

City, University of London Institutional Repository

Citation: Bishop, P. G., Burns, G. & Anderson, S. O. (1993). Stepwise Development and

Verification of a Boiler System Specification. Paper presented at the International Workshop
on the Design and Review of Software Controlled Safety-related Systems, 28 - 29 Jun
1993, National Research Council, Ottawa, Canada.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/551/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Stepwise Development and Veri�cation of a Boiler System
Speci�cation

Peter Bishop and Glenn Bruns and Stuart Anderson

Abstract

The rigorous development and veri�cation of a boiler system speci�cation is presented.

Part I shows how the boiler system controller can be developed in a series of elaboration

steps in which variables that directly re
ect plant conditions are replaced by variables

representing sensed, communicated values. Part II shows how the safety of the system

can be assessed by �rst verifying safety relative to some failure assumptions and then

estimating the likelihood that the assumptions hold.

1 General Introduction

In attempting to demonstrate the safety of the Generic Boiler System, two main

problems are faced. First, there are a wide range of possible failures that can occur. For

example, the physical devices themselves can fail, sensors can fail, and sensed values can

be delayed or lost in transmission. Taking careful account of all possible failures is

di�cult. A second problem, common to all safety-critical systems, is that absolute safety

cannot be shown. One can only hope to demonstrate partial or probable safety. However,

estimates of the probability of safety are hard to calculate, and it is hard to know

whether one can place much con�dence in them.

The approach demonstrated here addresses both of these issues. We present a stepwise

approach to the development of the boiler monitoring and control system. Initially, we

present an idealised controller that observes plant variables directly. Successive steps

make weaker assumptions, until �nally we arrive at a speci�cation in which only sensor

values received from the data communications system are observed. At each step, safety

of the boiler system is maintained. In this way, failures are treated systematically.

The second part of our approach is a separation of the deterministic and probabilistic

parts of the safety analysis. Safety is proved of the boiler system absolutely, under certain

assumptions that are believed to nearly always hold. Next, the likelihood of these

assumptions actually holding is estimated to give an overall probability of safety.

Our report has two parts. In Part I, the technique of step-wise elaboration of the boiler

controller is demonstrated. In Part II, veri�cation of safety and failure properties is

shown for a boiler system model developed at a late step of elaboration. We do not

present code of the boiler controller, only a speci�cation. However, this speci�cation is

realistic in the sense that device failure and shutdown conditions are determined by

values received from the data communication system.

Part 1 - Step-Wise Derivation of a Boiler System
Speci�cation

Peter Bishop, Adelard, UK

1 Introduction

This part intended to illustrate the value of a step-wise approach for the derivation and

validation of a speci�cation using the Generic Problem as an example.

The basic strategy is to start with a model of the plant. Initially we model the

unconstrained behaviour of the plant where the plant may exhibit any physically feasible

behaviour. We then need to identify the permissible set of safe behaviours: the safety

constraints and, for the successful working of the plant, we also need to identify the

normal operating constraints (see �gure 1).

Given these basic de�nitions we now need to consider how this top-level set of

requirements is elaborated into a software speci�cation. We do this by constructing

successive models of the control system which can satisfy the top-level constraints.

In considering the physical plant and equipment we need to model failures as well as ideal

operation. In order to demonstrate safety at a given level we may require extra

assumptions that constrain the behaviour of that model. For example, it may be

necessary to assume that only a single failure will exist at any given time, or that failures

are always detected. Obviously these assumptions are not always correct but we should

be able to compute the probability of violating the design assumptions.

So �nally we should be able to derive a speci�cation of the software function that should

satisfy the plant safety constraints provided the additional equipment-related

assumptions are true. We can then estimate the probability that the equipment-related

assumptions are violated in order to determine whether the system meets some

quantitative safety target.

It should be noted that the main intent is to illustrate the basic step-wise approach and

the reasoning behind the safety arguments. While the approach is expressed in a formal

notation, it does not claim to be rigorous.

The paper will primarily consider the elaboration of the safety speci�cation for a

controller. However we shall also consider some aspects of the availability requirements

which have relevance to the Generic Problem Speci�cation.

A comparison will be made between our speci�cation and the controller required in the

Generic Problem Speci�cation. Possible inconsistencies and omissions are discussed. We

also brie
y consider the analysis required to determine the probability of dangerous

failure that can occur when the design assumptions are violated.

1

2 Formal Notation Employed

Lamport's TLA (Temporal Logic Algebra) [2] is used as the formal notation to represent

the boiler and control system behaviour. TLA can specify temporal formulae such as:

x = 0 ^ 2 x
0 = x+ 1. This would describe the a variable x that, on each transition step,

increments inde�nitely from a value of zero. The reader is referred to Part II of this

paper for a description of the semantics of TLA.

2.1 De�nitions and conventions

We use ranges to represent most values because error and uncertainties need to be taken

into account. For example, a meter reading of x might be manipulated as a range

(x� errmin; x+ errmax). We also use the following notational conventions:

Vp The physical limits of a plant variable (usually �xed).

Vm The measured value of a plant variable.

fd The failure state of plant component d.

rd The reported (diagnosed) failure state of plant component d.

Unless otherwise speci�ed, ranges are normally represented by a single upper-case letter.

For convenience, the instantaneous value of plant variable is regarded as a range i.e.

V = (v; v) where v is the scalar plant value.

2.2 Range Operators

A range A is represented as a pair (x; y) in which x and y are real and x � y.

We de�ne some operations on ranges:

(x; y)1 4 x

(x; y)2 4 y

A � B 4 A1 � B1 ^ A2 � B2

A+B 4 (A1 + B1; A2 +B2)

A�B 4 (A1 � B2; A2 �B1)

3 Boiler System Safety Requirement

3.1 De�ning the Plant Model

The TLA notation is used de�ne a discrete-time model of the boiler (a schematic of the

plant is shown in �gure 2). We can choose to interpret the transitions as taking place at

2

�xed time intervals. The interval between time instants is arbitrary, but to make life

easier, we shall interpret the successive instants as the plant interface sampling time

points (5 second intervals). This is su�ciently small to capture most boiler dynamics,

and simpli�es the equations used for the various levels of modelling.

In de�ning the plant behaviour we will use the following plant variables:

L boiler content level

S steam
ow per unit time

D drain
ow per unit time

P pump
ow per unit time

np number of operating pumps

t the current time

and the following constants:

Safep safe static boiler level range

Safe safe shutdown level range (dynamic operation)

K pump
ow per pump

Lp physical limits of boiler level

Pp physical limits of net pump
ow

Sp physical limits of steam
ow

�Sp physical limits on change of steam
ow / unit time

The boiler model is de�ned as:

Boiler 4 L
0 = L+ P

0
� S

0
�D

0

^ P = K � np

^ L � Lp

^ S � Sp

^ S
0
� S � �Sp

^ P � Pp

^ t
0 = t + 1

The �rst line of the de�nition is a mass balance equation where the change in level is the

di�erence between the input and output
ows. Subsequent lines specify constraints on the

physical values. The �nal line models the passage of time for successive transitions. This

is not strictly needed for the plant model, but is relevant to time-dependent de�nitions in

the controller. It is included in the boiler model since it is a physical quantity.

For convenience, the maximum change in level L per unit time due to physical
ow

limitations is de�ned as:

�Lp = Pp � Sp

3

Note that this de�nition excludes the drain valve
ow D since this only appears to be

used at system start-up, and there is no speci�cation for the physical limits of the

maximum drain
ow.

It should be noted that Part 2 uses a reduced boiler model which excludes timing and the

drain valve
ow. However the models are equivalent under under the analysis

assumptions made in Part 2.

3.2 Establishing the Boiler System Safety Requirement

The plant model de�ned above can exhibit any arbitrary behaviour permitted by its

de�nition. In practice we wish to constrain its behaviour to meet some operational

criterion. The overall safety criterion for the boiler system is:

2L� Safep

where L is the boiler level, Safep is the physical range of levels for boiler safety.

At an abstract level we should be able to identify a `constraint behaviour' that can meet

this criterion. We then have to show that, given some safe initial condition, this

constrained behaviour always satis�es the plant safety property.

A more restrictive set of behaviours can be de�ned for maintaining plant availability, but

this not the major property of concern here. Some aspects of availability will be discussed

later.

3.3 Identifying the Shutdown Safety Boundary

At the top level of implementation, we have to identify a suitable constraint behaviour.

In the Generic Problem Speci�cation, some form of shutdown action is taken. There is no

information about how the boiler actually shuts down, but since the plant cannot

shutdown immediately, we have to establish another range Safe such that:

L � Safe ^ 2 (Boiler ^ ShutBehaviour)) 2L � Safep

Where ShutBehaviour is some arbitrary shutdown behaviour. One rather unlikely

example of ShutBehaviour could be:

ShutBehaviour 4 :(L � Safe)) (S0 = 0 ^ P
0 = 0 ^ D

0 = 0)

With this extremely idealized system, it is fairly clear that excursions will be halted one

time step beyond the Safe region. Since the shutdown occurs in a single time step, Safe

must satisfy:

Safe+ �Lp � Safep

4

where �Lp is the maximum change in level that is physically possible in one step.

In practice, the shutdown behaviour would be more complex and there would have to be

a greater margin between Safe and Safep, i.e.:

Safe+ �LShutdown � Safep

but the same approach should be applicable. Note that the dynamic aspects of shutdown

have already been taken into account in the Generic Problem Speci�cation, so the

speci�ed range of Safe is assumed to have been veri�ed.

3.4 Partitioning the Control System

Having identi�ed the shutdown safety boundary, we can consider the structure of control

system to implement the safety and normal operation requirements. We can divide the

control system into two parts: a system which implements the plant shutdown behaviour

PlantShutdown, and a controller unit Shutdown which detects unsafe plant conditions

and also performs normal plant control actions. These two components are connected by

a signal up which is monitored by the PlantShutdown system. When the up signal is

false the boiler shutdown behaviour is triggered.

We can now consider these two systems separately. In particular, we can construct a

sub-model containing the Boiler model and the ShutDown model for which we wish to

show that:

2up) L� Safe

Or in other words, whenever the signal true, there is a safe level in the boiler. Provided

up is true initially, this speci�cation, combined with the PlantShutdown speci�cation

should ensure the overall safety criterion is always satis�ed.

3.5 Elaboration Strategy

We now need to elaborate the design of the controller. The requirements for normal

operation are not considered, only those aspects relevant to safety, i.e. the value of up.

The basic approach to the design is a re-de�nition of Shutdown in a sequence of design

elaborations i. In the physical system hardware failures can occur, so we wish to ensure

the system is fail-safe i.e. shutdown will occur if the boiler limits are exceeded or if the

controller fails. so we de�ne the abstract signal up to be implemented by:

up 4 upi ^ oki

Where variable oki is used to represent an acceptable physical failure status. and upi

represents the safety limit check implemented in terms of information available at that

level of elaboration. The implementation BSysi is de�ned as:

BSysi 4 (upi ^ oki) ^ 2 (Boiler ^ ShutDowni)

5

In producing that implementation we may also make a set of design assumptions

Assumpi. In order for the implementation to satisfy the abstract safety speci�cation we

have to show that:

BSysi ^ Assumpi) 2 (upi ^ oki) L � Safe)

It will be seen that at each stage of elaboration, additional uncertainty (or `fuzz') is

introduced regarding the water level position. It will also be seen that additional

assumptions have be made to accommodate the physical characteristics and failure modes

of the various controller subsystems.

3.6 Elaboration 1 - Plant Measurement

Obviously in the physical implementation, measured values will be used rather than the

true plant variables. This data acquisition process is modelled as:

Measure 4 tm = t

^ (:fl) L � Lm)

^ (:fs) S � Sm)

^ (:fp) np =]i:(pmi ^ pii)

where the Lm and Sm are nominal accuracy ranges, pmi and pii are independent

indications of whether pump i is on, and fl, fs and fp refer to the failure states of the

respective sensors.

In the simplest case we can just take the measured level Lm. In this case this it is clear

that if up1 = Lm � Safe then:

(:fl ^ up1)) L � Safe

If ok1 = :fl then the safety requirement is met. However the controller has no absolute

knowledge of device failure status: it has to rely on a reported failure status, rl, which is

based on some (unspeci�ed) diagnosis Diagl of the measured values, i.e.:

ok1 = :rl

So we need an assumption:

Assump1 4 fl) rl

to obtain a valid value for ok1.

Like all assumptions, this may not be valid in practice, and the chance of the assumption

being violated will have be evaluated probabilistically. So the overall de�nition for

shutdown at this elaboration is:

ShutDown1 4 Measure ^ Diagl

^ up1 = Lm � Safe

^ ok1 = :rl

6

3.7 Elaboration 2 - Data Fusion

For availability reasons, the Generic Problem requires operation to be maintained for as

long as is safely possible using available data. In order to achieve this we require a data

fusion approach where of faulty measurements are diagnosed based on the consistency of

the measurements. This topic is quite complex and is discussed in detail in Part 2.

However the general features of the data fusion process are:

� A consistency model for measured values.

� `Fusion' which identi�es all potentially failed devices (i.e./ the values of rl, rs, rp).

� A computation which utilizes the failure reports and measured values to compute a

bounding range, Lc such that:

L � Lc

For convenience this whole process is termed the FusionProcess. With data fusion we

have to assume that the failure of all the sensors are detectable. In addition, data fusion

is probably impossible if there is
ow through the drain valve (since it is not measured),

so we assume:

Assump2 4 fl) rl

^ fs) rs

^ fp) rp

^ D = 0

It is assumed that the fusion process can be characterized by a variable FusionOK, such

that:

FusionOK) L � Lc

FusionOK will be false when it is impossible to compute Lc. One example of this is

when the level measurement is initially faulty (t = 0 ^ rl), in this case there is no basis

for extrapolation using the steam and pump
ow measurements.

So the overall shutdown de�nition is:

ShutDown2 4 Measure ^ FusionProcess

^ up2 = Lc � Safe

^ ok2 = FusionOK

3.8 Elaboration 3 - E�ect of Communications

The communications system can corrupt a message, so correct measurements are only

received when there are no communications failures, i.e.:

Comms 4 :fx) Measure

7

where fx is the message corruption state. We assume there is su�cient redundancy in the

message to perform a diagnosis of a faulty message, i.e.:

fx) rx

where rx is the diagnosis.

Loss of messages e�ectively increases the time between measurement samples, and hence

the uncertainty in the current value of the level. In order to guarantee safety, we require

an upper limit on the interval between valid messages, �tx, otherwise the worst case

change in level cannot be predicted, hence.

ok3 4 ok2 ^ (t0
m
� t) � �tx

where tm is the time of the last received message and t is the current time.

To detect the existence of valid messages, we need an extra assumption for this level:

Assump3 4 Assump2

^ fx) rx

Taking the worst case changes permitted by the physical constraints, the range of

possible values for the level will expand by: �Lp ��tx where Lp is the maximum possible

change in level per unit time. Thus the de�nition of the shutdown function is:

ShutDown3 4 Comms ^ FusionProcess2

^ up3 = Lc +�Lp:�tx � Safe

^ ok3 = ok2 ^ (tm � t) � �tx

FusionProcess2 is an extension of the original fusion process which takes account the

variable communication delays.

3.9 Elaboration 4 - Computer System Hardware

Obviously computer hardware failures (represented by fh) will a�ect the safety

behaviour. In terms of the available information the system has to rely on rh, the

reported hardware failure status. Thus we can de�ne

ok4 4 ok3 ^ :rh

Hence we need to assume:

Assump1 4 fh) rh

in order to ensure that ok4 is valid.

So at this level of the elaboration, the controller is de�ned as:

ShutDown4 4 :fh) (Comms ^ FusionProcess)

^ up4 = Lc +�Lp:�tx � Safe

^ ok4 = ok3 ^ :rh

8

3.10 Summary of the Elaboration Sequence

The following table shows the evolution of the design. For each implementation i,

(oki ^ upi) is necessary to avoid shutdown.

Model ok up Assumptions

Ideal true L � Safe

ShutDown1 :rl Lm � Safe fl) rl

(measurement)

ShutDown2 FusionOK Lc � Safe fl) rl

(+fusion) fs) rs

fp) rp

D = 0

ShutDown3 ok2 ^ (tm � t � �tx) Lc + �Lp ��tx � Safe Assump2

(+comms) ^ fx) rx

ShutDown4 ok3 ^ :rh Lc + �Lp ��tx � Safe Assump3

(+computer) ^ fh) rh

It should be noted that further work is required to complete the elaboration. In

particular, the chain of communication of the upi signal to some physical actuation

system has not been addressed.

4 Availability Considerations

In practice, a controller that simply shuts down is of little practical use. So far there has

been no consideration of the behaviour under normal control conditions (`bang-bang'

control). To work inde�nitely, excursions must be prevented by making the level move in

the opposite direction (or at least stabilising the level) using the pumps. Inspection of the

engineering data shows that, by switching all four pumps on and o�, level reversal (or at

least level stabilisation) is possible. This capability permits the bang-bang controller to

maintain the level with some nominal operating range, provided there is no
ow out of

the dump valve. The status of the dump valve in normal operation is not stated in the

Generic Problem Speci�cation, but it clearly must be closed or
ow reversal cannot be

guaranteed at the lower safety limit.

9

5 Impact of Plant Failures

We now have to consider whether this control behaviour can prevent excursions when

there are plant failures. The only physical plant failure is the failure of a pump, which

can either be `stuck-on' or `stuck-o�'. It can be shown from the engineering data that

`bang-bang' control can only be maintained inde�nitely if there are no `stuck-on' pumps

and only one `stuck-o�' pump. What this means in physical terms is that if a pump is

stuck-on and there is a low steaming rate, the water level keeps on rising until it hits the

upper safety limit. Similarly if there are two stuck-o� pumps, the pump
ow may not

keep up with the steaming rate so the water level can drop below the lower safety limit.

6 Comparison with the Generic Problem Specification

The Generic Problem Speci�cation identi�es a number of states for the software

implementation. There are transition conditions between the states and certain speci�c

control actions are required in each state. In order to make a comparison, we analysed

the transition conditions in order to determine the `residence condition' and actions in

each state. The residence condition is essentially the union of all the entry conditions,

with all possible exit conditions removed. One feature that was noted when analysing the

state transition diagram was the variation of entry conditions for the same node when

entered from di�erent source nodes. For instance, the `degraded mode' can be entered

with all sensors working from the `normal mode', but with a sensor missing when entered

from `emergency mode'.

The following features were observed this analysis:

� there are `health checks' on the hardware which can prevent normal operation

altogether. This is similar to our initial condition, where the system must be

ok ^ up before the system can operate.

� If the checks are satisfactory, the safety limit check (similar to our upi) is applied in

all operational states using di�erent data fusion methods. Limit excursions cause

shutdown.

� Assuming there is no limit violation, normal control actions are performed.

� There are also transitions based on pump availability. This is directly related to our

availability analysis which shows that three pumps are required to maintain

availability.

� The `emergency' mode relates to the loss of the main level measurement, so some

form of data fusion is needed to calculate the current level.

� The check on loss of communication (tm � t) enforces the requirement about the

10

maximum interval between messages.

6.1 Potential Problems

In reviewing this speci�cation, a number of potential problems have been identi�ed.

� There is no recognition of the fact that a pump can be `stuck-on' since the Generic

Problem speci�cation only includes fully usable pumps. As shown in the earlier

availability analysis, continued availability cannot be guaranteed with a stuck-on

pump. It might therefore be desirable to prevent start-up or immediately shut down

when the condition is identi�ed (as it does when there are less than three pumps

working).

� There is no information about what happens to the drain valve during operation.

In order to maintain safety and availability it is essential for the drain valve to be

shut. There is no explicit control of this valve by the computer. Ideally it should

only be possible to open it in the `system test mode', but nothing is speci�ed.

� The variation in the node entry conditions may indicate an inconsistency about

when to continue operating in the event of failures. Ideally there should be a set of

invariant conditions for the safety of the plant after initialisation. The only aspect

that might need to vary between modes is the operating status of the pumps.

7 Probabilistic Analysis

From the design assumptions and the modes of operation, we can construct a tree of

failures leading to a dangerous failure (i.e. a failure to shut down when the level is

potentially outside the safe limits). The actual structure of the tree will vary with the

approach to data fusion. Figure 3 shows an example tree where the fusion relies on the

level until it fails, then it uses the steam and pump
ow measurements as an alternative.

Provided the deterministic reasoning is correct, the top event can only occur when an

assumption is violated. In our case, all these events are undetected failures, since

detected failures can be rendered safe.

Provided we can assign probabilities to these base events, we should be able to compute

the probability of the top event. To determine the probabilities we need to quantify:

� the failure modes and failure rates of the sensors and the other hardware systems.

� the detection e�ciency of the diagnostic algorithms.

� the repair time for reported failures.

� potential sources of common cause failure.

While no data are provided to determine these base probabilities, some qualitative

observations can be made.

11

(1) There are many sources of common cause failure within the basic architecture

because the control and shutdown functions both rely on Lc. A better system

design would have made the shutdown and control systems independent (e.g.

independent sensors and hardware) so that there would be a higher probability of

trapping control excursions (i.e. there is an AND at the top of the failure tree).

(2) The communications system is one potential source of failure that a�ects all

measured variables and yet the speci�ed protocol has no simple way of checking the

integrity of the message. Reliance has to be placed on application-speci�c

knowledge (e.g. of the message contents, and credible values for variables). It would

have been better if some standard message integrity check could be incorporated

(e.g. CRC-32) whose diagnostic e�ciency is easily calculated for any speci�ed level

of `noise'.

(3) The level measurement is obviously very important since it is the main line of

defence; the other variables are only signi�cant as standbys or consistency checkers.

Safety and availability could be improved by the use of multiple level sensors.

8 Conclusions

The stepwise approach to the design allows the system to be reasoned about at a number

of di�erent levels. It allows the software speci�cation to be related to speci�c features of

the design which impinge on safety, and there is a logical connection with the

probabilistic safety analysis.

With regard to the Generic Problem Speci�cation itself, many of the features derived by

the stepwise analysis are analogous to features in the Problem Speci�cation. However it

was noted that certain aspects of the plant that could a�ect plant safety were not

addressed, notably the control of the drain valve, and the treatment of `stuck-on' pump

failures.

From a more pragmatic viewpoint, I feel that the application of such an approach on a

real system would encourage designs that are simpler to analyse and directly address the

top-level safety objective. For example, in the present design, reliance is placed on a

knowledge of boiler dynamics in order to diagnose faults in the measurement devices, so

the controller sub-model has to incorporate a boiler model for analysis purposes. An

alternative controller design with internal measurement diagnostics (e.g. multiple level

sensors) could be treated as a standalone entity, which would simplify the model and

avoid the analysis complexities inherent in data fusion.

12

13

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Unsafe behaviour

Safe behaviour

Set of all plant behaviours

Normal

Constrained behaviour

Fig 1. Behaviour of Hazardous Plant

S

D

P = K.np

LSafe Safe_p

np

Fig 2. Generic Problem Plant Model

14

AND

f h ¬ rh

OR

AND

f l ¬ r l

AND

f p ¬ r p

AND

f s ¬ r s

OR

AND

f l l

AND AND

f x ¬ rx

r

¬ L Safe⊆up ∧

Fig 3. Failure Tree for Probabilistic Evaluation

Part II | Verifying Properties of a Boiler System

Glenn Bruns and Stuart Anderson

Laboratory for Foundations of Computer Science

University of Edinburgh

Edinburgh EH9 3JZ, UK

1 Introduction

To rigorously show that a safety-critical system is safe, one would like to take advantage

of the many existing system veri�cation techniques. Unfortunately, this cannot be done,

at least directly, because no real system is absolutely safe | there is always at least a

remote chance that a component will fail. However, it is not necessary to reject logical

techniques in favour of wholly probabilistic ones. In this paper we show that the safety of

systems can be proved, relative to failure assumptions that hold only in a probabilistic

sense.

We demonstrate our approach by proving safety and other properties of a generic boiler

system [?], composed of a boiler, feed pumps, sensors, and a monitoring and control

system. We formally specify the plant and monitoring sub-systems, and show that the

system as a whole is safe relative to failure assumptions that state, for example, that if all

monitored values are consistent, in a precise sense, then no device has failed. We also

show some important failure reporting properties of the system.

2 Notation

We will use Lamport's Temporal Logic of Actions (TLA) to describe both the boiler

system and its properties. We brie
y describe TLA here; for more details see [?].

The atomic formulas of TLA are predicates and actions. A predicate is a boolean

expression build from variables and values, such as x > 1. A predicate can be regarded

semantically as a function from states to booleans, where a state is a mapping from

variables to values. An action is a boolean expression built up from variables, primed

variables, and values, such as x0 = x+ 1. An action can be regarded semantically as a

relation on states, in which primed variables refer to a \new" state and unprimed

variables to an \old" state. Thus, x0 = x+ 1 holds between two states if the value of x in

the new state is one greater than the value of x in the old state.

The syntax of TLA formulas is as follows, where P ranges over predicates and A ranges

over actions:

F ::= P 2A :F F1 ^ F2 2F

1

A TLA formula is valid if it is satis�ed by every in�nite sequence of states. Predicate P is

satis�ed by sequence � if P holds for the �rst state of �. Action A is satis�ed by � if A

holds for the �rst pair (s0; s1) of states in �. Formula :F is satis�ed by � if F is not

satis�ed by �. Formula F1 ^ F2 is satis�ed by � if both F1 and F2 are satis�ed by �.

Finally, 2F is satis�ed by � if F is satis�ed by every su�x of �.

Systems are always represented in TLA by formulas of the form P ^2A, where P

represents an initial condition. For example, (x = 0)^ 2(x0 = x+ 1) represents a system

in which x is initially 0 and is incremented in every successive state. To express the

correctness condition that a property F holds of a system Sys, we write Sys) F . For

example, letting Sys be the formula x = 0 ^2(x0 = x+ 1), we write Sys) 2(x0 > x) to

express that x increases in every successive state of Sys.

Some basic TLA proof rules, taken from [?], are listed in Appendix ??.

In modelling the boiler system it is convenient to have variables that represent a range of

values. For example, we model the measured boiler level as a range that takes the

possible measurement error into account. All model variables of type range have names

beginning with an upper-case letter. Formally, a range is a pair (x; y) in which x and y

are real and x � y. We de�ne some operations on ranges:

(x; y)1
def
= x

(x; y)2
def
= y

A � B
def
= A1 � B1 and A2 � B2

A [B
def
= (min(fA1; B1g);max(fA2; B2g))

A+B
def
= (A1 + B1; A2 +B2)

A�B
def
= (A1 � B2; A2 �B1)

jAj
def
= A2 �A1

Notice that ranges are closed under the � operator. We will later use the fact that + and

� are monotonic with respect to �, so that A � B) (A+ C) � (B + C), and similarly

for the � operator.

For convenience, certain plant variables that really represent scalar values are also

represented as ranges of the form (x; x).

3 Modelling the Boiler System

We now present a formal model of the boiler system, based on [?]. Roughly, our model

contains a part that models the physical plant and a part that speci�es a plant monitor.

The plant monitor does not explicitly contain modes, but does perform the failure

detection and shutdown condition checking needed for passing between normal, degraded,

2

emergency, and shutdown modes of operation. We model sensors and sensor failure, but

do not model data communications. Also, we do not model the boiler control scheme; the

safety properties we prove hold for any control scheme.

We begin by describing the model variables. Our speci�cation contains the following

plant variables:

L boiler content level

S steam
ow per unit time

np number of operating pumps

Lm metered content level

Sm metered steam
ow rate

pii motor on/o� indicator for pump i

pmi monitor for pump i

the following control variables:

Lc calculated boiler content level

Sc calculated steam rate

Pc calculated net pump rate

fd actual failure of device d

rd reported failure of device d

cD consistency of readings from devices in set D

up shutdown variable

and the following constants:

Lp physical limits of boiler level

Sp physical limits of steam
ow

Pp physical limits of net pump
ow

Safe safe boiler level range

K pump
ow per pump

The subscript d of variables fd and rd range over elements of Dev
def
= fl; s; pg, where l

stands for the content level meter, s stands for the steaming valve meter, and p stands for

the pumps. In writing a consistency variable cD, we abbreviate device sets as strings of

symbols from Dev, for example, we write csp instead of cfs;pg.

The boiler system model has �ve components, which model the boiler behaviour,

shutdown behaviour, data fusion, data consistency, and level determination. The boiler

3

model states the relationships between physical plant variables, and also contains failure

assumptions:

Boiler
def
= L

0 = L+ (P 0 � S
0)

^ P = K � np

^ S � Sp

^ P � Pp

^ :fl) L � Lm

^ :fs) S � Sm

^ :fp) np =]i:pmi

^
^

d2Dev

0
@fd)

_

D�fdg

:cD

1
A

^
^

D�Dev

0
@:cD)

_

d2D

fd

1
A

The model is a discrete approximation of the physical plant behaviour. The �rst three

failure assumptions state that the meters are accurate in the absence of failure. The

fourth states that failure of a device d produces some inconsistency involving d. The �nal

assumption states that every inconsistency is produced by some failed device.

We use the notation
V
i2I Fi rather than 8i 2 I:Fi because we always quantify over �nite

sets, and are therefore using only simple propositional logic, not predicate logic. The

notation]i:Fi denotes the number of i for which Fi holds.

The shutdown model determines the value of the variable up, which holds whenever the

calculated boiler level is within the safe bounds:

Shutdown
def
= up = Lc � Safe

The data fusion model determines the value of failure reporting variables. The model

states that if an inconsistency exists for some device set D, then all devices in D are

reported as failed. This pessimistic failure reporting strategy is necessary when

calculating a level range that is guaranteed to contain the actual boiler level.

Fusion
def
=

^

d2Dev

0
@rd =

_

D�fdg

:cD

1
A

Notice that the failure reporting strategy is given as a function of consistency conditions

only.

The consistency model states consistency conditions between device readings. Informally,

cD holds if the devices named in D give consistent values. Thus, cl holds if the level

4

meter reading taken alone is consistent, i.e., if it is not outside the possible physical

range. Similarly, csp holds if the steam and pump readings are consistent. Note that

:cd1d2 does not imply :cd1 or :cd2 .

Cons
def
= cs = Sm � Sp

^ cp = 8i:pmi = pii

^ cl = Lm � Lp

^ csp = true

^ csl = true

^ cpl = true

^ c
0
spl

= L
0
m
� Lm + (K � (]i:pm0

i
)� S

0
m
)

The �nal component determines the estimated level variable from reported failures. The

calculated level is the best estimate of the actual level given the current reported failure

conditions. For example, if the level meter is not reported as failed, then the best

estimate of the actual level is by the level meter.

Level
def
= :r0

l
) L

0
c
= L

0
m

^ r
0
l
) L

0
c
= Lc + (P 0

c
� S

0
c
)

^ :rs) Sc = Sm

^ rs) Sc = Sp

^ :rp) Pc = K � (]i:pmi)

^ rp) Pc = Pp

The action Step represents the combined behaviour of the preceding components:

Step
def
= Boiler ^ Shutdown ^ Fusion ^ Cons^ Level

The initial conditions include the conjunct Lc = L, which states that we must initially

know the actual level of the boiler.

Init
def
= Lc = L ^ L � Safe

The top-level boiler system description has the standard form of a TLA speci�cation:

BSys
def
= Init ^2Step

4 Failure Properties

Reports of device failure in the boiler system model are based on the consistency of

sensor data. There are two important properties to show of the failure reports. First, if a

5

failure occurs it should be reported. This is critical to the proof of safety. Letting Dr be

the the set of devices reported as failed, and Df be the set of actually failed devices, the

property can be formalised as follows:

Pessimism
def
= 2(Df � Dr)

Theorem 1 BSys) Pessimism

Proof.

Df = fd 2 Dev j fdg by de�nition of Df

fd)
W
D�fdg:cD in def. of Boiler

Df � fd 2 Dev j
W
D�fdg:cDg propsitional logic, set theory

Df � fd 2 Dev j rdg by de�nition of rd
Df � Dr by de�nition of Dr

Clauses of Step were used to prove Df � Dr, so by the deduction principle we have that

Step) Df � Dr. TLA rule STL4 then gives us that 2Step) 2(Df � Dr), and from

this BSys) Pessimism easily follows. 2

The second property is that if one or more devices are reported as failed, then at least

one of the reported devices must have actually failed. This property can be formalised as

follows:

No False Alarms
def
= 2(Dr 6= ;)

_
d2Dr

fd)

Theorem 2 BSys) No False Alarms

Proof. By de�nition, Dr = fd 2 Dev j rdg. Expanding the de�nition of rd and

simplifying, we equivalently have that Dr =
S
fD � Dev j :cDg. Writing the �nitely

many elements of the set fD � Dev j :cDg as fD1; : : : ; Dng, we have that Di � Dr and

that
W
d2Di

fd for 1 � i � n. Therefore, since Dr 6= ;,
W
d2Dr

fd. 2

5 Safety Properties

The most important property to show is that if the shutdown variable up is true, then the

boiler level is within its safe bounds. This notion of safety can be formalised in TLA as

the formula:

Safety
def
= 2(up) L � Safe)

Before proving the safety property we present a few lemmas. Of these, the third is the

most important, stating that the actual boiler level is always within the calculated level

range.

Lemma 1 Step) S � Sc

6

Proof. Assume that Step holds. If :rs then Sc = Sm. By the Pessimism property we

know that :rs) :fs, and since :fs) S � Sm, we have S � Sc. If rs, then Sc � Sp, and

since S � Sp, we have S � Sc. Thus Step) S � Sc. 2

Lemma 2 Step) P � Pc

Proof. We use a similar argument as in the proof to the previous theorem. If :rp, then

Pc = K � (]i:pmi) and np =]i:pmi, so Pc = P . If rp, then P � Pc just as for rs. 2

Lemma 3 BSys) 2(L � Lc)

Proof. To simplify the proof, we use the following derived TLA proof rule (where I is a

predicate):

A) Q I ^ (A ^ Q
0)) I

0

I ^ 2A) 2I

To see that the rule is sound, observe that we get 2A) 2(A ^Q0) from the �rst premise

by TLA rule STL4 and other rules of simple temporal logic, and that we get

I ^2(A^Q0)) 2I from the second premise and TLA rule INV1. Putting these together

gives the conclusion.

We de�ne R to be (:rl) :fl) ^ (S � Sc)^ (P � Pc). The �rst conjunct is a clause of

Step, and the others were shown to be implied by Step in the previous lemmas, so

Step) R.

We now show that (L � Lc) ^ (Step ^R0)) (L � Lc)
0. If :r0

l
, then L

0
c
= L

0
m
by a clause

of Level. Knowing :r0
l
also gives us :f 0

l
, by a conjunct of R0, and therefore L0 � L

0
m
,

giving L0 � L
0
c
. If r0

l
, then L

0
c
= Lc + (P 0

c
� S

0
c
). By L � Lc, R

0, and since + and � are

monotonic on ranges, we have that L+ (P 0 � S
0) � Lc + (P 0

c
� S

0
c
), so L0 � L

0
c
.

Applying the derived proof rule we get (L � Lc) ^2Step) 2(L � Lc). Furthermore,

L � Lc holds initially, giving Init ^2Step) 2(L � Lc). 2

Theorem 3 BSys) Safety

Proof.

BSys) 2Step by def. of BSys

) 2(up) Lc � Safe) by def. of Shutdown

BSys) 2(L � Lc) Lemma ??

BSys) 2(up) L � Safe) by TLA rule STL5 and trans. of �

2

7

6 Failure Assumptions and Consistency Conditions

We have shown some important safety properties of the boiler system relative to some

failure assumptions. As mentioned in the Introduction, the probability that the

assumptions hold could be estimated, allowing an overall estimate of system safety to be

made. We will not perform a probabilistic analysis here, but will review the failure

assumptions we have made and the related consistency conditions.

First, we have assumed that devices report values within their speci�ed accuracy when

they have not failed. Estimating the likelihood of this condition holding would probably

be possible.

Second, we have assumed that failed devices report inconsistent values. Calculating the

likelihood of this assumption holding is likely to be di�cult, as a detailed knowledge of

the likelihood and behaviour of failure modes is needed. Furthermore, the system context

is relevant. For example, a meter that fails to a 0 reading will produce a consistent failure

in contexts where a 0 reading is expected.

Third, we have assumed that inconsistencies arise only in the presence of failures. The

di�culty of assessing this assumption depends on the particular consistency conditions

adopted.

The consistency conditions play no part in the deterministic analysis, but do a�ect the

probabilistic analysis. The conditions chosen in our model could certainly be augmented.

For example, the conditions cp and cl could be strengthened by additionally requiring

that the change in pump and level values in the last step are within a certain range.

The condition cspl holds when the level meter reading is consistent with the old level

reading and the calculated net
ow. Note that this condition depends on values in both

the current and previous states. The use of values from the current and previous state in

determining consistency could be extended so that a sequence of past values is used. For

example, a sequence of
ow values could be recorded and tested. An important part of

the design of the boiler system is the selection of consistency conditions that are easy to

compute and likely to uncover device failures. Furthermore, a good consistency condition

is one for which it is possible to estimate the probability that the condition fails just

when some device fails.

7 Conclusions

We have presented a speci�cation for a boiler system model and have shown that it

possesses some important safety properties. The process of formalising the system

properties helped to clarify some key issues. For example, should all possibly failed

devices be reported, or just the the smallest set of devices having at least one failed

device? The latter reduces unnecessary diagnosis and repair, but was found to be

8

if level meter ok then Lc := level meter reading

else if steam meter ok then Sc := steam meter reading

else Sc := physical steam limit

if pump mon's ok then Pc := sum of pump mon. readings

else Pc := sum of physical pump limits

Lc := Lc + (Pc � Sc)

Figure 1: The Level Calculation in Pseudo-code

inadequate to ensure the main safety property.

The process of proving the properties was also bene�cial. Attempting the proofs often

uncovered missing details, such as initial conditions. On the other hand, super
uous

parts of the speci�cation were found by examining the �nished proofs, and noting the

dependencies on the speci�cation. For example, we had initially included a single-failure

assumption in the model, and realised later, after looking at our proofs, that this

assumption was not needed.

Some parts of the model are generic and could be used for other systems. The data fusion

model embodies a general strategy for detecting failure from inconsistencies between

measured values. We chose a pessimistic strategy that reports a device failed if a

measurement from the device is inconsistent with other values. Less pessimistic strategies

may be better in other contexts. For example, another strategy is to select the smallest

set of devices such that some device in the set is guaranteed to have failed. Thus if the

:cspl and :cpl, the devices p and l might be reported as failed, but not s. Failure

assumptions could also be incorporated into data fusion model, allowing a smaller set of

devices to be reported as failed. For example, if :csp and :csl, and if fl implies :fs and

:fp, then one can conclude that s has de�nitely failed.

The level calculation strategy is also quite generic. This strategy is related to various

software fault-tolerance schemes, such as recovery blocks [?, ?]. The resemblance may be

easier to see if the strategy is given in pseudo-code (see Figure ??) rather than in logic.

In a recovery block, alternative computations are tried until an acceptable result is

delivered. Here, alternative computations are ordered according to the accuracy of the

result. A speci�c computation is chosen according to which devices have failed.

Acknowledgements

This work was supported by SERC/IED project 1224, \Mathematically Proven Safety

Systems".

9

Appendix A Some TLA Proof Rules

STL1
F provable by propositional logic

F

STL2 ` 2F) F

STL3 ` 22F � 2F

STL4
F) G

2F) 2G

STL5 ` 2(F ^ G) � (2F) ^ (2G)

STL6 ` (32F)^ (32G) � 32(F ^ G)

INV1
P ^ A) P

0

P ^2A) 2P

INV2 ` 2P) (2A � 2(A ^ P ^ P 0))

10

Appendix B Bibliography

[1] T. Anderson and P.A. Lee, editors. Fault Tolerance: Principles and Practice. Prentice

Hall, 1981.

[2] Speci�cation for a software program for a boiler water content monitor and control

system. Institute for Risk Research, 1992.

[3] Leslie Lamport. The temporal logic of actions. Technical Report 79, Digital Systems

Research Center, 1991.

[4] B. Randall. System structure for software fault tolerance. IEEE Transactions on

Software Engineering, SE1(2), 1975.

11

