

City, University of London Institutional Repository

Citation: Bishop, P. G. (1997). Using reversible computing to achieve fail-safety. Paper

presented at the Eighth International Symposium On Software Reliability Engineering, 2 - 5
Nov 1997, Albuquerque, NM , USA.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/552/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Using reversible computing to achieve fail-safety

Peter G. Bishop

Adelard

Coborn House, 3 Coborn Rd

London E3 2DA, UK

pgb@adelard.co.uk

Abstract

This paper describes a fail-safe design approach that

can be used to achieve a high level of fail-safety with

conventional computing equipment which may con-

tain design
aws. The method is based on the well-

established concept of \reversible computing".

Conventional programs destroy information and

hence cannot be reversed. However it is easy to de-

�ne a virtual machine that preserves su�cient inter-

mediate information to permit reversal. Any program

implemented on this virtual machine is inherently re-

versible. The integrity of a calculation can therefore be

checked by reversing back from the output values and

checking for the equivalence of intermediate values and

original input values. By using di�erent machine in-

structions on the forward and reverse paths, errors in

any single instruction execution can be revealed. Ran-

dom corruptions in data values are also detected.

An assessment of the performance of the reversible

computer design for a simple reactor trip application

indicates that it runs about ten times slower than a con-

ventional software implementation and requires about

20 kilobytes of additional storage. The trials also show

a fail-safe bias of better than 99.998% for random data

corruptions, and it is argued that failures due to sys-

tematic
aws could achieve similar levels of fail-safe

bias. Potential extensions and applications of the tech-

nique are discussed.

1. Introduction

Most practical computer-based safety systems rely

on commercial hardware, such as processor chips, and

supporting software, like compilers. These components

have not been veri�ed in any formal sense, and any in-

herent
aws could a�ect the system behaviour in un-

predictable ways. A stronger safety case can be made if

a fail-safe behaviour can be imposed on this \untrusted

base".

In this paper we describe a novel approach to fail-

safe design which is based on the concept of \reversible

computing". We will describe the reversible computing

concept, the implementation of the fail-safe design, and

an evaluation of the performance of the technique when

applied to a simple reactor trip application. In the

�nal sections we discuss the practical applications of

this technique and further areas of work.

2. Reversible computing

Early pioneers in the �eld of computing like Tur-

ing and Von Neumann examined the minimum energy

needed for computation and concluded that each ele-

mentary operation would require an energy expendi-

ture of at least kT ln 2 where k is the Boltzmann con-

stant and T is the absolute temperature. The argu-

ment here is that kT represents the background en-

ergy (Brownian motion) and any operation must ex-

ceed this to be distinguishable from the background

noise. This theory was subsequently overturned by

Landauer [7, 8] who showed that this was only true

if the process was irreversible. If you could perform

the computation, save the result and then reverse the

computation to get the original inputs, no energy need

be consumed (except for retaining the answer). Ba-

sically normal computation increases disorder (i.e. en-

tropy) and is irreversible, but a reversible design does

not increase disorder (the reverse action acts like a re-

frigerator). This fundamental concept was further de-

veloped by Bennett [1, 2, 3] who showed it was possible

to construct a modi�ed form of Turing machine which

was reversible, and hence that any computation is po-

tentially reversible. In a later development Fredkin [6]

showed that it was possible to construct a \conserva-

tive logic gate" which was reversible but could be used

to construct conventional AND and OR functions, so

there is a general mechanism for constructing reversible

logic circuits. These concepts have been used to min-

imise the heat dissipation in logic circuits [9, 5].

In our paper we have used the reversible comput-

ing concept to implement a novel form of self-checking

which can be applied at the software level rather than

the circuit level. The reversible computing concept can

be illustrated by the following simple example. The

\+" function maps the number pair < 1; 3 > to a

single value < 4 >. It is not possible to reverse this

because this output value can be computed from sev-

eral distinct input pairs (e.g. < 0; 4 >, < 1; 3 > or

< 2; 2 >). In a reversible computation the mapping is

bi-directional (i.e. a one to one mapping). This can be

achieved by generating \garbage data" as well as the

required result. For example we could de�ne a modi-

�ed function (PLUS) that produces the required result

together with one of the input operands (e.g. < 1; 3 >

maps to < 4; 1 > where the second value is \garbage

data"). The unknown input value (3) can be regener-

ated by subtracting the garbage data from the sum.

All the basic computing functions can be modi�ed

to generate the necessary garbage data to make them

reversible. A conventional computing function can be

represented as

y = f(x)

but a reversible function typically has the form:

< y; g >= fr(x)

The function fr(x) produces the same y value as f(x)

but also produces the \garbage data" g required for

reversal. There is an associated inverse function f�1
r

that uses the garbage data and computed value to re-

generate the input values:

x = f�1
r

(y; g)

The behaviour of a reversible function is illustrated in

Figure 1.

Providing the garbage data is saved, a program

constructed from a sequence of reversible functions is

also a reversible function. This suggests that the re-

versible computing concept could be used to imple-

ment a powerful and general form of fault detection.

If a reversible computer function fr(x) and its inverse

function f�1
r

(y; g) are correctly implemented, then we

would expect that:

x = f�1
r

(fr(x))

would hold for any program execution. In other words,

by reversing the computation and getting the original

input values, we have greater con�dence that the com-

puted value y is correct. If the forward and reverse

set of possible
input values (x)

fr(x)

x

g y
garbage
values

computed
result (y)

fr
-1(y,g)

x
mapping back to
input values

Figure 1. Illustration of reversible computing

functions are diversely implemented, this should guard

against systematic faults in the underlying \machine"

(e.g. due to faulty software tools or hardware design

aws like the Pentium divide bug). If the
aw exists

in one direction only, the failure should always be de-

tected by a mismatched value. If failures can occur in

both directions, it is di�cult to calculate the detection

probability, but both functions have to fail simultane-

ously and agree on the same wrong result. To be per-

manently undetected they have to agree on the same

wrong answer for all error-inducing values of x.

The mechanism should also detect typical random

data corruption faults that a�ect any data value used

in the computation. It can also guard against simple

application programming errors which result in �nite

precision over
ow and under
ow since the reverse com-

putation will not be identical.

Reverse computing can be regarded as a form of low-

level design diversity which does not su�er the usual

problems of diversity (such as consistency checking and

voting). It also has the advantage that the set of re-

versible instructions (the reversible \virtual machine")

only needs to be implemented once, and it can then

support many di�erent applications. If an application

is formally proved down to the fail-safe \virtual ma-

chine" level, a strong argument for the complete im-

plementation can be made.

Set against this there are a number of disadvan-

tages. It will be slower, use extra memory storage

and may not be appropriate for all computations (es-

pecially
oating point). With existing
oating point

hardware it is not possible to de�ne an exact inverse

due to round-o� problems. For many safety applica-

tions however, relatively slow computations using inte-

gers are su�cient to implement a safety function, and

this is the focus of the current work.

3. A prototype reversible computer

In order to evaluate the approach a simple reversible

instruction set, called ARC (A Reversible Computer),

has been implemented. A prototype of the reversible

instruction set has been implemented in Forth. This

language was chosen because it is readily extensible so

that reversible operators can be de�ned in the language

and then intermixed with existing Forth instructions

(e.g. for declaring and accessing data variables, or run-

ning tests). It is also an interactive language so that

the new functions can be rapidly tested and debugged.

The interactive capability can also be used to inject

faults interactively into the \virtual machine" to check

its fault detection capability. The language is not opti-

mal in terms of speed, but once the basic concepts have

been established it is relatively easy to re-implement

the virtual machine using C or even assembler code.

A brief outline of the Forth language will be given,

followed by a description of the design of the reversible

virtual machine.

3.1. The Forth language

Forth is rather unusual because it is a stack-oriented

language which uses Reverse Polish Notation (RPN).

This method is used on some calculators; values are

put on the stack then evaluated with an operator and

the result is put back on the stack. For example an

expression such as:

2 + 30 / 5

is represented in Forth as:

2 30 5 / +

Reference to a variable (e.g. X) places a memory ad-

dress on the stack, and an explicit operation is needed

to extract the value, so to add two variables X and Y

the following code is used:

X @ Y @ +

where @ is the \load" operator that extracts a value

from a memory location. Additional operators can be

de�ned which take their arguments from the stack and

return the result(s) on the stack. For example the op-

erator INCREMENT could be de�ned as follows:

: increment

1 +

;

Once de�ned, this function can be treated like a built-

in operator, e.g.: the sequence:

2 increment

will leave the value 3 on the stack. The language con-

tains no GOTO instructions. Conditional statements,

while loop and �xed loop constructs are provided in

the language. Enhanced versions of these control con-

structs can be de�ned as new operators.

3.2. Design of the reversible virtual ma-

chine

In any reversible computer design, it is essential to

store the garbage data. In Bennett's original work on

reversible computing [1], a reversible Turing machine

was implemented using an additional \tape" to hold

the garbage data. The ARC design uses a similar ap-

proach (although the \tape" is actually an array im-

plemented in main memory). During forward execu-

tion, garbage data is appended to the tape. When the

execution is reversed, the tape is \wound back" when-

ever a reverse instruction consumes a garbage value.

The tape should be fully rewound when the program

has been fully reversed. The second design issue is

how we represent the forward and reverse versions of

the program. In some proposed hardware designs [10],

only the forward version of the program is required and

the direction of execution is reversed when the end is

reached. On the reverse path, the instruction is inter-

preted di�erently so that it performs the reverse com-

putational function. This approach is space-e�cient

as the program is no larger than a conventional non-

reversible program, but it is di�cult to implement in

software.

We examined two alternative approaches for repre-

senting the program and its inverse. In the �rst de-

sign, each forward instruction places the address of

its matching reverse function on an additional \com-

mand tape" (e.g. PLUS would store a REVPLUS op-

erator on the command tape). When the forward ex-

ecution is completed, reversal can be performed by a

REVERSE operator which reads and executes the in-

structions from the command tape. Execution of these

commands will also consume data from the data tape,

so both tapes should be fully rewound when the rever-

sal is complete. In the second design, the command

tape is eliminated and a second \reverse program" has

to be written which is a mirror image of the forward

program, e.g. a program such as:

Y:= X + 1

would be represented by the following sequence of ARC

instructions (which are described in more detail later):

X LOAD

1 REF

PLUS

Y STORE

The program to reverse this computation can be cre-

ated by a sequence of matching REV commands writ-

ten in the reverse order

Y REVSTORE

REVPLUS

1 REVREF

X REVLOAD

A STORE instruction destroys the original memory

contents so the prior value is saved on the data tape.

The matchingREVSTORE command restores the orig-

inal memory contents. The LOAD does not destroy

data, but the REVLOAD is an essential command be-

cause it checks that the \uncomputed" value on the

stack matches the one stored in memory. Thus the

REVLOAD command automatically checks that the

reverse computation matches the original input value.

The REF{REVREF pair performs a similar check on

program constants.

Both designs have similar reverse programs, in

the �rst case it is created on the command tape,

while in the second case it is an explicit pro-

gram. The main di�erence is that the command

tape version represents a particular \thread" through

the program, so reverse IFTHEN. . .ELSE. . .ENDIF

structures are not needed. In the \mirror pro-

gram" design, the IFTHEN. . .ENDIF structures have

to record which path was executed on the data

tape. This information is used by a match-

ing REVENDIF. . .REVELSE. . .REVIFTHEN struc-

ture to determine which portion of the code should be

executed in the reverse program. Loop iteration counts

are stored in a similar way, so that the correct number

of reverse iterations are performed.

The main problem with the command tape concept

is the amount of storage required for long computa-

tions. Since the \tapes" are implemented as arrays in

memory, space is limited. The \mirror program" de-

sign requires less dynamic memory as there is no \com-

mand tape". In addition, less information needs to be

stored on the data tape (such as the memory location

for a REVSTORE instruction) as this information is

provided by the mirror program.

In practice, either design would be adequate for

a simple safety application, and \tape exhaustion"

should not occur provided the maximum usage of the

tape can be determined in advance. The �nite tape

length could even be regarded as an advantage in a

real-time system because exhaustion of the tape could

be designed to enforce a timing constraint and the sys-

tem could be designed to be fail-safe if tape exhaustion

was detected.

3.3. The ARC machine instructions

The ARC machine instructions are relatively lim-

ited but, coupled with some \raw" Forth instructions

for data declarations, they are su�cient to perform

reasonably complex calculations. The ARC instruc-

tions are stack-oriented and this makes it very easy to

convert high level language expressions into equivalent

ARC instructions. Many language translators convert

the input into an intermediate Reverse Polish format

before generating the machine code, so there is virtu-

ally a one-to-one equivalence between the RPN format

and equivalent ARC instructions.

All operators use 32 bit integers and include:

memory access operators { LOAD, STORE, REF,

LOADINDEX, STOREINDEX; arithmetic operators

{ PLUS, MINUS, INC, DEC, TIMES, DIV, MAXX,

MINN; comparison operators { GT, EQ, NE, LT;

boolean operators { ANDD, ORR, XORR, NOTT (the

rather odd mnemonics in this list were chosen to avoid

existing Forth operators). Each command has a \mir-

ror" command with a \REV" pre�x (e.g. PLUS and

REVPLUS).

Modi�ed versions of the standard Forth operators

were used for conditional commands and iteration. The

changes were made to ensure the chosen branch is

recorded on the tape so that the correct block of code

is executed when it is reversed. The
ow control com-

mands are:

Conditional execution with an optional ELSE

clause:

<bool> IFTHEN

<true list>

ELSE

<false list>

ENDIF

An iterative loop command:

<nloops> DOLOOP

<loopbody>

ENDLOOP

and an in�nite loop command:

BEGIN

<loopbody>

AGAIN

Loop counters are computed explicitly using the re-

versible instructions (e.g. INC), so that reversing

through loops is possible. Standard Forth commands

are used to declare the required variables, i.e.:

n CONSTANT x

gives a constant n the symbolic name x;

VARIABLE y

declares variable y (a 32 bit integer); and

CREATE x n CELLS ALLOT

declares an array x with n integer cells (indexed from

zero).

To be useful in a real-time context, we also need

plant input-output commands such as GETAN, GET-

DIG, PUTAN and PUTDIG. These have not been im-

plemented in the experimental version.

3.4. Implementation

The commands are relatively easy to implement, as

shown in the following implementation of the PLUS

operator. The forward command is:

: PLUS

dup pshtape +

;

and the reverse command is:

: REVPLUS

poptape tuck - swap

;

In the PLUS operation, the \dup" command duplicates

the top of the stack, the \pshtape" command transfers

it to the data tape; and \+" sums the next two values

and leaves the result on the stack.

In the REVPLUS operation one of the original

operands is retrieved from the tape using \poptape";

the \tuck" command places a copy of it behind the

second item on the stack (i.e. z, y becomes: y, z, y).

The two top items on the stack are subtracted (�), and

the \swap" ensures the top two items on the stack (the

original operands) are in the right order.

The concept can be re-implemented in any computer

language. An implementation in C could for example

use in-line procedures or macros, and pass the input

and output values through procedure arguments, e.g.:

void PLUS(int x, y, *z)

{ pushtape(y);

*z = x + y;

};

void REVPLUS(int z, *x, *y)

{

*y = poptape();

*x = z - *y;

};

3.5. Reversing the computation

With the \mirror program" model, an explicit re-

verse program must be written. This is executed after

the forward program. The mirror program can be im-

plemented by hand, but it is relatively simple to gen-

erate the mirror program automatically.

With the \command tape" model, the forward com-

mands also store the command \thread" required for

reversal. For example, the PLUS command stores the

address of REVPLUS on the command tape. An ad-

ditional command, REVERSE, is required which reads

the command tape and executes the stored command

thread in the reverse order.

In both designs there is an INIT command which

resets any tape to its start position. This should only

be invoked at program start-up. Failure to rewind the

tape completely on reversal indicates that some error

has occurred.

4. Evaluation of the ARC virtual ma-

chine

4.1. The trip application

Once developed, the ARC virtual machine was used

to implement a relatively simple trip application, where

a trip is initiated if any temperature reading exceeds

some upper limit. In reality, temperature measurement

values would be obtained from an analogue interface,

and the trip result would be sent to a digital interface.

In the trial application however, the measured temper-

atures are assumed to be stored in an array (TLIST)

and the trip results stored in another array (RESLIST).

The ARC trip program is shown below:

\ Loop index variable

VARIABLE X

\ Number of temperature A/D inputs

500 CONSTANT #TCS

\ A/D offset equivalent to 4 mA

917 CONSTANT #OFFSET

\ A/D full scale equivalent to 20 mA

4096 CONSTANT #SCALED

\ Full scale temp (degrees)

600 CONSTANT #SCALEM

\ Max Temp in channel (degrees)

300 CONSTANT #TLIM

\ Input temperature array (mA)

CREATE TLIST #TCS cells allot

\ Trip decision array (per input)

CREATE RESLIST #TCS cells allot

\ ______ TRIPFUNC ______

\

\ TRIP Function pseudo code

\ X:=0

\ DO X=0, #TCS-1

\ IF ((TLIST[X] - OFFSET)

\ * SCALEM / SCALED) > TLIM)

\ THEN

\ RESLIST[X]:=1:

\ ELSE

\ RESLIST[X]:=0

\ ENDIF

\ X:= X + 1

\ ENDDO

\ Begin TRIP Function definition

: TRIPFUNC

0 REF

X STORE

#TCS REF DOLOOP

X LOAD

TLIST LOADINDEX

#OFFSET REF

MINUS

#SCALEM REF

TIMES

#SCALED REF

DIV

#TLIM REF

GT

IFTHEN

1 REF

X LOAD

RESLIST STOREINDEX

ELSE

0 REF

X LOAD

RESLIST STOREINDEX

ENDIF

X INC

ENDLOOP

;

\ End of TRIPFUNC definition

This is the basic trip function, and it can be tested

interactively by changing values in TLIST and then

inspecting the results in RESLIST. In a real application

the trip function would be executed in an in�nite loop,

followed by the reverse program, e.g.:

INIT \initialise tape

BEGIN

TRIPFUNC

REVTRIPFUNC

AGAIN

The BEGIN. . .AGAIN operators are standard Forth

commands that implement an in�nite loop.

This is the \mirror program" form where a speci�c

reverse program has to be written. In the \command

tape" form, REVTRIPFUNC would be replaced by a

generic REVERSE function which reverses the com-

mands stored on the command tape. While the use of

REVERSE avoids the need for a speci�c mirror pro-

gram, a mirror program does provide an additional

on-line program integrity check (since corruptions or

systematic errors in either the forward program or the

mirror program will be detectable on reversal).

4.2. Integration with other integrity checks

The program can integrated with other integrity

checks. Firstly, the program can be tied to a hard-

ware watchdog where alternating signals are sent on

the completion of the forward and reverse paths. For

example TICK and TOCK functions could be imple-

mented that send alternate signal values to the watch-

dog hardware. If the reversal fails, the watchdog will

trip out.

After each reversal, all variables (including

RESLIST) will be restored to their original values. An

independent check can be incorporated after reversal to

check that the program variables match some speci�c

pattern. For example each variable could have an ini-

tial value set by PRESET-WORK-VARIABLES which

re
ects its location in memory. After reversal the vari-

ables can be checked by CHECK-WORK-VARIABLES

to check that the initial pattern of values is still present.

We can also exploit our knowledge about the data

tape. The tape region might be corrupted by in-

valid data assignment operations. To check the in-

tegrity of the tape operation we can maintain a sum-

check which can be checked by a special CHECK-

TAPE-INTEGRITY function prior to reversal. We

also know that the tape should be fully rewound, so

this can be checked after reversal (e.g. by CHECK-

TAPE-REWOUND). So the overall program structure

would be:

PRESET-WORK-VARIABLES

INIT

BEGIN

TRIPFUNC

CHECK-TAPE-INTEGRITY

TICK

REVTRIPFUNC

CHECK-TAPE-REWOUND

CHECK-WORK-VARIABLES

TOCK

AGAIN

Note that further run-time checks are incorporated into

the basic ARC instructions to detect tape exhaustion

during the forward and reverse executions of the pro-

gram.

4.3. Storage requirements and timing

To evaluate the overall performance and overheads

of the di�erent methods, some comparative tests were

performed using the two di�erent reversible methods,

and a \direct" implementation which is non-reversible.

For a 500 channel trip function, run on a 90 MHz Intel

Pentium, the storage requirements and execution times

shown in Table 1 were obtained.

Version Tape Used Time

(kilobytes) (millisecs)

Command tape 120 504

Mirror program 20 102

Non-reversible n/a 10

Table 1. Reversible computing performance

The storage requirements are quite high for the

\command tape" version, mainly because the reverse

instructions are stored on an additional command tape

and this increases for every DOLOOP iteration. Ma-

jor storage savings could be achieved by reversing each

channel computation individually.

All the execution times appear to be adequate for

simple safety applications where input/output execu-

tion times could well be the dominant factor (e.g. up to

20 milliseconds for an analogue measurement). How-

ever, it should be noted that the execution times could

increase by a factor of 10 for a slower processor (such

as an Intel 80386).

It can also be seen that the \command tape" version

is about �ve times slower than the \mirror program"

version, which in turn is about ten times slower than

a direct implementation. Similar ratios might be ex-

pected if the ARC virtual machine was implemented

in other languages and processors. With an optimised

ARC virtual machine (e.g. implemented in C or assem-

bler) an Intel 80386 processor might be able to execute

the TRIPFUNC program and its reverse in about the

same time as the Forth version on a Pentium (i.e. 0.1

seconds). This would leave plenty of spare capacity for

more complex real-time applications.

4.4. Response to data corruption

Random data corruption can be catered for by spe-

ci�c hardware checks (such as memory parity checks)

and by using redundancy. However data can also be

corrupted by
aws in program data
ows (e.g. due to

errors in the compiler, linker or the processor), and

these are potentially more dangerous as they can cause

failures in redundant channels. In order to test the

response to data corruption, some interactive func-

tions were implemented which could corrupt the val-

ues on the tape, and the main program variables (the

RESLIST and TLIST arrays). After executing TRIP-

FUNC, a data location was corrupted and then the ex-

ecution was reversed. A simple test environment was

constructed to automate this process, and 1000 random

corruption tests were applied to:

� the input values

� the result values

� the data \tape"

For all 3000 tests it was found that all the inserted cor-

ruptions were detected by the checks. This is hardly

surprising, as the REVLOAD, REVREF and tape in-

tegrity checks should �nd any single instance of corrup-

tion. Compensating multiple corruptions are a possi-

bility, but these are likely to be low probability events.

4.5. Response to computation
aws

It is di�cult to estimate the detection probability of

computational
aws in operators like PLUS or TIMES

because it is hard to establish the behaviour of an un-

known fault. To get a rough estimate of the likely

detection probability, the detection performance was

measured using a corrupted data tape but removing

the tape integrity check. The rationale behind this as-

sessment is that a
aw in a computation function will

result in some discrepancy between the main computed

values and the garbage values on the data tape. The

reverse computing functions should detect these if they

occur. The responses of the reverse computing opera-

tion to 1000 random corruptions of the data tape are

shown in Table 2, together with the integrity check that

identi�ed the fault.

Detection method Number

detected

Percent

detected

REVREF check 518 51.8

REVLOAD check 204 20.4

Boolean value check 139 13.9

CHECK-WORK-VARS 76 7.6

Comparison (REVGT, etc.) 33 3.3

Total 970 97.0

Table 2. Initial fault detection performance

Around 97% of the corruptions were detected.

The REVLOAD, REVREF and preset variable checks

found around 80% of the injected errors. These are

the direct result of uncomputing from the output val-

ues to the input values. The boolean and comparison

checks are intermediate checks (e.g. for legal boolean

values, correct operation of AND, OR, etc.). A closer

inspection was made of the remaining 3% of undetected

errors, and it was found that the TIMES / REVTIMES

pair was the major culprit. The lack of detection can

be explained as follows. On the forward path the re-

sult is computed and one of the operands is put on the

tape, e.g. 5� 1001 produces the result 5005 and one of

the operands, e.g. 1001, is stored on the tape. On the

reverse path one of these values is corrupt, for exam-

ple 1001 becomes 1000. The reverse calculation divides

5005 by 1000 which yields the correct result of 5 for the

other operand (assuming integer division). It is clear

that the reverse operation is incomplete as it discards

data; we know that a divide operation has a remain-

der and that this remainder should always be zero. An

exact divisor check was added to the REVTIMES op-

eration.

The remaining �ve detection failures were associated

with the STOREINDEX operation which computes the

wrong address. On reversal, REVSTOREINDEX un-

computes the original array index|this involves a di-

vide by four as each integer occupies four bytes. Like

the REVTIMES operation, this divide operation failed

to check that the remainder was zero, so small changes

to the address would not alter the uncomputed index.

This explains the 5 cases where reversal failed to detect

the corruption. A check for exact division was added

to all indexing operations.

The tests were repeated with the exact divisor

checks incorporated in REVTIMES and the indexing

instructions and an extended test was performed us-

ing 58 007 random corruptions. All cases of corruption

were detected. The results are summarised in Table 3.

The exact divisor checks occur at intermediate

points in the calculation and will therefore detect er-

rors that would otherwise be trapped at the input val-

Detection method Number

detected

Percent

detected

REVREF check 20185 34.8

REVLOAD check 11927 20.6

REVTIMES check 12229 21.1

Boolean value check 8251 14.2

CHECK-WORK-VARS 3960 6.8

Comparison (REVGT, etc.) 936 1.6

Exact index check 519 0.9

Total 58007 100.0

Table 3. Fault detection (exact divisor checks)

ues, i.e. by REVREF and REVLOAD. It can be seen

that REVTIMES detects far more than the missing 3%

and there is a matching fall in the number detected by

REVREF.

5. Discussion

5.1. Fail-safe bias

The main intent of this design approach is to de-

tect failures due to systematic design faults rather than

random hardware faults. Normally, random hardware

faults would be revealed by speci�c hardware checks

(such as memory parity and memory bound limits) and

channel redundancy. Nevertheless the test procedure

makes use of random corruptions and it is encouraging

to note that all 58 007 corruptions were detected by

the method. This was observed even when the tape in-

tegrity check on the \garbage" data was omitted. This

suggests that individual channels will exhibit a high

fail-safe bias of perhaps 99.998% for random internal

failures.

The realism of the fail-safe performance in response

to systematic faults is more debatable, as it depends on

the nature of the postulated fault. In practice the fail-

ures would have to be infrequent otherwise they would

be detected during the normal veri�cation and vali-

dation tests, so the transient corruptions used in the

tests could well be a reasonable representation of the

behaviour of such faults, but it would be desirable to

assess the response to a range of postulated hardware

and compiler faults. Nevertheless the current test re-

sults indicate that the fail-safe bias could be 99.998%

or better.

It could be argued from a theoretical point of view

that any failures due to a single
aw in an N-to-N map-

ping should be 100% detectable as the converse map-

ping will still be N-to-N and should expose any failure.

Set against this, there could be faults in the implemen-

tation (such as the omission of the exact divisor check)

which could reduce the achieved level of fail-safe bias.

In practice therefore, a more comprehensive evaluation

is required to support a claim for a high fail-safe bias.

5.2. Run-time overheads

Although the storage and timing overheads are sig-

ni�cant, reversible computing appears to be a practical

proposition for the straightforward computations found

in safety applications. Other software fail-safety tech-

niques (such as vital coded processing [4]) can involve a

hundredfold increase in execution time, so the tenfold

increase of our technique should not be a major limita-

tion. In addition, the speed could be further improved

by implementing the ARC instruction set in assembler

code or C, and the storage requirements can be further

reduced by reversing speci�c sub-computations.

5.3. Alternative implementation options

There are many alternative strategies for imple-

menting reversible computing which could be further

explored. For example, the existing implementation

relies on a software comparison of the uncomputed re-

sults. This could be replaced with a fail-safe hardware

checker that maintained a stack of input values and

then compared these with uncomputed values.

It would also be feasible to remove the mirror pro-

gram completely. The program could be implemented

as a sequence of byte codes (similar to the Java virtual

machine), and this could be interpreted by a forward

interpreter and a reverse interpreter which works back

from the end. This is likely to be less e�cient than an

explicit mirror program but it would be relatively easy

to implement directly in hardware where the overheads

would be much lower.

It would also be possible to use separate processors

to hold the forward and reverse programs, with the

\garbage values" and �nal output values being passed

to the second processor for reversal. The uncomputed

values derived by the reverse processor could then be

compared with the original input values using a hard-

ware comparator. For extra assurance, diverse virtual

machines and computer hardware could be used for the

two processors.

5.4. Functional limitations

It is important to realise that reversible computing

is not a panacea for ensuring fail-safety; it has limita-

tions and the technique should be used in conjunction

with other methods to ensure the safety of the overall

system:

� It only checks the integrity of the low-level in-

structions. Separate methods are needed to en-

sure that the application software performs the

intended function (e.g. through validation, formal

methods, etc.).

� There is no exact reversal for
oating point. Any

oating point reversible machine would have to

test if the result was \close" to the original value.

This might be turned to advantage if we are con-

cerned about algorithmic stability; a stable algo-

rithm would have reverse results close to the origi-

nal inputs, while an unstable algorithmwould not.

� There is no protection against faults in the input-

output hardware, so additional input-output in-

tegrity checks are required. For example, di-

verse measurements and application-level credibil-

ity checks could be used.

6. Summary of results

The reversible computing concept looks very promis-

ing. The main technical results of our research study

are that:

1. It is strongly fail-safe and can protect against both

random and systematic faults in the underlying

compiler and processor hardware.

2. The tests performed indicate a fail-safe bias of

better than 99.998%; however this may be over-

optimistic as the tests did not simulate a complete

range of credible systematic faults in the hardware

and compiler.

3. The instruction set is capable of handling quite

complex applications and there is scope for exten-

sion to
oating point operations.

4. The approach is generic. The same reversible in-

struction set can be used on many di�erent ap-

plications, and the instruction set can be imple-

mented on any computing hardware and compiler

technology.

There are some limitations to the method:

1. A reversible program runs about ten times slower

than a conventional one, but it can be optimised

for higher performance. The same virtual machine

concepts can be readily implemented in other lan-

guages such as C or assembler code, or directly in

hardware.

2. Signi�cant storage is needed for the \garbage

data" needed for reversal, but exhaustion of the

storage space can be a useful mechanism for de-

tecting runaway programs and timing overruns.

There is considerable scope for further development

of the concept, e.g. hardware support for reversible

computing, extension to
oating point, and code gen-

erators to automate the construction of reversible pro-

grams.

7. Acknowledgements

This work was funded by the UK (Nuclear) Indus-

trial Management Committee (IMC) Nuclear Safety

Research Programme under Scottish Nuclear contract

PP/74851/HN/MB with contributions from British

Nuclear Fuels plc, Nuclear Electric Ltd, Scottish Nu-

clear Ltd and Magnox Electric plc.

References

[1] C.H. Bennett, \Logical Reversibility of Computa-

tion", IBM Journal of Research and Development,

vol. 6, pp. 525{532, 1973

[2] C.H. Bennett, \The Thermodynamics of Compu-

tation, a Review", International Journal of Theo-

retical Physics, vol. 21, pp. 905{940, 1982

[3] C.H. Bennett, \Notes on the history of reversible

computation", IBM Journal of Research and De-

velopment, vol. 32, pp. 281{288, 1988

[4] P. Chapront, \Vital Coded Processor and Safety

Related Software Design", Proceedings SAFE-

COMP 92, Pergamon Press (Zurich), 1992

[5] J.S. Denker, S.C. Avery, A. G. Dickinson, A.

Kramer and T.R. Wik, \Adiabatic Computing

with the 2N-2N2D Logic Family", International

Workshop on Low Power Design, pp. 183{187,

1994

[6] E.F. Fredkin and T. To�oli, \Conservative Logic",

International Journal of Theoretical Physics,

vol. 21, no. 3/4, pp. 219{253, 1982

[7] R. Landauer, \Irreversibility and Heat Generation

in the Computing Process", IBM Journal of Re-

search and Development, vol. 5, pp. 183{191, 1961

[8] R. Landauer, \Uncertainty Principle and Mini-

mal Energy Dissipation in the Computer", Inter-

national Journal of Theoretical Physics, vol. 21,

no. 3/4, pp. 283{297, 1982

[9] R.C. Merkle, \Towards Practical Reversible

Logic", Physics and Computation, pp. 227{228,

October 1992

[10] J. Storrs Hall, \A Reversible Instruction Set Ar-

chitecture and Algorithms", Physics and Compu-

tation, pp. 128{134, November 1994

