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Following neutralization of infectious threats, neutrophils must be removed from inflammatory
sites for normal tissue function to be restored. Recently, a new paradigm has emerged, in which
viable neutrophils migrate away from inflammatory sites by a process best described as reverse
migration. It has generally been assumed that this process is the mirror image of chemotaxis,
where neutrophils are drawn into the areas of infection or tissue damage by gradients of chemo-
tactic cues. Indeed, efforts are underway to identify cues that drive neutrophils away by the
reverse process, fugetaxis. By using photoconvertible pigments expressed in neutrophils in
transparent zebrafish larvae, we were able to image the position of each neutrophil during
inflammation resolution in vivo. These neutrophil coordinates were analysed within a dynamic
modelling framework, using different forms of the drift–diffusion equation with model selection
and parameter estimation based on approximate Bayesian computation. This analysis revealed
the experimental data were best fitted by a model incorporating a diffusion term but no drift
term—where the presence of drift would indicate fugetaxis. This result, for the first time, pro-
vides rigorous data-driven evidence that reverse migration of neutrophils in vivo is not a form of
fugetaxis, but rather a stochastic redistribution.

Keywords: neutrophils; inflammation resolution; zebrafish; dynamic modelling;
approximate Bayesian computation
1. INTRODUCTION

Neutrophils are critical immune cells, absolutely required
for host defence against bacterial and fungal pathogens.
They respond rapidly to tissue damage and possess a
potent array of anti-microbial strategies [1]. Neutrophils
are recruited early in inflammation, and in response to
chemotactic cues, they polarize and are guided to the
sites of wounding and infection [2–5]. These responses
have evolved over hundreds of millions of years to deal
vigorously with invading micro-organisms, but a conse-
quence of this is that unchecked neutrophil activity can
damage host tissues. There is, therefore, considerable
interest in specifically understanding the resolution
correspondence (visakan@sheffield.ac.uk).
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phase of the inflammatory process [6] and how this
might fail in inflammatory disease [7].

Current mammalian models now enable visualization
of neutrophil recruitment in vivo with striking results
[8,9]. However, during resolution of inflammation, it is
much more difficult to define the fates of cells as
they are removed from inflammatory sites. In addition,
genetic approaches allowing in vivo distinction of neutro-
phils from other myeloid cells are still uncommon. The
transgenic zebrafish model, in contrast, allows in vivo
visualization of individual immune cells during in-
flammation resolution [10–12]. By using the zebrafish
model, fluorescently tagged neutrophils can be directly
observed in transparent larvae by video-microscopy,
and their behaviour analysed to provide insights into
the underlying patterns governing their movement.
Neutrophils have been observed to undergo apoptosis
and to be engulfed by macrophages during inflammation
in the zebrafish model [13,14]. There is increasing
This journal is q 2012 The Royal Society
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evidence that in addition to apoptosis, movement of
neutrophils away from inflammatory sites is a significant
event during inflammation [9,15–17], and may be a key
regulatory step in inflammation resolution in the
zebrafish [18]. Because this process cannot be easily
visualized in mammalian systems, definitive proof of its
importance is lacking, but considerable evidence points
to its potential significance in mammalian biology
[9,15]. In order to understand how this reverse migration
is regulated, it is necessary to better understand what this
process represents physiologically.

It has been widely assumed that the phenomenon of
reverse migration represents neutrophils being driven
away from sites of wounding by chemorepellents at
the resolution stage of inflammation [16], with clear
mechanistic implications. Indeed, this late-stage
response is known variously as retrograde chemotaxis,
chemorepulsion and fugetaxis [19,20] all of which
imply a motivating force on the neutrophils. However,
there is very limited analysis of neutrophil migratory
patterns during the resolution phase of inflammation,
which might confirm or refute this hypothesis.

To investigate neutrophil migratory patterns during
the resolution phase of inflammation, we made use of
the fluorescent protein Kaede, which fluoresces green,
but which can be photoconverted to red fluorescence
on exposure to light of certain wavelength [21]. This
permits specific labelling of neutrophils recruited to a
site of tissue injury at a defined timepoint, in a similar
way to the Dendra2 system used by Yoo et al. [22,23].
Those cells can then be followed throughout the resol-
ution phases of inflammation, without confounding
them with newly recruited cells. While tracking of indi-
vidual cells is possible in this model, for these analyses
there are advantages to examining the X–Y positions
of each neutrophil at each timepoint and treating them
as a population with a probability density function,
rather than a series of tracks. Specifically, we were able
to include data from every identified cell and avoid any
possibility of undue influence by long tracks.

In order to elucidate the type of process that
best describes neutrophil reverse migration, we used
mathematical techniques to model and then compare
competing hypotheses of neutrophil movement patterns.
Specifically, we sought to answer the question of whether
neutrophils are driven away from the wound by chemor-
epellents (fugetaxis), or whether they simply cease
responding to chemotactic cues after a period of time
and instead begin a stochastic migration process that dis-
perses the neutrophils away from the wound. To account
for each separate hypothesis of cell migration, we used
two distinct but related dynamic models: (i) the drift–
diffusion model, which describes a directed-stochastic
movement away from the wound, supporting the fuge-
taxis hypothesis, and (ii) the pure-diffusion model,
which describes an undirected stochastic movement, sup-
porting the hypothesis that the neutrophils disperse
randomly from the wound site, possibly as part of a
natural search pattern.

The drift–diffusion description of neutrophil migra-
tion used here is based on the random walk model,
which has often been used to describe population
migration dynamics [24] and cell behaviour in particular
J. R. Soc. Interface (2012)
[25–27]. We have previously carried out an analysis of
neutrophil movements during inflammation resolution
using a drift–diffusion model of neutrophil migration
based on regression analysis [28]. This study suggested
that reverse migration was governed by a stochastic redis-
tribution process, but was inconclusive for definitively
determining cell behaviour in the resolution phase.
In order to resolve this question definitively, we used
the approximate Bayesian computation (ABC) frame-
work [29–31] as a more rigorous approach to
identifying the cell migration dynamics. The ABC
method is well suited to dynamic modelling of cell
migration because it is simple to simulate cell behaviour
and then compare with the observations of cell movement
[27]. This simulation approach to identification also
facilitates the extension of the model with parameters
that have potential significance for influencing migration:
here, we exploit this feature by augmenting the drift–
diffusion model with a term that describes cell movement
along preferred spatial channels. This parameter addi-
tionally captures components of tissue anisotropy. A
key advantage of our approach is that the output is not
dependent on a complete understanding of factors that
might influence the behaviour of the cell population. In
particular, it includes the ultimate effects of phenomenon
such as receptor–ligand binding–unbinding events, and
the net effects of chemical or mechanical interaction
between cells.

Our estimation framework is able to discriminate
between different types of drift–diffusion migration
process on synthetic examples, and when applied to obser-
vational data of neutrophil migration in vivo shows that
this process is best fitted by models in which neutrophils
randomly redistribute, rather than models in which
neutrophils are driven away by fugetactic gradients.
This has important implications for our understanding
of the mechanisms of inflammation resolution.
2. RESULTS

2.1. Experimental data

We photoconverted Kaede-expressing neutrophils in the
vicinity of a wound 4 h post tailfin transection in trans-
genic zebrafish (figure 1a,b). These cells were initially in
the range of 0–100 mm from the wound. We observed
the evolving positions of these cells at 5 min intervals,
using time-lapse videomicroscopy. Throughout the pro-
gression of the experiment, the cells remained most
densely clustered near the wound, but their distribution
widened over time as cells migrated away (figure 1c).
Cells were not individually tracked but rather the distri-
bution at each timepoint was considered as a population.
Individual apoptotic events are not monitored with this
approach because Kaede fluorescence is lost during neu-
trophil apoptosis (unpublished observation 2011) in the
same way as it is for green fluorescent protein [13].

Inspection of cell positions over all time suggested
that while the cells moved freely over space close
to the wound, away from the wound they tended to
move in preferred spatial channels (figure 2). These
channels do not appear to correspond to vascular or
lymphatic structures, but always occupy the same

http://rsif.royalsocietypublishing.org/
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Figure 1. Experimental data: migration of photoconverted neutrophils away from a wound in zebrafish. (a) Image of a zebrafish
larva showing the neutrophils expressing a green fluorescent protein and the approximate location for the tailfin transection.
(b) Initial observed position of photoconverted neutrophils (red) and positions of all photoconverted cells at all timepoints
(grey). The data are aligned and aggregated over six zebrafish and the wound was located in each case at approximately
1250 mm on the X-position axis. (c) Position of photoconverted neutrophils at increasing timepoints relative to experiment
start (red) and positions of all photoconverted cells at all timepoints (grey).
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areas of the fish. The implication is that neutrophils at
the wound site may experience different levels of
difficulty in leaving the wound. Neutrophils near the
channels might find that leaving is easier than it is for
neutrophils at the extremes. A complete model of cell
behaviour requires a spatial restriction parameter to
complement the drift and diffusion processes.
Y
 p

600400

100

0
800 1000 1200

X position (mm)

Figure 2. Migration of neutrophils away from the wound indi-
cates preferred channels of movement. The positions of
photoconverted neutrophils are shown at all timepoints for
an individual zebrafish specimen (black dots). Many of the
cell positions appear to be gathered along specific pathways
within the extracellular matrix, suggesting that the neutro-
phils migrate along preferred channels. All six specimens of
zebrafish showed a similar pattern. (Online version in colour.)
2.2. Validation of ABC–SMC identification
framework on simulated data

We used the approximate Bayesian computation–
sequential Monte Carlo (ABC–SMC) algorithm to
both estimate model parameters and also select the opti-
mal model for describing neutrophil migration
(algorithm 1). ABC–SMC estimates model parameters
by randomly sampling parameter values over some
defined range, and rejecting values that lead to simu-
lations where observed experimental data are not
accurately predicted. Moreover, the ABC–SMC algor-
ithm extends this approach to model selection by
allocating each competing model an index value and
treating selection of this index as part of the estimation
problem (see §4 for full details). The focus in this investi-
gation was on whether pure-diffusion or drift–diffusion
models best described neutrophil migration. In order to
validate the ability of the ABC–SMC algorithm to dis-
criminate between pure-diffusion and drift–diffusion
processes, we simulated and then identified cell migration
governed by each of these mathematical descriptions.

We simulated a pure-diffusion process from the
initial cell positions of the experimental data. The
J. R. Soc. Interface (2012)
diffusivity coefficient of the simulated process was set
to 50 mm2 min21. We collected the simulated cell pos-
itions so that they emulated observations of cell
positions in the zebrafish. The results of the simulation
and the results of applying the ABC–SMC model selec-
tion algorithm (algorithm 2) are displayed in
figure 3a,b. The pure-diffusion model was correctly
chosen with a high degree of confidence (77% of
samples). The drift–diffusion model was represented
by 23 per cent of samples. The maximum a posteriori

http://rsif.royalsocietypublishing.org/


Algorithm 1. Parameter estimation using ABC–SMC.

Require: data, Yobs; Monte Carlo population size, N;
number of iterations, T; prior distribution on parameter
vector, pðuÞ; simulation algorithm to sample replicated
observations from the process, Y � pðYjuÞ choice of
distance metric r and parameter perturbation kernel K;
choice of decreasing error tolerance schedule e1; . . . ; eT :

Ensure: a set of parameter vectors ui with importance
weights wi; i ¼ 1 . . . N that form a weighted sample from
the posterior, pðujyÞ
for i ¼ 1 to N do

simulate ui � pðuÞ and Y � pðYjuiÞ until rðY;YobsÞ � e1

end for
set each v

ð1Þ
i ¼ 1

N
for t ¼ 2 to T do

Set t2 ¼ 2Varðfui : i ¼ 1 . . . NgÞ
for i ¼ 1 to N do

choose u � from the uj with probabilities vj

simulate û i � Kðuju�; t2Þ and Y � pðYj û iÞ until
rðY;YobsÞ � et

end for
set each v̂

ðtÞ
i /

pðû iÞPN

j¼1
v
ðt�1Þ
j Kðû i juj ;t2Þ

set each ui ¼ û i, vi ¼ v̂ i

end for

Algorithm 2. Model selection and parameter estimation
using ABC–SMC.

Require: data, Yobs; Monte Carlo population size, N;
number of iterations, T; prior distributions on models
pðmÞ and on model parameters pðujmÞ; simulation
algorithm to sample replicated observations from the
processes, Y � pðYjm; uÞ; distance metric r, model
perturbation kernel M and parameter perturbation kernel
K; decreasing error tolerance schedule e1; . . . ; eT

Ensure: a set of parameter vectors ui augmented with
model indicator mi, with importance weights
wi; i ¼ 1; . . . ;N that together form a weighted sample from
the joint posterior, pðu;mjyÞ
for i ¼ 1 to N do

simulate mi � pðmÞ, ui � pðujmiÞ and Y � pðYjmi; uiÞ
until rðY;YobsÞ � e1

end for
set each vi ¼ 1

N
for t ¼ 2 to T do

for each model, m, set tðmÞ2 ¼ 2Varðfui : mi ¼ mgÞ
for i ¼ 1 to N do

choose k from f1 . . . Ng with probabilities fv1 . . .vNg
set m� ¼ mk and u� ¼ uk

simulate m̂i � Mðmjm�Þ
Re-choose u� from fuj : mj ¼ m̂ig with probabilities
fvj : mj ¼ m̂ig

simulate û i � Kðuju�; tðm̂iÞ2Þ and Y � pðYj m̂i; û iÞ,
until rðY;YobsÞ � et

end for
set each v̂ i/

pðû iÞP
j:mj¼m̂i

vjKðû i juj ;tðm̂iÞ2Þ

set each mi ¼ m̂i, ui ¼ û i, vi ¼ v̂ i

end for
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(MAP1) estimate of diffusivity was 43 mm2 min21,
and the 90% CI was 30–55 mm2 min21 with the
true value lying within this interval. It is should
be noted that diffusivity is related to displacement
(and hence speed) indirectly, by the relationship in
equation (4.1).

We simulated a drift–diffusion process, similarly to
the pure-diffusion process discussed earlier, with the
initial cell positions of the experimental data. The
drift coefficient was set to 1 mm min21, and the diffusiv-
ity coefficient was set to 50 mm2 min21. The results of
the simulation and the results of applying the ABC–
SMC model selection algorithm (algorithm 2) are
displayed in figure 3c–e. The drift–diffusion model
was correctly chosen with 100 per cent confidence.
The MAP parameters from the joint distribu-
tion was a drift of 0.97 mm min21, and a diffusion of
62 mm2 min21. The 90% CIs for the marginal dis-
tributions were a drift of 0.86–1.10 mm min21, and
a diffusion of 32–81 mm2 min21, with the true
values lying within these intervals. The ABC–SMC
algorithm, therefore, robustly distinguishes between
pure-diffusion and drift–diffusion processes in these
simulated cases.
2.3. Identification of neutrophil dynamics
during the resolution phase
of inflammation

In order to characterize the migration dynamics of
neutrophils in vivo, we applied the ABC–SMC model
selection algorithm to experimental neutrophil data
1If the value of a quantity x is specified by a posterior distribution,
then the MAP estimate of x is the x-value corresponding to the
maximum value of the distribution. In other words, it is the most
likely value of x.

J. R. Soc. Interface (2012)
from six zebrafish larvae. The data were sampled at
5 min intervals for 980 min. We applied the ABC–
SMC model selection algorithm (algorithm 2) with
two candidate models: model 1, pure-diffusion and
model 2, drift–diffusion. The marginal distribution
over the models was 84 per cent for the pure-diffusion
model, and 14 per cent for the drift–diffusion model.
In the identified pure-diffusion model, the MAP esti-
mate of diffusivity was 25 mm2 min21, with 90% CI
between 16 and 33 mm2 min21. In the identified drift–
diffusion model, the MAP drift coefficient was zero
with 90% CI of 0–0.06 mm min21, supporting the identi-
fication of the pure-diffusion model as the preferred
model. Simulation of the identified pure-diffusion
model demonstrated that the migration process was
accurately described over the first half of the exper-
iment (0–490 min; figure 4d). In the second half of
the experiment (490–980 min), the distribution of the
cells was not predicted as accurately by the model—
the cell count at the wound was more than predicted
and at approximately 250 mm from the wound, it was
less than predicted (figure 4d). We took into account
possible spatial restriction of cell movement by generat-
ing two further models for inclusion in the selection
process: model 3 (diffusion–restriction) and model 4
(drift–diffusion–restriction). The results of model
selection are displayed in figure 5a. The marginal distri-
bution over the model was 25 per cent, 3 per cent, 52
per cent, 20 per cent, respectively for models 1–4.

http://rsif.royalsocietypublishing.org/
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Hence, model 3, the pure-diffusion with spatial restric-
tion parameter, was selected as the most likely model.
For maximal accuracy in parameter identification, we
applied the ABC–SMC parameter estimation algor-
ithm (algorithm 1) only to model 3. The MAP
parameter estimate of diffusivity was 45 mm2 min21

and spatial restriction b ¼ 0.65 (the joint distribution is
shown in figure 5b). The inclusion of the spatial restriction
parameter in the pure-diffusion model improved the pre-
diction accuracy (figure 5c), so that 90 per cent of non-
zero data points lay within the 90% CI (constructed by
simulating the identified model 1000 times), as opposed
to only 73 per cent with the pure-diffusion model. In
order to validate the findings of this study across multiple
independent datasets, an additional six examples were
studied, and the data analysed, as mentioned earlier.
As expected, the diffusion-restriction model was once
more chosen with high confidence (see the electronic
supplementary material, figure S1), underpinning the
broader applicability of this model.
3. DISCUSSION

The mechanisms driving inflammation resolution are
therapeutically important, and there is a fundamental
mechanistic difference between the classes of molecular
event that drive neutrophils away from inflammatory
sites, and those that allow neutrophils to be blind to, or
to ignore, chemotactic gradients that might retain
J. R. Soc. Interface (2012)
neutrophils at inflammatory sites. The question of
whether neutrophil behaviours are modelled best by fuge-
taxis or by stochastic redistribution is of fundamental
importance in our understanding of inflammation resol-
ution. We therefore investigated whether the reverse
migration of neutrophils in vivo was best described by a
pure-diffusion or a drift–diffusion process. These alterna-
tive mathematical descriptions correspond to stochastic
redistribution of neutrophils following inherent behav-
ioural patterns and to a directed fugetactic process,
respectively. We used ABC–SMC method with model
selection to identify these models, using datasets in
which the positions of neutrophils leaving a site of
tissue injury could be specifically observed.

We first applied the ABC–SMC algorithm in silico
in order to verify that we could discriminate between
different types of drift–diffusion process. This is an
important step when applying ABC–SMC in a new
context [32], such as here for the case of cell migration
in the inflammation resolution phase. When we app-
lied the ABC–SMC identification algorithm to a
pure-diffusion process, the correct model was identified
with strong confidence. The alternative model had a low
representation in the marginal posterior distribution
and, in addition, the MAP drift coefficient was zero.
Moreover, when the ABC–SMC algorithm was applied
to a simulated drift–diffusion process, the correct model
was identified with certainty. Hence, our validation pro-
cedure demonstrated that for the drift–diffusion case,
the ABC–SMC algorithm can achieve accurate results.

http://rsif.royalsocietypublishing.org/
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To investigate the reverse migration behaviour of
the neutrophils, we applied the estimation algorithm
to experimental data from zebrafish larvae during
the resolution phase of an inflammation episode. The
pure-diffusion model was identified with a high degree
of confidence (84%) and the MAP drift coefficient of
the alternative drift–diffusion model was estimated to
be zero. These results strongly suggest that the process
by which neutrophils migrate away from the wound in
the zebrafish is best characterized as a form of stochas-
tic redistribution without directional bias. Even in the
event that the model was incorrectly identified and a
small non-zero drift coefficient was present at the
limit of the identified 90% CI (0.06 mm min21), this
would only make a very small contribution to migration
(an approx. 60 mm mean shift over the 980 min span of
the experiment). This, on its own, would still leave the
cells in the vicinity of the wound. Therefore, it is
the identified diffusivity arising from the inherent
migratory patterns of the neutrophils that is contribut-
ing the major part of the motility, and this is why cells
are often seen to change direction.
J. R. Soc. Interface (2012)
It is apparent from inspecting and comparing the
pure-diffusion model simulations and in vivo obser-
vations (figure 4d) that the pure-diffusion model does
not fully explain the response. Our modelling fits the
actual data well at earlier timepoints, but at later
times (655–980 min) the predicted distribution of cells
did not precisely describe the observed cell behaviour:
the cell count at the wound was greater than predicted
and was less than predicted at approximately 250 mm
from the wound. This suggests that our model is incom-
pletely capturing the nature of neutrophil movements;
specifically, it suggests that neutrophils do not move
away from the wound as easily as a pure-diffusion
model would suggest. This is confirmed by inspection
of the distribution of neutrophil positions (figure 2).
To address this issue, we included an additional com-
ponent into the migration model describing preferred
paths of cell movement through the tissues of the zebra-
fish, characterized by a spatial restriction parameter.
This addition was motivated by the observation that
cell positions appeared to be gathered in specific spatial
channels. In addition, we were concerned that omission
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Figure 5. Identification of resolution phase neutrophil migration dynamics with restriction to preferred movement channels.
(a) Model selection: model 1 is pure-diffusion; model 2 is drift–diffusion; model 3 pure-diffusion with restriction and model 4
is drift–diffusion with restriction. (b) Estimated joint distribution of parameters for model 3 (left panel over full support of
the uniform prior and right panel zoomed in). (c) Simulation of the pure-diffusion with restriction model, model 3 (red), and
comparison with experimental observations (black). The shaded region (red) shows the 90% confidence range obtained from
1000 simulations using the MAP estimates of the diffusion–restriction parameters.
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of a necessary restriction parameter might mask the
presence of drift. By including this model term, we
enhanced our ability to detect drift, and hence any
directed migration of the neutrophils. The data-driven
nature of the Bayesian estimation framework meant
that the value of this parameter was arrived at indepen-
dently of any preconceptions or attempts to model any
particular feature. It could have been rejected by the
model selection algorithm or had a zero value, indi-
cating that it was not necessary, but it was found to
have a positive value of 0.65. Such channels might
arise owing to physical characteristics of the local
environment: it might be physically easier to displace
tissue matrix around the notochord than in the tailfin.
However, they do not correspond to vascular or lym-
phatic structures, which would suggest that they are a
feature of extravascular tissues. In addition, the site of
the channels is similar in different fish, and not a reflec-
tion of random paths chosen by individual cells defining
paths of subsequent neutrophil migrations. We used the
ABC–SMC algorithm to objectively select between
models that incorporated combinations of diffusion,
drift and spatial restriction parameters and found that
J. R. Soc. Interface (2012)
the preferred model was pure-diffusion with spatial
restriction. An advantage of the ABC–SMC estimation
framework used here, in comparison with alternatives
based on, for example, regression analysis [28,33,34] is
that further identified complexities such as spatial
restriction can easily be incorporated into the model
as they are discovered.

In a preliminary investigation into the drift–
diffusion behaviour of neutrophils using regression
analysis, we obtained simulation results that gave an
early indication that reverse neutrophil migration was
governed by a stochastic redistribution process rather
than by a fugetactic process [28]. In those simulations,
the distribution mode of the cell count predicted by an
identified drift–diffusion model (using regression analy-
sis with model hypothesis testing) shifted away from
the wound over time, which was in obvious disagreement
with observation [28]. This conflict between simulation
analysis and model hypothesis testing was not resolved,
motivating us to develop new approaches to definiti-
vely answer this important question. In the current
study, model selection results using the ABC–SMC
framework supported a diffusion-only process with
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spatial restriction. Moreover, the simulation results of the
diffusion–restriction model accurately predicted exper-
imental observations, corroborating this finding. In this
investigation, all results are consistent and provide com-
pelling evidence that the reverse migration of neutrophils
in the resolution phase of inflammation is a form of sto-
chastic redistribution, not fugetaxis.

Mathias et al. [16] and Brown et al. [17] have described
reverse migration of neutrophils in zebrafish using the
term retrograde chemotaxis. This seems to have been
based on observing a high directionality index in neutro-
phils migrating away from a wound, comparable to that
for incoming cells. However, the directionality index
could be misleading, particularly when cells have short-
term directional persistence, which has been reported in
neutrophil movement [26,35] and is built into many cell
migration models (see Dickinson & Tranquillo [34]).
Even in the absence of external cues, a high directional
index will be observed over any timescale shorter than
the characteristic persistence time and also in selected
tracks over longer timescales. In our investigation, we
have avoided the confounding issue of persistence by
observing and analysing cell migration over a longer
time-scale and by avoiding any selectivity in the use of
cell data.

In summary, we have used a new transgenic zebrafish
model, where neutrophils express the photoconvertible
protein Kaede, to investigate neutrophil migration
during inflammation resolution. Dynamic modelling of
neutrophil behaviour using approximate Bayesian com-
putation has revealed that, on a population level, there
is no evidence for retrograde chemotaxis/fugetaxis.
Instead, we find that the reverse migration of neutro-
phils from sites of wounding is best described as
stochastic redistribution, and reflects inherent beha-
viours of the neutrophil. This would seem to refute
the hypothesis that neutrophils in the zebrafish are
repelled from the wound during the resolution phase
of inflammation.
4. METHODS

4.1. Ethics statement

All animal work was performed according to guide-
lines and legislation set out in UK law in the Animals
(Scientific Procedures) Act 1986. Ethical approval was
given by the University of Sheffield Local Ethical
Review Panel.
4.2. Transgenic lines

The Tg(lyz:Gal4)i252 [18] and Tg(UAS:Kaede)s1999t
[36] zebrafish lines are described elsewhere. Briefly, the
yeast transcription factor Gal4, fused to VP16 viral
transcriptional activator sequence, recognizes and
drives transcription from the upstream activator
sequence (UAS). The Gal4 sequence is inserted into a
DNA vector 3 of a PCR-generated promoter for lyso-
zyme C, which has almost complete overlap with the
neutrophil-specific mpx promoter at early developmen-
tal stages. This construct is injected into fertilized eggs,
allowing random incorporation into the genome and
J. R. Soc. Interface (2012)
driving expression of Gal4 in neutrophils in subsequent
generations. In parallel, a second transgenic line is gen-
erated in the same way, expressing the photoconvertible
protein, Kaede, under a UAS sequence. Thus, in the
double transgenics, generated by crosses of the two
single transgenics, Kaede is expressed in neutrophils.
Transgenic lines were maintained according to standard
protocols [37].

4.3. Image acquisition

The Tg(lyz:Gal4)i252 [18] and Tg(UAS:Kaede)s1999t
[36] zebrafish lines were maintained according to
standard protocols [37]. Image acquisition is described
elsewhere [18]. Briefly, a Perkin Elmer UltraVIEW
VoX ERS 6FR spinning disc confocal (Perkin Elmer,
Inc., USA) mounted on an inverted Olympus IX81
microscope, in conjunction with the UltraVIEW
PhotoKinesis device was used for photconversion
with 40 per cent laser energy for 120 cycles of the 405
nm laser line. Subsequent images were taken with a
Nikon Eclipse TE2000-U Inverted Compound Fluor-
escence Microscope (Nikon UK Ltd.), and initial
image processing was performed using VOLOCITY v.
5.3.2 (Perkin Elmer). Individual cell positions at each
timepoint were exported for further analysis. Tracking
of individual cells was not performed.

4.4. Representation of cell migration: the
drift–diffusion equation

It has been reported that neutrophils move according to
a correlated random walk (or biased correlated random
walk if a directional cue if present) [26,35]. However,
over the timescales, we considered in the application
to neutrophils, which were greater than the typical
directional persistence times [26], this type of motion
approaches the limit of a pure-diffusion (or drift–
diffusion) process [24]. We modelled this motion in
one dimension with a boundary at x ¼ 0, according to
the following discrete time model.

xðiÞtþ1 ¼ maxð0; xðiÞt þ boutDt þ v
ðiÞ
t

ffiffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

Þ; ð4:1Þ

where xðiÞt is the position of the ith neutrophil at time t,
for i ¼ 1; . . . ;N ; bout is a bias velocity away from the
boundary; D is the underlying diffusivity constant or
magnitude of random movement of the neutrophils;
v
ðiÞ
t � N ð0; 1Þ are a family of independent white noise

processes; Dt is the time lapse between observations.
The observations of cells is described by

Yt ¼ fxðitÞt g
M�N
i¼1 ; ð4:2Þ

where it [ ½0;N �; and in general it = it� when t = t�,
and so we defined a complete observation set as

Y ¼ fYtgTt¼1: ð4:3Þ

Equation (4.1) implies that cells stop on reaching the
boundary until the next time increment.

Equation (4.2) represents there being no correspondence
between cell positions at different times (i.e. itwas not poss-
ible to observe cell tracks) and the possibility that not all
cells were observed at every observation time. It was
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straightforward to simulate this systembysampling thevðiÞt
from a normally distributed random number generator.

Equations (4.1) and (4.2) represented both the models
we considered: with bout ¼ 0, it is the pure-diffusion
model; with bout taking any non-negative value, it is
the drift–diffusion model.
4.5. Physical restrictions included in the model

Away from the vicinity of the tailfin area, the neutro-
phils tended to move preferentially through defined
channels (figure 2). This meant they were more likely
to leave the wound area if they were near to one of
these channels. Conversely, if they were not near the
entrance of a channel, their exit was likely to be
restricted. In order to account for this in a simplified
way, two additional models were proposed.

Positions update: for i ¼ 1; . . . ;N ,

x̂ðiÞtþ1 ¼ maxð0; xðiÞt þ boutDt þ v
ðiÞ
t

ffiffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

Þ; ð4:4Þ

p
ðiÞ
tþ1 � Uð0; 1Þ ð4:5Þ

xðiÞtþ1 ¼
xR; ifxðiÞt , xR and x̂ðiÞtþ1 . xR and p

ðiÞ
tþ1 , b;

x̂ðiÞtþ1; otherwise;

(

ð4:6Þ

where x̂ðiÞtþ1 is now the proposed position of the ith neu-
trophil at time t þ 1; pt

(i) is a test random variable for
the ith particle for simplified modelling wound exit
restriction b [ ½0; 1� is a constant denoting the strength
of the wound exit restriction (b ¼ 0 means no restric-
tion); xR is the distance from the wound at which exit
restriction is deemed to be experienced. It was chosen
as 100 mm, the minimum distance which contains all
the cell positions at the time of photoconversion.

Equations (4.4)–(4.6) with bout ¼ 0 is the diffusion–
restriction model and with bout taking any non-negative
value, it is the drift–diffusion–restriction model.
4.6. Parameter estimation and model selection
using approximate Bayesian computation

In general, given a prior distribution pðuÞ over para-
meters u, we want to evaluate the posterior distribution
over the parameters pðujyÞ; where y represents some
observations of the system being investigated. Accord-
ing to Bayes’ theorem, pðujyÞ/ lðyjuÞpðuÞ ¼ pðy; uÞ;
where lðyjuÞ is the likelihood of u with respect to
the observations.

For systems where the likelihood lðyjuÞ is intractable,
a typical ABC procedure approximates the posterior
distribution by

pðujrðSðyÞ � Sðy�ÞÞ � eÞ/ pðrðSðyÞ � Sðy�ÞÞ � e; uÞ;
ð4:7Þ

where r is a distance function, y� is a set of simulated
observations and S is a function that returns a summary
statistic derived from the observations. If S yields a suf-
ficient summary statistic of the data and e is sufficiently
small, then the desired approximation will be close
to the true posterior distribution. A summary statis-
tic S is necessary where the observations are too
J. R. Soc. Interface (2012)
complex or high dimensional to compare directly in an
efficient way.

It is clear that the joint distribution on right-hand
side of equation (4.7) and hence the approximate pos-
terior distribution can be sampled as follows:

— simulate a parameter vector u from the prior;
— simulate a dataset from the process lðy�juÞ;
— calculate the summary statistic Sðy�Þ and measure its

distance, r, from that of the true observation; and
— accept u as a sample from the posterior distribution

if r � 1.

This is known in the ABC literature as the ABC rejec-
tion sampler.

In its simplicity, this algorithm can be inefficient, par-
ticularly if the prior distribution is wide relative to the
target posterior distribution. This becomes more proble-
matic when the process of simulating a dataset is
computationally intensive. Various methods have been
developed to improve ABC efficiency. We found that
the ABC–SMC approach of [31], which we implemented
in Matlab, gave a good balance of efficiency and ease of
implementation. This algorithm iteratively improves on
the prior over u with a sequence of converging approxi-
mate posterior distributions. It achieves this by using
an error tolerance schedule that is relaxed to begin with
but narrows progressively to the final error tolerance.
The approximate posterior distribution identified at iter-
ation t becomes the updated prior distribution, which is
sampled from at iteration t þ 1. ABC–SMC also allowed
a natural extension to model selection, which is a funda-
mental issue for the problem we were addressing. In this
case, the model index is included as an extra parameter
in the system.

Our implementation of the ABC–SMC algorithm
and ABC–SMC with model selection algorithm are
set out in algorithms 1 and 2.

4.7. The Bhattacharyya distance for comparing
simulated and observed cell distributions

In order to apply an ABC scheme for parameter esti-
mation, it was necessary to define a metric for
comparing complete observations sets. This, in turn,
was dependent on choosing suitable summary statistics
of the complete observation set. The Bhattacharyya
distance is widely used in statistical signal processing
for measuring the distance between distributions [38].
We used this to construct a summary statistic. First,
we processed the observations into a normalized
distributional format, as follows:

Vt ¼

PN
i¼1 xB1

ðxðiÞt Þ
..
.PN

i¼1 xBb
ðxðiÞt Þ

0
BB@

1
CCA ð4:8aÞ

and

Yt ¼
1P

i Vt;i
Vt ; ð4:8bÞ

where Bj ; j ¼ 1; . . . ; b is a set of spatial intervals form-
ing a partition of the range of the xðiÞt s; xBj

is the
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indicator function of the interval Bj ; and Yt is thus the
normalized form of Vt .

For two discrete distributions f and g over the same
domainX, theBhattacharyyadistance Db between them is

Dbð f ; gÞ ¼ �log
X
x[X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðxÞgðxÞ

p
ð4:9Þ

So, because we had a discrete distribution at each of
the t timepoints, we defined the distance between two
complete observation sets as follows:

rðYð pÞ;YðqÞÞ ¼ �
XT
t¼1

log
Xb

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y ð pÞt;i Y ðqÞt;i

q
; ð4:10Þ

where Yt;i is the ith component of the vector Yt .

4.8. Implementation details

Parameters for the algorithm were chosen as follows,
N ¼ 10 and P ¼ 4000. Uniform priors were used over
all parameters with the following ranges: diffusivity:
0–200 mm2 min21, drift: 0–2 mm2 min21, restriction:
0–1. In practice, the error tolerances were chosen
automatically as follows: an initialization run was per-
formed, choosing model parameter sets from the joint
prior to form a set of P, parameter sets with associated
errors, ei. e1 was chosen as 0.75 maxðeiÞ and eT was
chosen as the first percentile of the ei. The intermediate
tolerances were chosen such that eiþ1 � eT ¼ 1

2ðei � eT Þ.
For efficiency, parameter sets from the initialization
step were recycled into the first iteration if their associ-
ated error was less than e1. The parameter perturbation
kernel was chosen to be zero mean Gaussian with var-
iance computed as in the algorithm. In applying the
model perturbation kernel, we kept the original model
with probability 0.6 and chose one of the r remaining
models with probability 0.4/r.

In Toni et al. [31], simulations were repeated for every
chosen parameter set and the weight for that parameter
adjusted according to how many simulations produce
an error within the current tolerance. We found it ben-
eficial instead to average the results of the repeated
simulations before applying the distance metric. This
took into account all the simulation results rather than
ignoring those outside the tolerance. We found that
this could also be achieved efficiently by simulating mul-
tiple copies of the system at once and then applying
equations (4.9) to the aggregated results.
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