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Abstract

We present an efficient image-based rendering algorithm
that computes photo hulls of a scene photographed from
multiple viewpoints. Our algorithm, Image-Based Photo
Hulls (IBPH), like the Image-Based Visua Hulls (IBVH) al-
gorithm from Matusik et. al. on which it is based, takes ad-
vantage of epipolar geometry to efficiently reconstruct the
geometry and visibility of a scene. Our IBPH algorithm dif-
fersfromIBVH inthat it utilizesthe color information of the
images to identify scene geometry. These additional color
congtraints often result in more accurately reconstructed
geometry, which projects to better synthesized virtual views
of the scene. We demonstrate our algorithm running in a
realtime 3D telepresence application using video data ac-
quired from four viewpoints.

1 Introduction

The task of generating a photo-redistic 3D representa-
tion of avisual sceneis an important and challenging prob-
lem. Debevec et. a. [3] demonstrated in their Campanile
moviethat it is possible, using a user-assisted 3D modelling
program and a handful of photos of a college campus, to
produce a digital model of the scene that when rendered,
yields images of stunning photorealism from novel view-
points. Since this work, there has been much interest in
producing results of similar quality using algorithms that
are automatic and work on scenes composed of surfaces of
arbitrary geometry.

Recently, researchers have become interested in recon-
structing time-varying scenes [11, 10, 9, 15, 1]. Unfortu-
nately, most standard approaches to the 3D scene recon-
struction problem are too slow for realtime application on
current computer hardware. When working with multi-view
video data, such techniques perform the 3D reconstruction
offline after the images have been acquired. Once the re-
construction is complete, it is rendered in realtime.
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A notable exception is Matusik et. a’s Image-Based Vi-
sual Hulls (IBVH) algorithm [8]. Thisalgorithm is efficient
enough to reconstruct and render views of the scene in re-
altime. By taking advantage of epipolar geometry, all of
the steps of the algorithm function in the image space of
the photographs (also called reference views) taken of the
scene.

While the IBVH agorithm is exceptionally efficient, the
visual hull geometry it reconstructs is not very accurate.
Computed using silhouettes at each reference view, the vi-
sual hull [7] is a volume that represents the region of 3D
space that projects to pixels in al silhouettes. The visual
hull contains the true scene geometry. When photographed
by only afew cameras, the scene'svisual hull is often much
larger than the true scene. When rendering new views, one
can partially compensate for such geometric inaccuracies
by view-dependent texture-mapping (VDTM), as done in
the IBVH approach.

To obtain better geometric accuracy, more constraintsare
necessary. We propose the use of color. Our Image-Based
Photo Hulls (IBPH) algorithm finds a set of 3D points that
are photo-consistent [12, 6]. A point in space is said to be
photo-consistent if (1) it does not project to background and
(2) when visible, the light exiting the point (i.e. radiance) in
the direction of each reference view isequal to the observed
color in the photograph. The photo hull is then the spa-
tially largest set of pointsin 3D space that project to photo-
consistent colors in the reference images.

The photo hull is also a volume that contains the scene
surfaces being reconstructed. However, it is atighter fit to
the true scene geometry than the visual hull. That is,
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New views synthesized using the more accurate geometry
of the photo hull have improved photorealism. Like IBVH,
all the steps of our algorithm function inimage space (hence
we call our algorithm Image-Based Photo Hulls). Our ap-
proach combines the efficiency of the IBVH agorithm with
the improved geometric accuracy of the photo hull.
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Figure 1. View-dependent geometry.

Like existing photo hull reconstruction algorithms, [12,
6, 2, 5] our IBPH approach starts with a surface larger than
the scene, and then iteratively removes (carves) space us-
ing a photo-consistency measure until the visible points are
photo-consistent. Our approach differsin that our algorithm
functions in image space and produces a view-dependent
reconstruction. Rather than reconstruct the full photo hull
geometry, our method only reconstructs the portion of the
photo hull that is visible to avirtual viewpoint.

For an overview of methods that reconstruct visual and
photo hulls, please refer to [4, 13].

2 Image-Based Visual Hulls

In this section, we briefly review how the visual hull ge-
ometry is reconstructed by the IBVH algorithm. In the fol-
lowing section, we will show how we extend this algorithm
to reconstruct photo hulls.

One of the unique properties of the IBVH agorithm is
that the geometry it reconstructs is view-dependent. A user
moves a virtual camera about the scene. For each virtual
camera placement (also called desired view), the IBVH al-
gorithm computes the extent that back-projected rays from
the center of projection C, intersect the visual hull in 3D
space. Thisis shown in Figure 1. Thus, the reconstructed
geometry changes as the user moves the virtual camera.

Consider anindividual ray, asshownin Figure2. Theray
is back-projected from the desired view’s center of projec-
tion, through a pixel in the image plane, and into 3D space.
The ray projects to an epipolar line in each reference view.
For each reference view, the IBVH algorithm determines
the 2D intervals where the epipolar line crosses the silhou-
ette. These 2D intervals are then “lifted” back onto the 3D
ray and intersected for all reference views. The resultant set
of intervals, called visual hull intervals, describe where the
ray piercesthevisual hull. In Figure 2, onevisual hull inter-
val isfound along the 3D ray. This processis then repeated
for al rays back-projected from the desired view.
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Figure 2. Computing a ray’s visual hull inter-
vals.

3 Image-Based Photo Hulls

In this section we describe our new method of recon-
structing photo hulls. More details are presented in the ex-
panded version of this paper [14].

3.1 Approach

Our IBPH approach first computes the visua hull inter-
vals using the IBVH agorithm, which quickly eliminates a
large portion of 3D space that does not contain scene sur-
faces. Our algorithm then evaluates the photo-consistency
of the closest point on the visual hull along each ray back-
projected from the desired view. If the point isinconsistent,
we take a small step along the ray, moving away from the
desired view, as depicted in Figure 3. We continue stepping
along an inconsistent ray until it either becomes consistent
or we have stepped beyond al visual hull intervals along
the ray. This latter case indicates that there is no photo-
consistent geometry along theray.

Note that in thisapproach, only the points on the hull that
are visible in the desired view are processed. These points
arethefirst pointsin thefirst visual hull interval along each
back-projected ray.

3.2 Photo-Consistency

To determine the photo-consistency of a 3D point P on
a ray, we project P into the ith reference view, yielding
an image-space point p;. We only perform this projection
for the reference views that have visibility of P. Visibility
is computed using the technique described in [8]. Around
each p; we collect a small neighborhood of pixels, NV; to
use in our photo-consistency function.

There are many methods one can employ for matching
color distributions to determine photo-consistency. In our
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Figure 3. Computing the image-based photo
hull.

approach, we assume the scene is Lambertian. Therefore,
to be photo-consistent, a point must project to similar colors
in each reference view. Our photo-consistency measure is

. True, if o < Ty +7T15
Consistency = { False, otherwise @
where ¢ is the standard deviation of all pixels, } . V;, and
Ty and T are user-defined thresholds. The parameter &
is the mean standard deviation computed by averaging the
standard deviation from each neighborhood of pixels ;.

This consistency measure is spatially adaptive. The
value of & will be small when the 3D point projects to ho-
mogenous colors in each image, so the 15 will have little
influence. If these colors are similar, the point will be de-
clared consistent, for o < T3. If these colors are dissimilar,
the point will be declared inconsistent, for o > 7;. When
the point projectsto highly varying pixelsin each image, the
@ term will increase the maximum value of o allowable for
the point to be declared consistent. This allows for textured
surfaces, as well as edges, to be correctly reconstructed. It
also eases the Lambertian assumption.

3.3 Stepping Along Epipolar Lines

As we step in 3D along an inconsistent ray, looking for
the point at which it becomes consistent, we must simulta-
neously step along an epipolar line in each reference view.
The brute-force way of stepping along the epipolar line in
the ith reference view is to simply project each 3D point
P; on the ray to the reference view point p; by multiply-
ing the reference view's projection matrix H; with P, i.e.
p; = H;P;. Such an approach will work, but will require
alarge number of matrix multiplications.

While the step size |AP| in 3D is constant, the step size
between adjacent points along the epipolar linein a 2D ref-
erence view varies dueto the projection. However, sincethe
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Figure 4. Stepping along an epipolar line.

projection is a homography (linear projective transforma-
tion), the step size is constant in homogeneous coordinates.
We use this fact to produce a more efficient procedure for
stepping along the epipolar line.

Consider the 3D point P, on the ray, as shown in Fig-
ure 4. It projects to a point po = H;Pg in a reference
image. If we take a step along the ray, we arrive at a 3D
point P, = Py + AP. The point p;, the projection of P,
into the reference view can be written as

= po+ H;AP

Thus, we can incrementally update the homogeneous po-
sition of the point along the epipolar line in the reference
view. That is,

o HiPOa ] =0
Pj = { pj_1+ HAP, >0 @

We pre-compute H; AP for each ray and store it in alook-
up table. Aswe step along the epipolar line, we use Equa-
tion 2 to compute the homogeneous position of the point
p;. With this approach, stepping along an epipolar line is
very efficient.

4 Reaults

We have implemented the IBPH agorithm on a multi-
camera system. We have four calibrated and synchronized
Sony DFW-V500 digital cameras. Each camera is con-
nected to an 800 MHz HP Kayak XM600 machine, which
performs background subtraction on the incoming frames,
segmenting them into foreground and background regions.
The resolution of the reference imagesis 320 x 240 pixels.

The segmented reference images are sent over a 100
Mb/s switch to our server machine, which computes the 3D
reconstruction. Our server machine is a dual processor 2



GHz HP x4000 workstation. Our algorithm has been multi-
threaded so that the kth thread reconstructs the scene using
aset of images corresponding to time ¢.

Figure 5 compares the IBVH reconstruction to the IBPH
reconstruction for avirtual viewpoint halfway between two
reference views. The left two images show the visual hull
reconstruction. At this viewpoint, the right side of the face
is texture-mapped with one reference image, while the left
side of the face is texture-mapped with another. Due to the
geometric inaccuracy of the visual hull, there is a salient
seam along the face where there is a transition between the
two images used to texture-map the surface. The improved
geometry of the photo hull corrects this problem, as shown
in the right two images of the figure.

Figure 6 shows a view from a realtime 3D telepresence
application we are currently developing with HP labs. The
3D model of the person’s head and upper body is recon-
structed online using the IBPH algorithm. The model of the
person is then depth-composited with a 3D model of a con-
ference room. New synthesized views of this composited
scene are generated at 7.5 frames per second.

5 Conclusion

In this paper we have presented our Image-Based Photo
Hulls algorithm that efficiently produces views of the photo
hull.

There are some limitations to our approach. While
the photo-consistency measure described in Section 3.2
has some tolerance for non-Lambertian scenes, it fails for
scenes that have significant specularities. For fairness, we
should note that visual hull reconstruction algorithms like
IBVH do not have a problem with non-Lambertian scenes,
as they do not perform color matching. For the data sets
shown in this paper, the IBPH algorithm requires approxi-
mately five times the computation of the IBVH algorithm.

6 Futurework

There are several future directions we are interested in
pursuing. We currently do not take into consideration tem-
poral coherence. Motion constraints could be imposed to
improve efficiency and reconstruction quality. Also, an
adaptive approach to determining the step size taken along
each ray may improve the efficiency of our algorithm.
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Figure 5. Visual hull reconstruction (upper row) vs. photo hull reconstruction (lower row). Left to
right: synthesized view and depth map.

Figure 6. Using IBPH in a realtime 3D telepresence application.



