lT City Research Online
UNIVEREI;;{ ]OSFgLfNDON

City, University of London Institutional Repository

Citation: Gruber, J. K., Jahromizadeh, S., Prodanovic, M. & Rakocevic, V. (2014).
Application-oriented modelling of domestic energy demand. International Journal of
Electrical Power & Energy Systems, 61, pp. 656-664. doi: 10.1016/j.ijepes.2014.04.008

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/5527/

Link to published version: https://doi.org/10.1016/j.ijepes.2014.04.008

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.




City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Application-oriented modelling of domestic energy demand

J. K. Gruber®*, S. Jahromizadeh®, M. Prodanovié?®, V. Rako&evic®

“Electrical Systems Unit, IMDEA Energy Institute, Avda. Ramon de la Sagra, 3, 28935 Mdstoles, Madrid, Spain
bSchool of Engineering and Mathematical Sciences, City University, London, UK

Abstract

Detailed residential energy consumption data can be used to offer advanced services and provide new business opportunities to
all participants in the energy supply chain, including utilities, distributors and customers. The increasing interest in the residential
consumption data is behind the roll-out of smart meters in large areas and led to intensified research efforts in new data acquisition
technologies for the energy sector. This paper introduces a novel model for generation of residential energy consumption profiles
based on the energy demand contribution of each household appliance and calculated by using a probabilistic approach. The
model takes into consideration a wide range of household appliances and its modular structure provides a high degree of flexibility.
Residential consumption data generated by the proposed model are suitable for development of new services and applications such
as residential real-time pricing schemes or tools for energy demand prediction. To demonstrate the main features of the model,
an individual household consumption was created and the effects of a possible change in the user behaviour and the appliance
configuration presented. In order to show the flexibility offered in creation of the aggregated demand, the detailed simulation

results of an energy demand management algorithm applied to an aggregated user group are used.
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1. Introduction

In recent years the research in the field of residential energy
consumption has been intensified both by the scientific com-
munity and the industrial sector. This interest is a result of sev-
eral factors, including the massive integration of intermittent
renewable energy sources, the continuously increasing energy
demand of the residential sector [1, 2] in combination with the
limitations of the current infrastructure for energy production
and distribution as well as the idea to create new services with
an added value for companies and customers. The availability
of affordable smart meters and the establishment of appropriate
legal frameworks in many countries enforced the deployment of
smart meters in large areas. These smart meters collect meas-
urements of the electric and gas consumption with a relatively
low sampling time and give a good idea on the demand of a
household.

Detailed smart meter data can be used to offer a wide range
of applications and services such as demand optimisation, fault
detection and network management. Possible positive effects
range from higher economic profits to technical improvements
including better power quality and grid stability in electric net-
works and optimised infrastructure for the gas supply. Both
customers and companies from the energy sector benefit from
the implementation of advanced services based on residential
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energy consumption data. However, unresolved privacy issues
and quality problems of the collected measurements complicate
or even impede the development and validation of new services
and applications. These adverse conditions when dealing with
residential energy consumption data can be avoided, at least to
some extent, by using artificial data generated with the help of
mathematical models. Consequently, suitable consumer energy
demand models for the generation of realistic domestic energy
demand data play an important role in the design of value-added
services for the energy sector.

1.1. Research aim

The main objective of this paper is the development of an ap-
propriate consumer energy demand model for the generation of
detailed energy demand profiles. In the case of a deficiency or
a complete lack of useful measurements, synthetic residential
consumption data can be used in the design of advanced ser-
vices for customers, utilities, network operators and retailers.
With the objective to employ the artificial data in the develop-
ment of a wide range of different applications such a consumer
energy demand model has to provide a high degree of flexi-
bility. An application-oriented model needs to allow the gen-
eration the generation of consumption data of one or several
households over a freely selectable period of time with reason-
able detail. Besides, such a model has to offer the possibility
to consider local or regional peculiarities, e.g. more frequent
use of heating devices in colder climates. It is important to em-
phasise that the development of a high precision model, e.g for
dynamic thermal simulation, material testing or building design
optimisation, is not in the scope of this work.
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Another aim of this work is the analysis of typical applica-
tions based on detailed residential consumption data and the
resulting benefits for utilities, network operators, retailers and
customers. The importance of a suitable consumer energy de-
mand model is underlines with the help of several application
examples.

1.2. Paper overview

This paper proposes a consumer energy demand model based
on the contribution of a wide range of common household ap-
pliances and under consideration of photovoltaic installations.
The artificial consumption data generated by this model allow
the development of new services and applications for customers
and companies. The paper is organised at follows: Section 2
reviews different modelling approaches for residential energy
consumption and provides the general research background of
this paper. A description of possible services and applications
based on residential energy consumption data is given in Sec-
tion 3. Section 4 proposes an application-oriented model for
the generation of artificial domestic energy demand data. Then,
Section 5 presents simulation results of the applications based
on the consumption data generated with the proposed model.
Finally, in Section 6 the most important conclusions are drawn.

2. Research background

In the last years, energy consumption modelling gains an in-
creasing interest from the industry and the scientific commu-
nity. Special attention is paid to the modelling of the residen-
tial sector due to the high ratio of primary energy consumption.
The understanding of the consumption and prediction of the fu-
ture demand provides the opportunity to solve, at least partially,
energy related problems such as power supply, environmental
issues and economic questions. Generally, residential energy
consumption models describe the energy needs in function of a
certain set of parameters.

The review presented in [3] divides the different modelling
techniques for the residential sector in top-down and bottom-
up approaches. In the case of top-down models, the residen-
tial energy sector is regarded in its entirety without considering
the energy consumption of individual customers. This type of
model is especially useful to estimate price and income elastic-
ities of the energy demand [4] and to study long-term macroe-
conomic trends [5]. In contrast, bottom-up models work on a
disaggregated level with detailed data of energy end-uses like
heating and lighting [6]. The bottom-up models for the energy
consumption of the residential sector are frequently classified
into two main categories: statistical methods and engineering
techniques [3].

2.1. Statistical methods

Statistical methods are based on historical data and regres-
sion techniques which determine the relation between the end-
uses and the energy consumption. This type of model takes
into account the influence of different sets of socio-economic
and environmental indicators such as dwelling type, location,

family size and type, earnings, social class and appliance own-
ership. The common statistical methods in residential energy
consumption modelling are regression techniques, conditional
demand analysis and neural networks [3]. One of the most im-
portant benefits of statistical models is the ability to perceive the
effect of occupant behaviour. Besides, these models can be de-
veloped without detailed consumption data and without a deep
knowledge of the underlying processes. The fundamental dis-
advantages include the often low significance of the estimated
parameters, the required large samples, the low flexibility and
the common regression problems such as multicollinearity, het-
eroscedasticity and autocorrelation. An overview of the benefits
and limitations of statistical models can be found in [5].

Statistical methods have been employed in [7] to develop lin-
ear regression models for the yearly and monthly household en-
ergy consumption using setpoint temperature, electricity usage
of appliances and lighting, airflow gains and occupant sensi-
ble heat gains as independent variables. A regression analysis
was carried out in [8] in order to quantify the influence of win-
dow opening, lighting, heating and solar shading on occupant
behaviour. The model proposed in [9] estimates the building
sector energy end-use intensity for New York City as a function
of the ZIP codes.

2.2. Engineering techniques

Engineering techniques use physical principles to determine
the residential energy consumption on building level or for sub-
level components [10]. Models based on engineering tech-
niques can be developed without historical data and the scope
ranges from very simple designs to extremely complex struc-
tures. A common approach makes use of appliance ownership,
use, rating and efficiency as well as cycle lengths to compute
the residential energy consumption [3]. The possibility to con-
sider physical concepts such as heat and mass transfer, ther-
modynamics and fluid mechanics allows the development of
highly precise models. However, the required parameters for
such a model are often unavailable or hard to obtain leading to a
less accurate estimation of the residential energy consumption.
Other disadvantages of engineering techniques are the nearly
impossible integration of the effect of macroeconomic changes
and the difficulty to consider user behaviour. In contrast, mod-
els based on engineering techniques can be easily modified to
include technological progress and use physically measurable
data. Further information of advantages and drawbacks of en-
gineering techniques for residential energy consumption mod-
elling is given in [5].

An example for engineering techniques is the model for the
electric demand in an individual household presented in [11]
which combines the active occupancy and daily activity pro-
files of the occupants to determine the residential energy con-
sumption. The model proposed in [12] considers both appli-
ance characteristics (e.g. operation mode, appliance penetra-
tion, power consumption, frequency of use and turn-on times)
and socially influenced factors such as number of residents, oc-
cupancy pattern and customer classification. The prediction
method in [13] uses a dynamic thermal model to determine do-
mestic space heating profiles. The detailed dynamic simulation



models of different types of dwellings developed in [14] can be
used for a sensitivity analysis of different variables with respect
to the thermal demand. Other models developed with engineer-
ing techniques are used for the computation of load profiles
of a residential area [15], testing of a residential cogeneration
system [16] or validation of demand side management (DSM)
strategies [17].

3. Applications and requirements

The recent deployment of smart meters will provide compa-
nies from the energy sector technical access' to detailed resi-
dential energy consumption data. Utilities, network operators,
retailers and companies not necessarily related to the field of en-
ergy generation and distribution already expressed their interest
in the mentioned end-user data. If suitable smart measurements
data are unavailable, synthetic consumption data generated by
a mathematical model can be used in the development of the
value-added services and applications described in the follow-
ing paragraphs.

3.1. Demand optimisation

One of the principal problems in the energy sector is the
domestic demand variation with significant peak loads in the
morning and the afternoon/night. Integration of renewable en-
ergy sources with their intermittent generation, mainly wind
turbines and photovoltaic panels, increase the effects resulting
from the difference between generation and demand. The in-
capability of the mentioned renewable energy sources for up-
regulation may cause possible deficiencies and failures in en-
ergy supply and distribution systems. Optimisation of the do-
mestic energy demand offers a possibility of reducing the im-
pact of load variations and intermittent generation [20, 21].

A common objective of demand optimisation is the flattening
of the daily load curve by shifting energy consuming activities
from peak to off-peak periods. In the case of the residential de-
mand, optimisation approaches normally act upon appliances
with significant energy consumption and certain flexibility of
the customer for the time of use, e.g. washing machines and
dishwashers. It is important to underline that most demand op-
timisation strategies consider a larger number of households to
increase the effect on the aggregated load and the related peak-
to-average ratio.

3.2. Real-time pricing

The diurnal and seasonal fluctuations in the energy demand
and the intermittent generation by some renewable energy
sources lead to wholesale price variations. However, electri-
city is commonly charged to the residential end-users at a fixed
rate, i.e. changes in the wholesale prices are not passed down to
the customer. Detailed residential energy consumption data can

!This paper deals only with the technical opportunities related to the resi-
dential energy consumption data without considering non-technical restrictions
resulting from unresolved legal issues. For information on national regulations
and data security see [18, 19].

be used in real-time pricing schemes to establish a link between
the wholesale and the retail market [22, 23, 24].

Real-time pricing provides utilities, network operators and
retailers an option of passing on the actual costs of generation,
transmission and distribution to the consumer. Dynamic pric-
ing schemes incentivize customers to reduce consumption dur-
ing peak-time and shift the use of energy intensive appliances
to periods with low demand. Real-time pricing schemes give
customers with an opportunity to cut down the energy costs by
modifying their usage habits and provide companies from the
energy sector with a tool for influencing the demand.

3.3. Customer services

In recent years, changes in customer needs, increased envi-
ronmental awareness and liberalised markets forced the energy
sector to reconsider the traditional business model. Person-
alised services with an added value for the customer play an
important role in the diversification of the involved companies.
Detailed data of residential energy consumption provide an op-
portunity to develop and offer individualised services which im-
prove customer loyalty and open new sources of income.

Possible additional services for the customers include a com-
parison of energy tariffs and recommendation of the most suit-
able ones, remote control of household appliances for increased
consumer convenience, prediction of the future energy con-
sumption and the associated costs as well as the detection
of inefficient devices to improve household energy efficiency
[25, 26]. Besides, the consumption data can be used to demon-
strate the effects of a modified user behaviour and analyse the
resulting opportunities for the customer. Finally, detailed con-
sumption data could be used in smart appliance programs in-
tended for customer participation in demand optimisation.

3.4. Network management techniques

A continuous supervision and control of transmission net-
works guarantees a reliable and uninterrupted service. In con-
trast, the less common monitoring on the distribution network
level complicates or even impedes an efficient regulation of the
most important grid variables. Residential energy consumption
data can be used in the development of state observers to over-
come the lack of information and apply advanced network man-
agement techniques [27, 28, 29].

Consumption data of high granularity collected by domestic
smart meters can be aggregated to determine the total demand
of all customers connected to a substation in the distribution
network. These data can be employed to detect network errors,
enhance load balancing and improve power quality and energy
supply. Suitable models allow the dynamic estimation of the
operational state of distribution networks and provide valuable
information for monitoring and control purposes.

3.5. Promotion of alternative energy sources

In the last years, affordable systems based on sustainable mi-
crogeneration, renewable energy sources and residential energy
storage have become an interesting alternative for customers.
These systems are suitable for distributed generation concepts
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Figure 1: General structure of the consumer demand model used for the gener-
ation of artificial consumptions data.

and offer customers an option of increasing energy efficiency
while simultaneously reducing costs. Companies with access
to residential energy consumption data could promote and offer
custom-tailored home generation and storage solutions [26, 30].

Small-scale renewable energy sources are capable of con-
tributing to the energy supply of single households or a reduced
number of customers in a small geographic area. The optimal
dimension of the system, considering energy efficiency and eco-
nomic criteria, is determined using the residential energy con-
sumption data of the considered households. The effects of such
a system on the necessary amount of external energy can be
simulated with the smart meter data and used to promote alter-
native energy sources and distributed generation.

4. Consumer energy model

Modern smart meter technology provides the opportunity to
collect detailed residential energy consumption data for an en-
tire dwelling or separately for each appliance in a household.
This data can be exploited in a variety of services and applica-
tions (see Section 3) with different objectives such as increased
grid stability or added customer value. The problems related to
legal issues and the lack of enough high-quality measurements
when dealing with smart meter data can be avoided using syn-
thetic consumption data.

This section describes in detail a new consumer demand
model for the generation of artificial consumption data, both for
a single household and an entire neighbourhood. The general
model structure, explained in the following paragraphs, uses
some basic appliance definitions to generate the synthetic con-
sumption data in three main steps (see Fig. 1).

4.1. Appliance definition

The developed energy demand model uses some basic infor-
mation to define the main characteristics of each appliance to
be considered in the generation of the artificial consumption
data. These definitions contain both technical specifications
(e.g. power level during operation or in standby) and socio-
economic data (e.g. average number of appliances per house-
hold or seasonal effect on the appliance use). The most common
household appliances can be classified according to a reduced
number of simplified power level patterns. In the proposed
model three different power level patterns for the approximation

of the demand curve have been considered. Pattern 1 represents
continuously running appliances with a constant power level®
such as fridges or freezers, see Fig. 2(a). Pattern 2 allows the
approximation of occasionally operated appliances with a pos-
sible non-zero energy consumption in standby operation such
as washing machines or TVs, see Fig. 2(b). Finally, pattern 3
is used to approximate the power curve of continuously run-
ning appliances with a frequently changing power level such as
lighting, see Fig. 2(c).

The three simplified power level patterns were used in the de-
velopment of a classification scheme based on different usage
types. These usage types take account of factors such as fre-
quency, duration and time of use of the considered appliances
and allow a classification closely related to the customer habits.
The nine usage types, initially defined in [31], are the following
ones:

- Type A: continuously running appliances, never switched
off, based on power level pattern 1.

- Type B: appliances used nearly every day, never more than
once a day, long usage duration (more than 12 hours),
power level pattern 2.

- Type C: appliances used several times a week, never more
than once a day, mainly in the afternoon, long usage dura-
tion (between 2 and 12 hours), power level pattern 2.

- Type D: appliances used several times a week, mainly in
the morning and afternoon, short to intermediate periods
(between 0.5 and 3 hours), power level pattern 2.

- Type E: appliances with non-homogeneous usage fre-
quency, short duration (between 0.1 and 1 hour), mainly
around meal preparation times, power level pattern 2.

- Type F: appliances with variable power consumption,
based on power level pattern 3.

- Type G: appliances used once a day, long durations, vari-
able time of day, power level pattern 2.

- Type H: appliances used once a day, always at the same
time of the day, long durations, power level pattern 2.

- Type I: appliances not represented by other consumer us-
age types, power level pattern 2.

The appliance definition in the consumer demand model has
to provide some basic information used in the generation of
synthetic consumption data. An important part of the men-
tioned basic information, including data on the annual energy
consumption, the average number of devices per household, the
average number of cycles per day, the daily average load curves

Note that some appliances based on pattern 1 can show significant short-
term variations in the power level, but the average power over the period re-
mains at a constant level.
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Figure 2: Simplified power level patterns used for household appliance classification.
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Type  Appliance
A cold app.: refrigerator, fridge-freezer, upright freezer, chest
freezer
computer: fax/printer
others: door bell, smoke detector
B audiovisual: set top box, speakers
computer: modem, router, multifunction printer
C audiovisual: television (CRT, LCD, plasma), hi-fi, DVD
recorder,home cinema, VCR, games consoles (PS3, Xbox 360,
Wii, box), DVD player, radio, CD player, blu-ray player
computer: desktop, monitor, laptop, printer, scanner
D washing: washing machine, washer-dryer, clothes dryer, dish-
washer
cooking: bread maker, yoghurt maker
space heat.: electric space heating, additional space heating
water heat.: electric water heating, additional water heating
others: iron, vacuum cleaner, trouser press, sewing machine
E cooking: oven, cooker, hob, microwave, kettle, food steamer,
fryer, coffee machine, bottle warmer, toaster, grill, extractor
hood, food mixer
others: steriliser
F lighting, photovoltaic panel
G others: charger, cordless phone
H others: dehumidifier, aquarium, pond pump, house alarm, vi-

varium, fan, clock radio, digital picture frame, baby monitor
I others: organ, hair straightener, paper shredder, sun bed, elec-
tric blanket

Table 1: Classification of household appliances considered in the proposed con-
sumer energy demand model.

for workdays and holidays® as well as the seasonal effect on the
daily appliance usage, was extracted from [32]. Further data
such as power level during operation, power level in standby
mode and duration of operation cycle was gathered from freely
available technical specifications. Besides, each appliance was
classified according to the usage type and the appliance defini-
tion was completed with the estimated ratio of devices switched
to standby mode after usage with respect to the total number of
devices. Table 1 shows the classification for the 85 common
household appliances, including photovoltaic panels where the
generation is represented by a negative energy consumption,
considered in the proposed consumer demand model.

30n the one hand, the daily average load curves for workdays and holidays
can be easily transformed into the time of use (TOU) probabilities by means
of a simple normalisation procedure. On the other hand, the ratio between the
sums of the two average load curves represents the distribution of the appliance
use regarding workdays and holidays.

4.2. Household configuration

The consumer demand model configures in a first step the
households to be used in the generation of consumption data.
For most appliance types, the number of devices per household
is determined by means of a probabilistic approach. However,
in the case of a few specific appliances exceptions in the house-
hold configuration have been considered.

The probabilistic approach used to calculate the number of
devices in a household is based on the binomial distribution
given by B(1, p) where 1 denotes the maximum number of de-
vices of a certain appliance type per household. The parameter
p is defined as the average number v of devices per household
divided by 7, i.e. p = v/n. The binomial distribution has been
chosen due to the possibility to generate discrete, non-negative
numbers around a desired mean value v. Furthermore, the as-
sociated variance np(1 — p) leads to a suitable dispersion when
dealing with the ownership of household appliances.

The most important exception deals with the assumption that
every household possesses electric lighting because of being
such an essential appliance. The mutual exclusion of gas fu-
elled and electric devices for one and the same appliance type
in a household is another exception and applies to ovens and
hobs. Furthermore, the sum of electric and gas space heaters
as well as the sum of electric and gas water heaters has been
limited to one device per household.

In the last step of the configuration procedure a probabilistic
approach is used to define for each appliance in a household
the operational state in non-use periods, i.e. if a device is just
switched off after use or set to standby mode, and the corre-
sponding energy demand. The chosen approach is based on the
Bernoulli distribution B(p) where the probability parameter p
corresponds to the ratio ¢ of devices switched to standby mode
after use with respect to the total number of devices, i.e. p = ¢.
Depending on this initial configuration, an appliance is always
switched off or always switched to standby.

It is important to mention that the consumer energy demand
model offers the possibility to manually define the number of
appliances in the households if a specific set of households has
to be simulated. This procedure allows the generation of con-
sumption data for predefined households without any variance
in the appliance ownership.

4.3. Daily appliance use

In a second step, the consumer energy demand model de-
termines the daily usage for each appliance in a household, i.e.



whether and how often a device is used on a particular day. With
a few exceptions, the daily use of the considered appliances is
computed with discrete probability distributions.

For most appliances the chosen probabilistic approach is
based on the binomial distribution B(7, p) where the parameter
n denotes the maximum number of daily operation cycles. The
parameter p is defined as the average number of cycles per day
v divided by 7, i.e. the parameter is given by p = v/5. The use
of this distribution generates integer numbers between 0 and 7
with a mean value of v. For a few appliances with considerably
long duty cycles, mainly audiovisual and computer devices, the
daily use is computed taking into account an upper limit of one
cycle per day. This limitation is easily included using n = 1
and leads to a reduction of the used binomial distribution to the
Bernoulli distribution B(p).

One of the exceptions considered in the consumer demand
model assumes that some appliances are used exactly once per
day. These devices are frequently used in combination with
timers and include, amongst others, aquariums, pond pumps
and fans. Another exception deals with the group of appliances
that are operated 24 hours a day and almost never switched off.
This exception mainly applies to cold appliances, but also to de-
vices such as smoke detectors and faxes. Note that lighting and
photovoltaic panels have been included in the group of continu-
ously running appliances where the power demand and energy
generation vary in a large range throughout the day.

Seasonal variations in the frequency of use can be observed
in a not insignificant number of appliances including devices for
space and water heating, washing, cooking. The consumer de-
mand model considers the mentioned seasonal effects by means
of a variable average number of cycles per day v,(n). This vari-
able is given by v,(n) = k(n)v where k(n) denotes a seasonal
factor and v is the nominal average number of cycles per day,
i.e. the seasonal influence is considered as a scaling of the
nominal number of daily uses. The seasonal factor «(n) is a
quadratic function which can be written as:

k(n) = max {a + B x(n) +y - x(n)*,0} 1)

where @, § and y are parameters. The function x(n) = (2n —
366)/364 depends on the variable n which denotes the n-th day
of the year. Starting with a value of x(1) = —1 (1* January),
the value of the function growths linearly to x(365) = 1 (31
December). The parameters «, 8 and y depend strongly on the
seasonal influence and can vary in a wide interval. For a con-
stant appliance use over the entire year valuesof « = 1,8 =0
and y = 0 are used. In the case of a significant seasonal in-
fluence, these parameters have to be adjusted to consider the
variations over the year, e.g. space heating can be expressed
with @ = -0.8, 8 = 0 and y = 3.08. Finally, the variable av-
erage number of cycles per day v,(n) is used in the binomial
distribution B(n, p) with p = v,(n)/n and leads to a variation in
the daily cycles during the year®.

4Note that the variable average number of cycles per day v,(n) is not used
for appliances which are used exactly once or for devices with an upper limit
of one cycle per day. For these appliances the seasonal effect is included in the
duration of the operation cycles, see Section 4.4.

4.4. Energy demand time series

In the last step, the consumer demand model determines the
time of use for each appliance in a household. For the pro-
posed model, a sampling time of 15 minutes has been chosen.
This sampling time represents a trade-off between the precision
of the power curve and the resulting amount of data. It was
proven that sampling times of 1 minute or shorter are suitable
to capture the fine details of household load patterns [33]. In
contrast, most of the currently installed smart meters log the
consumption data hourly, half-hourly or at 15 minutes intervals
[19]. Furthermore, a sampling time of 15 minutes for the aggre-
gate residential consumption data is adequate for its use in net-
work management based on economic dispatch as energy mar-
kets commonly operate with intervals of 30 minutes or longer.
However, the sampling time in the proposed consumer energy
demand model can be easily changed if more precise data is
required.

The exact time of use is computed for most appliances with
the aid of a general discrete distribution based on the time of use
probability of the considered device. The general discrete dis-
tribution, which can be easily generated comparing a random
variable u from the continuous uniform distribution U(0, 1)
with the cumulative time of use probability [34], provides the
exact starting sample of the appliance operation. Note that the
normalised daily average load curve, which is part of the basic
appliance definition (see Section 4.1), corresponds to the time
of use probability. During the determined starting sample and
the following samples, where the number of samples depends
on the cycle duration, the appliance is in use and its power de-
mand corresponds to the power level during operation given by
the initial appliance definition. In the case that an appliance is
used more than once a day, the procedure is repeated several
times taking into account that operation cycles must not over-
lap.

One of the exceptions considered in the generation of the
energy demand time series deals with appliances operated at
the same time every day. The operation times for these ap-
pliances are computed only once for workdays and once for
holidays using the previously described probabilistic approach
based on the cumulative time of use probabilities. The obtained
operation times are then extended to all days of the considered
period and guarantee that these appliances are always used at
the same time. For lighting and photovoltaic panels, which are
supposed to be in permanent operation, the power demand in
each sample is given by the corresponding element of the daily
average load multiplied with the factor 4. The generation of
the mentioned factor is done using the log-normal distribution
A(u, o) with o = 0.2 and 4 = —0?/2 [35]. The log-normal
distribution generates non-negative, continuous random num-
bers around the mean value ¢***37" i.e. with the given o and u
a mean value of one has been used. In the case of the other con-
tinuously running appliances a constant power level throughout
the entire day has been assumed.

Furthermore, the seasonal variation in the cycle duration of
some appliances has been included in the consumer energy de-
mand model. Under consideration of the seasonal effects, the
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Figure 3: Schematic scheme of the individual appliance demands and the re-
sulting overall household demand.

variable cycle duration is given by 7.(n) = «(n) T where k(n)
represents a seasonal factor (1) and 7 denotes the nominal cycle
duration. Note that the seasonal variation in the cycle duration
is applied only to appliances used exactly once or with an up-
per limit of one cycle per day. For all other appliances seasonal
effects have been already considered by means of a variable av-
erage number of cycles per day v,(n) (see Section 4.3). Finally,
the overall household demand is the sum of the individual de-
mands generated by the appliances in a household (see Fig. 3).

Note that consumer energy demand model does not consider
the effect of appliance degradation over time. Nevertheless, the
model can be easily extended to include the influence of such a
degradation on residential energy consumption.

4.5. Model implementation

The developed consumer demand model was implemented in
Matlab using the general structure shown in Fig. 1 and the pre-
viously mentioned sampling time of #; = 15 min. The program
uses the basic appliance definitions given in Section 4.1 and is
based on the steps described in Sections 4.2, 4.3 and 4.4. The
parameters of the appliances, taken from [32], are read from
an external spread sheet at the beginning of the program execu-
tion. New appliances to be considered by the consumer demand
model can be added easily including their basic information in
the mentioned spread sheet. The implemented program pro-
vides a large flexibility in the data generation with respect to
the number of households and the observation period.

5. Application examples

The proposed consumer demand model has been developed
with an intention of providing a new tool for creation and vali-
dation of new services and applications offered to either energy
end-users or energy providers. A customer service demonstrat-
ing effects of modified user behaviour and an aggregated de-
mand optimisation algorithm have been selected as two possi-
ble illustrations of the application development process based
on the model and will be presented in this section.

5.1. Effects of a modified user behaviour

Detailed insight into the appliance use in a household and
the related customer behaviour can be gathered from residential
consumption data. The possible effects of changes in the user
behaviour or the appliance configuration can be simulated with
the developed consumer demand model introducing parametric
modifications in the basic appliance definitions.
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Figure 4: Daily average demand resulting from different electric lighting types
in an example household.

Residential consumption data allows analysing the demand
of each appliance or group of appliances in a household such as
cold, washing or cooking appliances. Additional information
provided by the customer (e.g. appliance type and daily use) as
well as data from households with similar configurations give
an idea about the efficiency of the appliances used in a certain
household. A service to demonstrate to customers the effect of
replacing inefficient appliances by new devices which comply
with current industrial standards has been developed by using
the proposed model. The mentioned effect can be simulated
easily by modifying the annual energy consumption and the
power level during the appliance operation (and standby) and
by introducing the basic appliance definitions of the consumer
demand model (see Section 4.1). In order to give an illustra-
tive example, the power consumption of different lighting types
has been analysed for an example household (see Fig. 4). The
results generated with the customer service based on the con-
sumer demand model compare the daily average demand for
three cases: only incandescent light bulbs, only compact fluo-
rescent light (CFL) bulbs and an intermediate scenario (50 %
incandescent light bulbs, 50 % CFL bulbs). For the considered
example household a replacement of the traditional bulbs by
compact fluorescent lamps reduces the annual energy consump-
tion of electric lighting from 544 kWh to 136 kWh. Although
the intermediate scenario is not the optimal case, the partial re-
placement of the incandescent light bulbs leads to an annual
energy consumption of 340 kWh. This customer service, based
on the proposed consumer demand model, provides the oppor-
tunity to illustrate the effect of replacing obsolete appliances in
order to achieve an increased household energy efficiency.

Residential energy demand usually shows significant varia-
tions over a day due to increased use of some appliances at
certain hours, e.g. lighting in the evening and cooking appli-
ances around meal times. The local energy production of pho-
tovoltaic panels can lead to an additional mismatch between
the consumption and the generation and, as a consequence, re-
inforce the variations in the resulting residential demand. Here,
the proposed consumer demand model has been used to develop
an application to show the direct influence of the customer be-
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Figure 5: Daily average demand created by the proposed consumer demand
model for an example household with PV installation.

! heating H computer
1200 & audiovisual = lighting
I cooking l'wash. appl.
900 cold appl. ™ photovoltaic
s 800+
o
& 300
E
S
0 -
—300+
—600+ 1 t t T 1 1 T
0 3 ] ] 12 156 18 21 24

time [h]

Figure 6: Daily average demand for an example household after a change in the
customer behaviour related to the use of washing appliances.

haviour on the residential load. In this application, the effects
of changes in the customer behaviour can be simulated mod-
ifying the time of use (TOU) probabilities in the basic appli-
ance definitions of the proposed model. These modifications in
the customer behaviour related to the usage of household appli-
ances provide us with an opportunity to achieve certain demand
curve shaping, especially a demand flattening. As an applica-
tion example the possible changes in the daily average demand
of a household with PV installation has been studied. The orig-
inal demand of this household, where the power production of
the photovoltaic panel has been considered as a negative con-
sumption, shows a very low level at midday and a generally
high variation throughout the day (see Fig. 5). For the same ex-
ample household the usage of washing appliances was limited
to periods from 2 am to 4.45 am and from 9 am to 3.45 pm.
In the obtained results, given in Fig. 6, it can be observed that
the changed user behaviour considerably reduced the demand
variations during the day. The application developed on top of
the consumer demand model can be further used by end-users
or energy companies to analyse the effect of possible modifica-
tions in the customer habits.

The proposed consumer demand model allows a better devel-
opment and validation of new services and applications for the
different participants in the energy market. In the presented ex-
amples, the model was used to demonstrate the effects of mod-
ifications in the appliance configuration (replacement of light
bulbs) and the customer behaviour (use of the washing appli-
ances only at certain hours). The obtained results underline
the opportunities provided by the model and the significance
of detailed consumption data for the improvement of energy ef-
ficiency in the residential sector.

5.2. Aggregated demand optimisation

This section demonstrates an application of the proposed
consumer demand model in the quantitative evaluation of
the benefits of aggregated demand optimisation to the energy
provider and customer. The used demand management is based
on a distributed real-time optimisation approach. The algorithm
solves in each sample a multi-objective optimisation problem
which includes both user and energy provider objectives ex-
pressed by economic cost functions.

We consider a smart power network comprising a set of users
served by an energy provider who participates in the whole-
sale energy market. Each user is equipped with a smart meter
capable of scheduling energy consumption of appliances, and
smart meters are connected to the energy provider via a com-
munication link. It is assumed that each user operates a set
of appliances including photovoltaic installations over a finite
scheduling horizon. In the demonstration of the aggregate de-
mand optimisation, a horizon of 24 hours divided into timeslots
of 15 minutes is used. Each appliance requires a predetermined
amount of energy during the scheduling horizon, and can op-
erate between a minimum and maximum power level at every
timeslot.

By using the established communication links the energy
providers are in position to create and apply more personalised
tariffs for either individual users or an aggregated group of
users. In this particular case, the real-time (dynamic) pricing is
assumed to be applied to the group of customers in this exam-
ple. The tariffs are used as an incentive offered to the customers
to minimise their own electricity costs that will at the same time
help the energy provider to reduce its own cost of purchasing
the electricity in the market at peak times. In other words, to
minimise their own costs the energy provider will incentivise
the customer (by using tariffs) to consider shifting their load
out of the peak times.

Fig. 7 shows a schematic diagram of the interconnections be-
tween the consumer demand model and the demand optimisa-
tion. After determining the daily appliance use, i.e. how many
times an appliance is used, the exact time of use of the con-
trollable appliances is computed by using the demand optimi-
sation algorithm. For all the other appliances (non-controllable
appliances) the time of use is calculated with the probabilis-
tic approach of the consumer demand model. Finally, the con-
sumer demand model computes the energy demand time series
for both controllable and non-controllable appliances and the
resulting household demand.
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Figure 7: Structure of the connection between consumer demand model and
optimisation algorithm.
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Figure 8: Time-dependent electricity tariff with three different price levels: low
(1), medium (m) and high (h).

Fig. 8 shows the time-based pricing scheme for electricity
used in the optimisation of the aggregated demand of 1000 do-
mestic users. The tariff has three different price levels (low,
medium, high) for off-peak, mid-peak and peak periods. The
daily distribution of the different levels is 41.7 %, 25 % and
33.3 % for off-peak, mid-peak and peak periods, respectively.

A comparison of the aggregated demand of 1000 users with
and without demand optimisation is given in Fig. 9. In both
cases, the results have been obtained with the same set of house-
holds and for the same day. It can be observed that the optimi-
sation algorithm shifts the demand from on-peak to off-peak
periods leading to a higher demand in low price periods and
a lower demand during high price periods. During the demand
optimisation, washing devices (washing machine, clothes dryer,
washer dryer and dish washer) have been considered as control-
lable appliances (fully shiftable in time). The used optimization
algorithm can shift the operation of these appliances within the
same day, i.e. the daily energy demand of the controllable appli-
ances is not modified. Furthermore, the power level for the cold
devices (refrigerator, fridge freezer, upright freezer and chest
freezer) has been varied between 90 % and 110 % of the nomi-
nal value.

In Fig. 10 the hourly average of the aggregated load of 1000
domestic users has been sorted in descending order. It can be
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Figure 9: Comparison of the aggregated load of 1000 domestic users for one
day before (dotted line) and after demand optimisation (solid line).
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Figure 10: Aggregated load of 1000 domestic users for one day before and after
demand optimisation sorted in descending order of hourly average values.

observed that the optimisation approach reduced the maximum
value at peak hours (from 1834.1 kW to 1728.4 kW, i.e. a re-
duction of 5.8 %) and increased the minimum value at off-peak
hours (from 725.9 kW to 807.5 kW, i.e. an increase of 11.2 %).

The peak-to-average ratio for the shown aggregated results
has been reduced about 5.1 %. This is an important reduction
as it directly contributes to reduced marginal costs of energy at
the peak times in the electricity markets. This in turn brings
additional disproportionate cost savings to the energy providers
and indirectly the consumers involved in the scheme.

6. Conclusions

Auvailability of detailed residential energy consumption data
incentivises the creation of novel services and applications of-
fered to all the participants in the energy market: utilities, dis-
tributors and end-users. Although deployment of smart me-
ters is carried out in many areas, unresolved legal and techni-
cal questions have a negative effect on the access to the meas-
urements and consequently the development of new services.
An alternative solution to avoid these problems is to use an



application-oriented demand model for the generation of de-
tailed residential consumption data that has been developed and
presented in this paper. The proposed energy demand model is
based on a probabilistic approach and takes into consideration
the contributions of a wide range of common household appli-
ances. The data generation process uses 15 minutes sampling
time intervals and can be carried out for a single household
or for an entire neighbourhood. The synthetic data generated
by the model are suitable for creation and validation of value-
added services for the energy sector. In order to keep the com-
plexity as low as possible, the effects of appliance degradation,
inter-dependency of appliances and vacation periods were not
included. Besides, the consumer energy demand model does
not consider any influence of external factors such as ambient
temperature.

The flexibility offered in generation of the energy consump-
tion data (from single households to entire neighbourhoods) and
the level of detail (considering a large number of appliances)
distinguishes the proposed model from any other models avail-
able in the scientific literature. These features allow generation
of consumption data suitable for the development and valida-
tion of value-added services for end-users and companies and
have been demonstrated by using two test examples.

The first example focused on the effects of the user behaviour
in a single household and a possible service offered to the final
customer. In this application it has been demonstrated how the
model can be used to identify the cost savings opportunities. In
the second example, the benefits for both the energy provider
and a customer group of an application of the real-time pric-
ing scheme were examined. The model was used along with an
demand optimisation tool and the flexibility of modifying the
time of use and controlling the appliances were demonstrated.
All the obtained results indicated that the prosed model and the
generated residential consumption data are suitable for the cre-
ation of new services and applications with advanced function-
ality.
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