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Abstract

In this communication, we discuss some properties of a class of path depen-
dent options based on the α-quantiles of Brownian motion. In particular we
show that such options are well behaved in relation to standard options and
comparatively cheaper than an equivalent class of lookback options.
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1 Introduction

A new type of path-dependent option which can be interpreted as a mod-
ification of lookback options is the α-quantile option, proposed recently by
Miura (1992). Its payoff at maturity is defined by the order statistics of
the underlying asset price; in particular, this order statistic or, better, the
α-percentile point of the stock price for 0 < α < 1 can be thought of as the
level at which the price stays below for 100α% of the time during the option’s
contract period. The problem of pricing such an option has motivated stud-
ies concerning the properties of the distribution function of the α-percentile
of the stochastic process driving the stock price, which has been investigated
mainly by Akahori (1995), Dassios (1995, 1996), Takács (1996), Yor (1996)
and Doney and Yor (1998). Closed formulas in the traditional Black-Scholes
framework for the price of this option have been obtained both by Dassios
(1995) and Akahori (1995) who also provides an analytical expression for
the hedging strategy. However, these formulas are still expressed in integral
form, which could present serious computational difficulties if they are to be
evaluated numerically.

The present paper proposes a numerical method to simulate the α-quantile
option price. Such an approach takes advantage of the Dassios-Port-Wendel
identity concerning the α-quantile of a Brownian motion with drift, rather
than using numerical integration procedures. The results obtained from this
method are then discussed.

2 Pricing α-quantile options

Let (Wt : t ≥ 0) be a one-dimensional standard Brownian motion with W0 =
0; let σ ∈ R

+, µ ∈ R and define X = (Xt : t ≥ 0) as an arithmetic Brownian
motion such that

Xt = µt + σWt.

The α-quantile of X over the interval [0, t] is defined as follows.

Definition 1 Let Γ (a, t) =
∫ t

0
1(Xs≤a)ds be the occupation time of a Brown-

ian motion with drift, Xt. The α-quantile of Xt is defined as

Q (α, t) = inf {x : Γ (x, t) > αt}

for all 0 < α < 1.
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From this definition it follows that Q (α, T ) ≤ sup0≤t≤T Xt a.s. and
Q (α, T ) ≥ inf0≤t≤T Xt a.s. More precisely

lim
α→0

Q (α, T ) = inf
0≤t≤T

Xt a.s.

lim
α→1

Q (α, T ) = sup
0≤t≤T

Xt a.s.

An important result related to the α-quantile concerns its distribution
function. Dassios (1995) obtained a useful representation of such a function
analogous to a decomposition for random walks due to Wendel (1960) and
Port (1963).

Theorem 2 (Dassios-Port-Wendel identity) Let 0 < α < 1, then

Q (α, T )
d
= sup

0≤t≤αT

Xt + inf
0≤t≤(1−α)T

X̃t, (1)

where
d
= means equality in distribution and X̃t is an independent copy of the

arithmetic Brownian motion.

Consider now the Black-Scholes framework. The non-dividend paying
risky asset S has value St = S0e

Xt at time t ≥ 0 where S0 > 0. Further,
the return on the riskless bond is exponential with rate r > 0. Then an α-
quantile call option with strike price K and underlying asset S has a payoff
function at maturity date, T , defined as

(

S0e
Q(α,T ) − K

)+
, where S0 is the

value of the underlying asset at the beginning of the contract and Q (α, T )
is the α-quantile of X. Analogously, the payoff of an α-quantile put option
of the same type is

(

K − S0e
Q(α,T )

)+
.

Applying the risk-neutral valuation procedure (Harrison and Pliska, 1981),
we can say that the no-arbitrage price at time t ∈ [0, T ] of an α-quantile call
option is given by

C (S0, α, T − t) = e−r(T−t)
E

[

(

S0e
Q(α,T ) − K

)+
| Ft

]

,

where {Ft}t≥0 is the natural filtration for X and E denotes the expectation
under the risk-neutral probability measure P. The price of the α-quantile put
can be defined analogously. Exploiting the convolution property in Theorem
1, Dassios (1995) also obtained the closed formula for the α-quantile call
option

C (S0, α, T − t) = e−r(T−t)

∫ ∞

K

P

[

Q̃ (α′, T − t) > ln
z

St

| Ft

]

1(

Γ
(

ln z
S0

,t
)

>t−(1−α)T
)dz

+e−r(T−t)

∫ ∞

K

1(

Γ
(

ln z
S0

,t
)

≤t−(1−α)T
)dz, (2)
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where

α′ =
αT − Γ

(

ln z
S0

, t
)

T − t

and Q̃(., .) is a version of the α-quantile that is independent of Ft.
Given the nature of the α-quantile of a Brownian motion, the α-quantile

option can be considered as a “smoothed” version of a more well-known
path-dependent option, the fixed strike lookback option. It can be shown
quite easily that the α-quantile option is always cheaper than an equivalent
lookback option written on the same underlying, with the same strike K,
same expiration date T and lookback period [0, T ]. Specifically, consider the
case of a call option. The payoff at maturity of the fixed strike lookback call

is
(

S0e
MT

0 − K
)+

, where MT
0 = sup0≤t≤T Xt. Its price at time t is then

L (S0, T − t) = e−r(T−t)
E

[

(

S0e
MT

0 − K
)+

| Ft

]

.

Since Q (α, T ) ≤ MT
0 a.s., it follows that

Y :=
(

S0e
Q(α,T ) − K

)+
−

(

S0e
MT

0 − K
)+

≤ 0 a.s. (3)

Setting Z = E [Y | Ft], inequality (3) and the definition of conditional ex-
pectation imply

E [Z1A] = E [Y 1A] ≤ 0 ∀A ∈ Ft.

Hence it follows that

C (S0, α, T − t) ≤ L (S0, T − t) a.s. (4)

By an analogous argument it is possible to show that also the put option
is always less expensive than the fixed strike lookback put. This analytical
result is confirmed by the numerical evidence produced in the next section.

3 Monte Carlo simulation

As observed in the previous section, analytic pricing formulas for the α-
quantile option are difficult to compute. As we can see from equation (2), in
fact, the closed valuation formula of this option requires that all the occupa-

tion times
{

Γ
(

ln z
S0

, t
)

: z ≥ K
}

have to be recorded. This can be avoided

if the option price is computed for t = 0. Nevertheless the option price
is still expressed in integral form involving also the distribution function of
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the α-quantile, which can be obtained through the convolution property of
Theorem 1. That means computing another integral expression. On the
other hand Theorem 1 and the fact that the distributions of the extremes of
the Brownian motion are well known results (see for example Karatzas and
Shreve, 1997), provide a straightforward framework to produce the price of
the α-quantile option. The idea is to use a Monte Carlo valuation procedure
for the price at time 0 of the quantile option, in which the α-quantile of the
Brownian motion is generated directly as the sum of two independent sam-
ples of the extremes of X. More precisely, the approach can be described by
the following steps:

• for i = 1, 2, ..., n generate independent samples of M := sup
0≤t≤αT

Xt and

m := inf
0≤t≤(1−α)T

Xt by inversion of their distribution functions, through

the Newton algorithm;

• let Qi be the sum of the independent realizations of M and m, then
the final payoff, Yi, of the α-quantile option is computed as Yi =
(

S0e
Qi − K

)+
;

• let Ĉ := e−rT
∑n

i=1 Yi/n; then Ĉ is a numerical approximation to the
option price at time t = 0.

Note that in this way we don’t need to generate the entire history of
the Brownian motion; a procedure that presents problems when choosing an
appropriate approximating random walk. Since the α-quantile option is a
path-dependent contract, its value is liable to be sensitive to the frequency
with which the extremes of the Brownian motion are observed. For a random
walk approximation, the “true” extremes of the Brownian motion may not
be correctly sampled.

In the same framework, this Monte Carlo procedure can be adapted to
approximate also the delta of the α-quantile option at time 0. Let ∂i :=
eQi1(S0eQi>K) be the partial derivative of the sample payoff Yi with respect

to S0. Then ∆ = e−rT
∑n

i=1 ∂i/n is a numerical approximation to the α-
quantile option delta at time t = 0. To be precise a closed form for the
option delta has been derived, as already mentioned, by Akahori (1995).
However such a formula suffers of the same problem of the option price, that
is it is still expressed in integral form involving also the distribution function
of the α-quantile.

The Monte Carlo simulation has been carried out by generating 100, 000
paths. Using a C++ program on a desktop with Pentium(r) III processor

4



and 64, 0 MB RAM, the numerical procedure implemented takes 8 seconds
to return the option price. The control variate technique is used to reduce
the variance of the obtained estimates. The benchmark contract is chosen to
be the lookback counterpart; hence the option contract is computed as

ĈCV
q = Ĉq + β

(

CL − ĈL

)

,

where Ĉq is the price of the quantile call option obtained by the procedure
described above, CL is the exact price of a lookback call contract written
on the same underlying, with equal maturity and strike and lookback pe-
riod [0, T ], ĈL is the estimated value for such a lookback option using a
Monte Carlo procedure, and β is a parameter with value other than one.
In particular, the choice of β which minimizes the option price variance is

β∗ = Cov
(

Ĉq, ĈL

)

/V ar
(

ĈL

)

. In order to avoid the introduction of a bias

in the estimation of the option price, we use a few pilot runs to estimate β∗

and then we use this parameter in the main simulation run. The details of
the output for the quantile option are presented in Table 1. We choose this
version of the control variate technique because β∗ allows to reduce signifi-
cantly the option variance no matter the level of α chosen, that is no matter
the degree of correlation between the quantile option and the lookback. In
fact, we have to consider that the quantile option loses any similarity with
the lookback counterpart for values of α far enough from 1.

4 Simulated prices

Throughout all the following analysis, unless otherwise stated, the basic pa-
rameter set is

S0 = 100; K = 100; α = 0.5; r = 0.05; σ = 0.2; T = 1.

The α-quantile call price for different values of the initial stock price, with
all the other parameters left unchanged, is given in Table 2. In the same table
we report also the price of a fixed strike lookback call1 written on the same
underlying and computed for the same values of the parameters K, r, σ and
T . As expected, the 0.5-quantile option is cheaper than the lookback option.
In order to observe empirically the convergence property of the α-quantile
option to the lookback option discussed in the previous section (see equation
(4)), for the particular case of t = 0, in Figure 1 we plot the prices of both

1The price in this case in computed through its closed formula (Conze and Viswanathan,
1991).
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the α-quantile call and put against the stock price for different values of the
parameter α. Also, we add to the plot the price function of the equivalent
lookback. The dominating value of the lookback as discussed in section 2
is clear. The same kind of analysis is extended to the delta of the options
considered and the results are given in Figure 1.b and 1.d. In general, we can
say that the slope of the delta when it is considered a function of the stock
price represents the option’s gamma. Gamma provides informations about
the frequency with which a possible portfolio containing such an option has to
be rebalanced in order to maintain a perfect hedge. Hence, it is reasonable
to expect that, when the stock price is in the neighborhood of the strike
price, the delta is highly sensitive to changes in the underlying asset price,
therefore the portfolio is likely to be rebalanced very frequently. Let us now
consider the case of the call option. As the stock price becomes very large,
delta becomes less sensitive because the option is expected to expire in-the-
money. This is the behaviour we can observe in Figure 1.b. For the case
of the lookback option this behaviour is very marked. If the initial value of
the stock is equal to the strike price, the maximum of the stock itself cannot
be less than the strike price. Therefore, above this “critical value” there is
no additional risk to hedge and the delta remains constant. The pattern for
the α-quantile option, instead, is more “smoothed”, but as α approaches the
unity we see that the pattern of the delta becomes more and more similar
to the one of the lookback, due again to the convergence property of the α-
quantile option to the lookback option. Analogous considerations hold also
for the put case with the (obvious) difference that the delta becomes less
sensitive when the stock price becomes smaller with respect to the strike
price.

A general study of comparative statics concerning all the main parame-
ters on which the option value depends, reveals that the α-quantile option
presents patterns lined up with the behaviour of other Euro-type options.
For example, in Figure 2 it is shown the sensitivity of the α-quantile call
option to changes in the stock volatility. As we can observe, the option price
is positively correlated with σ, which is again a common feature of all op-
tions. In fact, the volatility represents a measure of the uncertainty of the
stock price future movements. Since a call option has limited downside risk
in the event of stock price falls, the value the option tends to increase when
the volatility increases as well. Figure 2 contains also other option greeks,
like the rho, which represents the sensitivity of the contract price to changes
in the interest rate, as well as the time decay of the contract, the so-called
theta, and the charm, that is the rate at which the delta changes with time
to maturity. Analogous results can be also obtained for the put option.
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5 Conclusions

In this note we have presented properties and features of a new financial
instrument, the α-quantile option, introduced first by Miura (1992), which
is at the moment only a “theoretical” object since it is not yet traded in the
market. The Dassios-Port-Wendel identity has been employed to simulate
initial prices and Greeks of the α-quantile. In view of the analytical structure
of this option the simulations not surprisingly show consistent characteristics
to other Euro-type option contracts. The problem of obtaining numerically
the mid-contract value of the option remains unsolved. In fact, for this
case pricing formulas and numerical approximations cannot avoid the set of
occupation times needed to define the α-quantile itself and which makes this
process not Markovian.
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Figure 1: The “convergence” of the α-quantile option to the fixed strike lookback.
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Black-Scholes framework
Option price 5.7792

Standard error 0.0157
95% confidence interval (5.7484, 5.8099)

Option delta 0.5951
Standard error 0.00167

95% confidence interval (0.5918, 0.5984)
number of iterations: 100,000; time: 8 secs.

Table 1: Simulation results for the quantile call option in the Black-Scholes frame-
work. Set of parameter: S0 = 100; K = 100; α = 0.5; r = 0.05; σ = 0.2; T = 1.
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Stock price 0.5-quantile option Lookback call
90 1.6588 9.457

(0.0093)
95 3.2695 13.865

(0.0125)
100 5.7501 19.1676

(0.0157)
105 9.0895 24.8822

(0.0191)
110 13.0213 30.5967

(0.0226)
115 17.4030 36.3112

(0.0256)
120 22.0456 42.0257

(0.0279)

Table 2: The α-quantile call price and the lookback call. The numbers in paren-
theses correspond to the standard errors of the Monte Carlo simulations.
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