coverage of all required behaviours.

Probabilistic Argument

Probabilistic argument combines parameter estimates to obtain an estimate of the
probability of some top level property (e.g. dangerous failure). The inference
structure might be some form of Bayesian combination, evaluation of some
stochastic model (e.g. Markov model or a fault tree), or simple statistical
combination. It should be noted that probabilistic arguments also make use of an
underlying model of system behaviour and the relationships between the various
forms of evidence.

Qualitative Argument

Most safety cases will include important qualitative claims. In some ways they are
similar to deterministic arguments in the sense that some particular property
exists. While deterministic arguments might be binary, qualitative arguments
might be more fuzzy (e.g. refer to a rating such as “good”, “indifferent” or “bad”)
and the ratings may be assigned by expert judgement. Qualitative assessment can
also be binary where some “tick-list” of criteria must be satisfied to demonstrate
acceptability (e.g. conformity to standards, construction criteria, or design rules).
This may be a valid approach if the design tick-list encapsulates past experience
which has been shown to achieve safety.

Dealing with Uncertainty

Any safety argument is susceptible to error (e.g. in the evidence, the argument or
the assumptions) so there should be strategies for limiting the risks associated with
such errors. One simple strategy is to design the overall argument so that can
withstand a single flaw, i.e. we adopt a qualitative defence in depth approach to
the argument. In this case it might be structured as follows.
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Safety 

Argument
Chain

(more chains to
reduce residual doubt)

can have
several links
in the chain

( e.g. for different
  fault classes)

Case

Good Process
(QA, design standards, etc.) 

Accepted scientific principles

Figure 3: Example of a Safety Argument that Minimises Residual Doubts

Either chain would be sufficient to support the claim, and care should be taken to
avoid any common links (e.g. common assumptions) between the two chains.

More sophisticated arguments could also be deployed which take a more quantified
approach to such factors as: the confidence in specific assumptions, common mode
failure probability, and numerical limits for claims made on any single leg

Approach to Quantification

While the safety case structure can accommodate qualitative claims for system
safety, the main objective of SHIP was to use a more quantified approach. In this
section we outline the basic concepts that can support a quantified safety argument.

Underlying Models

Our approach to reliability quantification in a safety case is based on two simple
underlying models. The first is based on a standard model for software
failure—and since software failures are due to design flaws, the same theories
should be directly applicable to plant or computer hardware failures caused by
design flaws. The second model considers the overall response of the system when
a failure occurs, and demonstrates that the safety argument has to take into account
the design methods, development process, and existing field experience.
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Failure model for software

In trying to understand and predict the observed reliability of a software based
system we need an underlying model for software failure. The reliability of a
system is based on three factors:

1) the number of faults

2) the size and location of faults

3) the input distribution (operational profile)

This is illustrated in the figure below.

Program Internal State 

Input 
Value

Defect

Input
Distribution

Operational

Distribution

Perceived
'Defect Sizes'

Program 

Defect does not
affect reliability

Reliability

Figure 4: Illustration of the Software Failure Process

It is clear from the diagram that an alteration of the input distribution could
radically alter the operational failure rate of the system. Where there is a single
copy running in a fixed environment or where there are very many copies of the
software running, the input distribution is likely to be effectively stable. Under
such a stable input distribution, the faults are likely to have a fixed “perceived
size” (which may be zero if a fault is not covered by input values).

In practice the number of faults within an item of software will not remain static.
As operating experience is gained, faults will be revealed and corrected so the
reliability of the software should grow with increasing execution time.

We considered that this model could be applied directly to hardware systems, so
the related software reliability assessment methods could also be deployed. These
methods include reliability growth modelling, testing and formal methods.
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System failure behaviour

In safety related systems, we are not just concerned with reliability in general; we
also need to distinguish between dangerous and safe failures. This leads to the
underlying model of behaviour shown below.

 OK
state

erroneous
state

safe
state

dangerous
state

- mode of use

error correction

error
activated

safe failure

dangerous failure

Transition prob. depends on:

- likely number of faults
- fault size and distribution

Transition depends on:
- fault tolerance in design
- nature of application
(‘grace’ time, self-healing?)

Transition depends on:
- fail-safe design
- what hazards exist

Perfect
state

fault 
introduced

Transition depends on:
- testing
- bug reporting/correction

fault 
removal

- amount of field usage

- system documentation

Transition prob. depends on:

- development process
- maintenance procedures

Figure 5: Model of System Failure Behaviour

This follows the standard fault-error-failure model for software. A fault is a defect
in the program code and is the primary source of the failure. After development,
the program could be perfect or faulty. However, even if it is faulty, the program
may still operate correctly most of the time (i.e. stay in the OK state) until some
triggering input condition is encountered. Once triggered, some of the computed
values will deviate from the design intent (an error). However the deviation may
not be large enough (or persist long enough) to be dangerous, so the system may
recover naturally from the “glitch” in subsequent computations (“self healing”).
Alternatively explicit design features (e.g. diversity, “firewalls”, etc.) can be used
to detect such deviations and either recover the correct value (error recovery) or
override the value with a safe alternative (fail-safety).

If the failures are reported back then, in the longer term, the software can be
corrected and a new version issued. Each version should (hopefully) contain fewer
faults than the previous one and could potentially result in a “perfect” program.
This is the principle underlying software reliability growth modelling.
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These concepts should be equally applicable to faults in plant designs. The only
difference in physical systems is that faults can occur spontaneously (e.g. random
failures due to deterioration or stress) without any external intervention, and these
faults can be fixed using a new part of the same design. However this aspect is
already covered in conventional system reliability analyses.

Given that the basic concepts are valid, we still need to select which concepts will
be deployed to support the specific safety argument. The strategy for developing a
safety case is discussed below.

Using the Models to Develop a Safety Case Strategy

The overall approach to generating the safety case involves:

• characterising the safety case arguments in terms of the transitions of the
model

• ensuring the implementation strategy is compatible with the safety
argument(s)

• determining and evaluating the evidence to support the claims made about
the transition probabilities in the model

Characterising the safety case

As noted above one of the primary claims in developing the safety case is about the
probability of dangerous failure. In developing the safety case arguments, it is
useful to consider the mechanisms that determine the dangerous failure probability
as indicated in the annotations of Figure 5. However, this is a general model, and a
particular safety argument may focus on quantifying particular transition arcs. The
main approaches are listed below:

1) A fault elimination and quantification argument can increase the chance
of being in the “perfect” state and can also would reduce the probability of
the OK → erroneous transition. An extreme example would be an
argument of correctness. This would imply that the error transition rate
was zero, and this would be sufficient to bound the dangerous failure rate.

2) A failure containment argument that would strengthen the erroneous →
OK or erroneous → safe transition. An example would be a strongly fail-
safe design which quantifies the fail-safe bias. This, coupled with test
evidence bounding the error activation rate, would be sufficient to bound
the dangerous failure rate.

3) A failure rate estimation argument that would estimate the OK →
dangerous transition. The whole system is treated as a “black-box” and
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probabilistic arguments are made about the observed failure rate based on
past experience or extensive reliability testing.

It is also possible to apply the arguments selectively to particular components or
fault classes, e.g.:

1) A design incorporates a safety barrier which can limit dangerous failures
occurring in the remainder of the system. The safety argument would then
focus on the reliability of the barrier rather than the whole system.

2) Different countermeasures might be utilised for different classes of fault.
Each fault class then represents a separate “link” in the argument chain,
and all fault classes would have to be covered to complete the argument
chain. For example, design faults might be demonstrated to be absent by a
deterministic argument, while random hardware failures are covered by
hardware redundancy.

Implementation supports the safety argument

The previous discussion illustrates the key and closely coupled roles of the
development processes and the design in formulating the safety case. Sometimes,
the design and development approach is geared toward implementing the
operational requirements; the need to demonstrate safety is only considered at a
later stage. This can lead to considerable delays and additional assessment costs.
The safety case should be an integral part of the design methodology and the
feasibility and cost of the safety case should be evaluated in the initial design
phase. This “design for assessment” approach should help exclude unsuitable
designs and enable more realistic design trade-offs to be made.

Sources of evidence and types of argument

The arguments themselves may be either probabilistic or deterministic and utilise
evidence from the following main sources:

• the design

• the development processes

• field experience

In considering the construction of a safety case, there are a range of options open
to the designer at the preliminary design phase, as illustrated in Table 1 below.
This is not a comprehensive list, but it serves to illustrate the basic approach to
designing a system and safety case. Consideration of the readily-available evidence
could have a strong influence on the economics of different design solutions.
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Implementation Options/Evidence

Type of Argument Development
process

System design Field
experience

Fault elimination
and quantification

Maximising the
probability of a
“perfect” state

Procedures,
Standards,
Documentation,
Config. control,
Testing,
Reviews,
Design tools
Formal methods

Design
simplification

Formal proof of
system
properties

Use of standard
components

Prior operating
history as
evidence of
correctness

Fault reporting,
Design
correction

Error activation

Minimising
OK→erroneous

Testing according
to expected usage

Avoid changes
in the usage

Avoid known
problem areas

Failure
containment

Strengthening
erroneous → OK
erroneous → safe

Fault Tolerant
designs

Fail-safe
designs

Fault injection
tests

Failure Estimation

Estimating
OK → dangerous

Reliability testing Operational
failure reports.

Reliability
growth models

Table 1: Arguments and Evidence

Given a list of possible implementation options, the designer then has to produce
an overall system architecture which uses some cost-effective subset of these
arguments. This may entail using different types of evidence for different
components and may use different types of argument (e.g. fault elimination, failure
containment and failure estimation). The safety case may also include diverse
argument chains to allow for uncertainty. Some examples of different safety
arguments are given in the following section.

Illustrations of the Safety Case Approach

The work on incorporating some current software concepts within safety cases has
also been beneficial in the reverse direction. The structuring concepts in safety
cases (e.g. those for dealing with residual doubt) can be equally beneficial to
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software, especially where software is critical to the safety of the overall system. In
SHIP the safety case approach was applied to both plant and software examples.
Some examples of the different types of safety case for both plant and software-
based systems are described below.

Nuclear Pressure Vessel

We examined a pre-existing safety case for a nuclear pressure vessel [Hirsch87]
and found that the arguments could be mapped on to the proposed argument
structure as shown below.

Transition Cause Safeguards

“Sound” → faulty cracks grow due to
normal ageing or
abnormal transient

cracking minimised by:
production processes, sound
design, QA, avoidance of past
problems

detected by: pre-service tests, on-
line inspections.

faulty → erroneous crack grows large
enough to leak

minimised by periodic inspection
of vessel

erroneous → safe reactor trips before
the vessel fails

on-line water leak detection
initiates trip

erroneous →
dangerous

catastrophic failure
of vessel

judged incredible

Table 2: Safety Case Arguments for a Nuclear Pressure Vessel

The safety case for the pressure vessel can be represented using the basic
transitions of the model. The safeguards given in the final column show how the
transition is minimised or eliminated. The top-level arguments are predicated on
sub-claims that fast fractures cannot occur and that a vessel always leaks before it
breaks. These sub-claims are supported by a large body of scientific evidence from
fracture mechanics and metallurgy.

Errors in the argument can be tolerated because there are two forms of protection
(periodic crack detection and on-line leak detection) either of which should be
sufficient to maintain reactor safety. In addition there is a separate argument leg
based on field experience where it is shown that the required level of reliability has
been achieved on similar vessels in the past and that all known pressure vessel
design flaws have been avoided.
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Boiler System Control

The Boiler System Control Specification study [Bishop93] looked at the use of
formal specification methods in constructing a safety case. In this example the
claim is essentially a deterministic argument that design faults are absent, coupled
with probability estimates for random hardware failures. A top-down approach is
used where the boiler dynamics are formally modelled using Temporal Logic
Algebra [Lamport91]. Boiler safety constraints were identified (which were
basically that the water level had to remain within upper and lower limits). The
control and safety functions were then modelled and shown to preserve the safety
constraints. Successive design iterations were made which identified additional
component failure modes. The final software design specification was shown to
satisfy the safety requirements provided certain assumptions were made about the
failure behaviour of the components and the diagnostic capabilities of the software.
By computing the likelihood of violating these assumptions the dangerous failure
rate can be estimated.

This is quite an effective and systematic method of eliciting the underlying
assumptions, and also for deriving an associated fault tree for random failure
probability calculations. There is no independent “second chain” which could
protect against flaws in the assumptions, so ideally an independent safety system
would be needed to cater for residual doubt. This illustrates that there is a duality
between safety arguments and system architectures. If diverse systems are used, a
single argument can be used for each one. If only a single system is used, diverse
arguments are needed to support the safety claim.

Analysis of Industrial Controller Field Data

Field data can be used to provide supporting evidence of “perfection”, or at least to
give some lower bound on the expected level of reliability. This could be used
either as the main safety case argument or as one leg in an overall safety argument.
In SHIP we examined field data on industrial computer based control systems from
both public and private sources. In one study of fault reports for a small industrial
controller we observed the following pattern of fault discovery after a new
industrial control system was released.

0
5

10
15
20
25
30
35

0 1 2 3 4 5
Elapsed time (Years)

Faults
Fixed

Figure 6: Fault Fixes over Time (Small Industrial Controller)
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Faults reported by customers are recorded, and fault fixes are incorporated in later
revisions of the design. This can happen several times in a year. It can be seen that
in the second year no faults were fixed at all. Since these controllers are mass-
produced with thousands being sold every year, this represents an extremely high
reliability level. It is suspected that the subsidiary peaks in later years were actually
due to new faults introduced when new features were added to the system. So it
might be argued that after a year of fault fixing the design may be effectively
“perfect”.

When we looked at a large, complex, industrial controller, a different pattern
emerged where there was little change in the fault fixes for successive years. We
think this is due to a combination of factors. Firstly fewer units were sold so faults
were not detected so rapidly in operational use. Secondly the system was more
complex so it probably contained more faults. Finally there is more scope for
introducing faults when new features are added.

A safety case argument based on observations of field reliability would therefore
have to take into account the complexity of the system, the stability of the design
(i.e. the rate of addition of new features) and the amount of field usage (which
affects the rate of fault removal). A theory which models these effects is being
developed in another research project [QUARC].

Summary and Conclusions

The SHIP project set out to improve the state of the art in assessing the safety of
systems containing design faults. We think that we have succeeded to the extent
that we have identified an overall safety case structure, and the different forms of
argument and evidence that can be used. We have also shown examples of
different forms of safety case that can be constructed based on both probabilistic
and deterministic design arguments, and evidence from field experience. Other
examples were developed in SHIP using a range of approaches (including
qualitative methods), but there is insufficient space to present them in this paper.

Currently most safety-related software standards focus on a development process
which will minimise faults, and this does not lead to a quantified reliability
estimate. The safety case approach proposed in SHIP takes a more global view and
provides a framework for estimating the safety and reliability of the software and
the associated systems. More work is needed to make this work routinely
applicable to industry, and further research into the application of these concepts is
being undertaken [QUARC]. We expect to see the SHIP work influencing relevant
industrial standards. Indeed, some of the safety case concepts developed in SHIP
have already been utilised by the authors in producing the forthcoming revision to
the Ministry of Defence standard for safety-critical software [MOD91].
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