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Abstract

In this communication, we develop suitable valuation techniques for
a with-profit/unitized with profit life insurance policy providing interest
rate guarantees, when a jump-diffusion process for the evolution of the
underlying reference portfolio is used. Particular attention is given to
the mispricing generated by the misspecification of a jump-diffusion
process for the underlying asset as a pure diffusion process, and to
which extent this mispricing affects the profitability and the solvency of
the life insurance company issuing these contracts.
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1 Introduction

Participating life insurance policies are investment/saving plans or contracts
(with associated life insurance benefits) which specify a benchmark return, an

∗The author would like to thank Russell Gerrard for many useful discussions about Lévy
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annual minimum rate of return guarantee and a surplus distribution mech-
anism, that is a rule for the distribution of the annual investment return in
excess of the guaranteed return between the insurer and the customer. These
contracts make up a significant part of the life insurance market of many in-
dustrialised countries including the US, Canada, Japan and members of the
European Union.

These kinds of contract represent liabilities to the issuers implying that
their value and the potential risk to the insurance company’s solvency should
be properly valued. To the extent that, as a result of the difficulties that
un-hedged guarantees embedded in these contracts have caused to the life in-
surance industry in recent years, the regulatory authorities have increased the
monitoring of insurance companies’ exposure to market risk, credit risk and
persistency risk induced by participating contracts, and the embedded options
included in the design of these contracts. For example, in the UK the potential
threat to the company’ solvency from with-profit policies has been addressed
by the Financial Services Authority (FSA) with the introduction, into the reg-
ulatory regime for life insurance companies, of the twin peaks approach for the
assessment of the financial resources needed for with-profit business. Such an
approach (as described in CP195) requires the insurer to set up realistic bal-
ance sheets that are designed to capture the cost of guarantees and smoothing
on a market consistent basis, so that the firm’s provisions are more responsive
to changes in the market value of the backing assets for the with-profit funds.
This implies the implementation of adequate, consistent and objective models
for both the behaviour of the price of the assets backing the policy, and the
calculation of realistic liabilities, where by liability it is meant all of the guar-
anteed elements in the policy plus the projection of future discretionary bonus
payments. The development of these market oriented accounting principles
for insurance liabilities reflects the more general recommendations from the
International Accounting Standards Board (IASB) accounting project (known
as International Financial Reporting Standards, or IFRS), and the EU Sol-
vency II review of insurance firm’s capital requirements. IFRS will become
particularly important as, from 2005, essentially all the EU companies that
are listed on European exchanges, will be required to produce balance sheets
in accordance with IFRS.

In light of the international move promoted by IASB towards the market
based, fair value accountancy standards mentioned above, in this paper we
apply classical contingent claim theory for the valuation of the most common
policy design used in the UK for participating contracts. In fact, since the
pioneering work of Brennan and Schwartz (1976) on unit-linked policies, there
have been several studies on the different typologies of contract design and their
features. Thus we would cite Bacinello (2001, 2003), Ballotta et al. (2004),
Grosen and Jørgensen (2000, 2002), Guillén et al. (2004), Haberman et al.
(2003) and the references therein, and Tanskanen and Lukkarinen (2003), just
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to mention some of the most recent works.
It is worth pointing out that all these contributions use a Black-Scholes

(1973) framework, based on the assumption of a geometric Brownian motion
model for the dynamics of the asset fund backing the insurance policy. How-
ever, the dramatic changes shown by financial markets over the last 15 years
suggest that a better specification of this underlying temporal evolution is
needed. In particular, the evidence suggests very strongly that log-stock re-
turns have fatter tails than the normal distribution, meaning that the normal
distribution understates the probability of extremes events, especially falls,
in the stock prices, thereby inducing biases in the option prices. Alternative
models for the asset’s return process have been investigated since the early
1960s, for example by Mandelbrot (1963) and Fama (1965). Extensions to the
Black-Scholes model for option pricing began appearing in the finance liter-
ature not long after publication of the original paper in 1973. For example,
Merton (1973) generalized the Black-Scholes formula to account for a deter-
ministic time-dependent rather than constant volatility later in the same year
and, in 1976, he incorporated jump-diffusion models for the price of the un-
derlying asset. From those seminal works, a vast literature on generalizations
of the model arose; a state of the art evaluation and comparison of some of
these models is contained, for example, in Bakshi, Cao and Chen (1997).

The purpose of this communication is to consider the valuation problem
for one of the smoothing schemes commonly used by insurance companies
in the UK and analyzed by Haberman et al. (2003), when a more realistic
formulation of the stochastic process driving the reference portfolio is made,
than the usual geometric Brownian motion. In particular, we set up a market
model based on the use of a Lévy motion as relevant process for the value of
the underlying reference portfolio’s returns. In this framework, we consider
the problem of determining the fair value of a with profit policy in which the
reversionary bonus rate is based on the idea, widely adopted in the UK, of a
smoothed “asset share” scheme (Needleman and Roff, 1995).

The rest of the paper proceeds as follows: in section 2 we introduce the
participating policy under consideration and the details of the benefits it offers;
in section 3 we develop the market set up and the model for the valuation of the
contract in a general Lévy process setting. Section 4 is devoted to the pricing
in the proposed jump-diffusion economy; numerical results are presented in
section 5 and section 6 concludes.

2 Participating contracts

Let’s consider a 100/0 fund, i.e. a fund whose rules provide that 100% of the
profits distributed by way of bonuses be allocated to policyholders. At the
beginning of the contract, the policyholder pays a single-sum premium, P0, to
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purchase from the insurance company a policy expiring after T years, when
the account is settled by a single payment from the insurer to the policyholder.
At inception of the contract, the insurance company invests the funds received
in the financial market, acquiring a portfolio A, and commits itself to crediting
interest (the guaranteed benefit plus the reversionary bonus) on the policy’s
account balance (the policy reserve) until the contract expires, according to
some smoothing scheme dependent on each year’s market return which aims
to reduce the volatility of the company’s payouts.

The particular crediting mechanism under consideration determines the
level of the smoothed policy reserve at time t to be a weighted average of
the unsmoothed value of the policy reserve at time t, and the level of the
smoothed policy reserve at time (t − 1) (Needleman and Roff, 1995). The
interest rate credited to the unsmoothed policy account is guaranteed never to
fall below the contractually specified guaranteed annual policy interest rate.
In this discussion, we ignore lapses and mortality. Hence, the policy reserve is
defined as

P (t) = αP 1 (t) + (1 − α) P (t − 1) , α ∈ (0, 1) ,

P (0) = P0,

where P 1 (t) is the unsmoothed asset share such that

P 1 (0) = P0,

P 1 (t) = P 1 (t − 1) (1 + rP (t)) ,

rP (t) = max

{

rG, β
A (t) − A (t − 1)

A (t − 1)

}

,

and rG and β ∈ (0, 1) are the guaranteed rate and the participation rate
respectively. In particular, if

rA (t) =
A (t) − A (t − 1)

A (t − 1)

is the annual rate of return on the reference portfolio, then the rate of return
credited annually to P 1 (t) can be rewritten as

rP (t) = max {rG, βrA (t)} = rG + (βrA (t) − rG)+
.

At maturity, T , the value of the policy reserve is

P (T ) = αP 1 (T ) + (1 − α)P (T − 1)

= α

T−1
∑

k=0

(1 − α)k
P 1 (T − k) + (1 − α)T

P0

= P0

[

α

T−1
∑

k=0

(1 − α)k
T−k
∏

t=1

(1 + rP (t)) + (1 − α)T

]

. (1)
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At the claim date of the contract, a discretionary payment might be made
by the insurer on the final surplus earned by the insurance company in addition
to the guaranteed amount in the policy reserve. This is the so-called terminal
bonus γR (T ), where R (T ) = (A (T ) − P (T ))+. As mentioned above, this
payment is discretionary as the terminal bonus rate γ, i.e. the participation
rate in the company’s surplus, is not guaranteed but declared only near to the
maturity of the contract.

Finally, if at maturity the insurance company is not capable of paying the
policy reserve, P (T ), the policyholder takes those assets that are available.
Hence, the policyholder’s overall claim at expiration can be summarised as
follows:

C (T ) =

{

A (T ) if A (T ) < P (T )
P (T ) + γR (T ) otherwise,

or, in a more compact way:

C (T ) = P (T ) + γR (T ) − D (T ) , (2)

where D (T ) = (P (T ) − A (T ))+.
Equation (2) shows that the policy reserve and the terminal bonus are not

the only components that affect the valuation of these participating contracts,
as we need also to take into account that the insurance company liability is
limited by the market value of the reference portfolio. This feature is captured
by the quantity D, which represents the payoff of the so-called default option.
Further considerations on the nature of the default option are offered in section
5, where the issue of the calculation of a fair premium for the participating
contract under consideration is addressed.

Other possible smoothing mechanisms widely adopted include, for exam-
ple, the arithmetic average over the last τ period returns on A (see, for exam-
ple, Cummins et al, 2004, for a detailed description of the bonus reversionary
schemes adopted in Europe); however, such highly path dependent policy de-
signs cannot be priced in general via closed-form formulae.

3 Market model and the embedded option

Consider a frictionless market with continuous trading. Assume hence that
there are no taxes, no transaction costs, no restrictions on borrowing or short
sales and all securities are perfectly divisible. Assume further that the risk free
security is the money market account B (t) = ert, r ∈ R

++. Let the reference
portfolio be composed only by equity and defined as:

A (t) = A (0) eL(t),

A (0) = P0,
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where {L (t) : t ≥ 0} is a Lévy motion with finite activity under the real prob-
ability measure P. Consequently, the process L can be decomposed as the
sum of a Brownian motion with drift and an independent compound Poisson
process. Hence, for a ∈ R and σ ∈ R

+,

L (t) = at + σW (t) +

∫ t

0

∫

R

x (N (ds, dx) − ν (dx) ds) , (3)

where W is a standard P-Wiener process, N is an homogeneous Poisson mea-
sure with P-compensator ν (dx) dt = λf (dx) dt, and f (dx) is the density func-
tion of the random variables X modelling the size of the jumps in the Lévy
process. In particular, we assume that the jump size is normally distributed,
that is X ∼ N (µX , σ2

X).
We note that the setup defined by equation (3) is an incomplete mar-

ket, meaning that there exists at least one contingent claim which cannot be
hedged. Alternatively, this means that, under the assumption of no arbitrage,
there is a multiplicity of equivalent martingale measures with which to price
contingent claims. Hence, let P̂ be some risk-neutral probability measure; then,
applying risk-neutral valuation, equation (2) implies that the market value of
the policyholder’s claim is:

C (0) = V P (0) + γV R (0) − V D (0) ,

with

V P (0) = Ê
[

e−rT P (T )
]

, V R (0) = Ê
[

e−rT R (T )
]

, V D (0) = Ê
[

e−rT D (T )
]

,

where Ê is the expectation taken under the selected risk-neutral probability
measure P̂. In more details, the fair value of the policy reserve at inception of
the contract is

V P (0) = Ê
[

e−rTP (T )
]

= P0

{

α

T−1
∑

k=0

e−rT (1 − α)k
Ê

[

T−k
∏

t=1

(1 + rP (t))

]

+ e−rT (1 − α)T

}

.

Note that in this model, the annual rate of return on the reference portfolio is

rA (t) = eL(t)−L(t−1) − 1;

therefore, by construction, it generates a sequence of random variables rA (t1),
rA (t2) , ..., rA (T ) independent one of the other. Consequently, since rP (t) =
max {rG, βrA (t)}, also (1 + rP (t)) are independent ∀t ∈ [0, T ]. Therefore

V P (0) = P0

{

α

T−1
∑

k=0

e−rk (1 − α)k
T−k
∏

t=1

Ê
[

e−r (1 + rP (t))
]

+ e−rT (1 − α)T

}

= P0

{

α

T−1
∑

k=0

e−rk (1 − α)k
T−k
∏

t=1

V M
t (0) + e−rT (1 − α)T

}

, (4)
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with

V M
t (0) = Ê

[

e−r (1 + rP (t))
]

= Ê
[

e−r
(

1 + rG + (βrA (t) − rG)+)]

= e−r (1 + rG) + Ê

[

e−r
(

βeL′(1) − (β + rG)
)+
]

. (5)

The term L′ denotes an independent copy of the Lévy process L.
The same pricing methodology can be applied to the terminal bonus and

the default option; however, no similar closed-form expressions are available
for their value at inception. In fact, as equation (1) shows, the recursive sub-
stitution of P is quite complex; moreover P (T ) is obviously highly dependent
on the path followed by the reference portfolio A. These facts imply that it
is not possible to find analytical expressions for the value of these policy’s
constituent blocks. Therefore, we have to resort to numerical methods for the
analysis of V R and V D, which will be described in section 5.

4 Policy reserve valuation in a jump-diffusion

economy

This section is devoted to the derivation of an analytical formula for the market
value V P of the policy reserve, taking as starting point equations (4) and (5).
As already mentioned in section 3, the market is incomplete and therefore we
need to select a risk-neutral pricing measure P̂. This implies changing the
probability measure linked to the driving Lévy process so that asset prices
discounted at the risk-free rate are P̂-martingales. Part of the story consists
of the basic “density process” of P̂ with respect to P. Consider as given a
filtered probability space

(

Ω,F , {Ft}t≥0 , P
)

. The density process is then a P-
martingale η such that, for each t ≥ 0, η (t) is the Radon-Nikodým derivative,
i.e.

dP̂

dP

∣

∣

∣

∣

∣

Ft

= η (t) ,

where

η (t) = e
−
∫ t
0

(

G2(s)
2

+
∫

R
(H(s,x)−1)ν(dx)

)

ds−
∫ t
0

G(s)dW (s)+
∫ t
0

∫

R
ln H(s,x)N(ds,dx)

,

and G is a previsible process and H a previsible and Borel measurable process
such that

E

[
∫ t

0

G2 (s) ds

]

< ∞;

∫

R

(H (t, x) − 1) ν (dx) < ∞.
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We note that the process η introduced above is a version of the more general
density process used for semimartingales, modified to fit the features of the
process considered in this work. For a detailed treatment of the more general
case, we refer to Theorem 3.24 in Chapter III of Jacod and Shiryaev (1987),
and Theorem 3.2 in Chan (1999).

The processes G and H need then to be chosen so that the martingale
condition for discounted asset prices is satisfied. It is easy to show that the
martingale condition characterizing the equivalent probability measure P̂ can
be expressed as

a − r −
∫

R

xν (dx) +
σ2

2
− σG +

∫

R

(ex − 1)H (t, x) ν (dx) = 0. (6)

However, equation (6) shows that the market is incomplete, as in general
there are infinitely many ways of choosing G and H so that (6) is satisfied,
which means that P̂ is not unique and the market is incomplete.

The remaining part of this section presents two examples to illustrate the
valuation procedure making use of two specific approaches for the selection of
the risk-neutral martingale measure. In the first example, we assume that the
jump component of the assets return represents “non systematic” risk, which is,
therefore, uncorrelated with the market. This is the same assumption made by
Merton (1976). In the second example, we make use of the Esscher transform
technique developed by Gerber and Shiu (1994) to define the Radon-Nikodým
derivative η.

4.1 Policy fair valuation: the Merton measure

Following Merton (1976), we assume that the jump risk is asset specific, and
hence diversifiable (which implies that no premium is paid for such a risk). If
we interpret the functions G and H included in the Radon-Nikodým deriva-
tive η, as indicators of the premia respectively for the risk originated by the
Brownian motion component and the risk deriving from the possibility of an
“extraordinary” event occurring in the market (the Poisson component), it
follows that H (t, x) = 1 for the jump risk premium to be zero. In this case,
the Radon-Nikodým derivative is

η (t) =
dP̂M

dP
= e−GW (t)−G2

2
t,

where G solves the martingale condition

a − r −
∫

R

xν (dx) +
σ2

2
− σG +

∫

R

(ex − 1) ν (dx) = 0, (7)
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and P̂M denotes the equivalent martingale measure resulting from this ap-
proach. Under these assumptions, we obtain that

P̂M [N (t) = n] = E
[

η (t) 1(N(t)=n)

]

= P [N (t) = n] ,

which is expected as we are assuming that investors receive a zero premium
for the jump risk. Further, bearing in mind that X ∼ N (µX , σ2

X) under P,

ÊM

[

ekL(t) |N (t) = n
]

= e
k
((

r−σ2

2
−
∫

R
(ex−1)ν(dx)

)

t+nµX

)

+ k2

2 (σ2t+nσ2
X),

(see equation A5 in the Appendix1), which implies that conditioning on the
number of jumps, the process L follows a Normal distribution with variance

σ2t + nσ2
X ,

and mean

ÊM [L (t) |N (t) = n ] =

(

r − σ2

2
− λ (µ − 1)

)

t + nµX

where

µ = eµX+
σ2

X
2 .

Hence, if we set
rn = r − λ (µ − 1) + n ln µ,

and
v2

n = σ2 + nσ2
X ,

conditioning on the number of jumps occurring in one year, it follows that

L (t) − L (t − 1) ∼ N

(

rn − v2
n

2
, v2

n

)

.

Consider now the one-year European call option in equation (5) . Under
the framework set out in this section, it follows that

ÊM

[

e−r
(

βeL′(1) − (β + rG)
)+
]

= ÊM

{

ÊM

[

e−r
(

βeL′(1) − (β + rG)
)+
∣

∣

∣

∣

N ′ (1) = n

]}

. (8)

Consequently, if y is a standardized Normal random variable, the inner expec-
tation in the previous equation can be rewritten as

ÊM

[

e−r

(

βern−
v2
n
2

+vny − (β + rG)

)+
]

= e−λ(µ−1)+n ln µf (n) ,

1Full details of all the calculations presented in this section are offered in the Appendix.
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with

f (n) = βN (dn) − e−rn (β + rG) N (d′
n) ;

dn =
ln β

β+rG
+
(

rn + v2
n

2

)

vn

, d′
n = dn − vn.

(See equation B2). Therefore, (8) can be solved and returns2

ÊM

[

e−r
(

βeL′(1) − (β + rG)
)+
]

= ÊM

[

e−λ(µ−1)+N ′(1) ln µf (N ′ (1))
]

=

∞
∑

n=0

e−λµ (λµ)n

n!
f (n) ;

whilst the fair value of the policy reserve is

V P (0) = P0







α

T−1
∑

k=0

e−rk (1 − α)k

[

e−r (1 + rG) +

∞
∑

n=0

e−λµ (λµ)n

n!
f (n)

]T−k

+e−rT (1 − α)T
}

. (9)

4.2 Policy fair valuation: the Esscher measure

In the previous section, we derived a valuation formula under the assumption
that the jump risk is not priced, as in Merton (1976). In terms of CAPM
assumptions, this means that the jump component of the stock’s returns rep-
resents “non systematic” risk. Nevertheless, Jarrow and Rosenfeld (1984) pro-
vide empirical evidence that the jump component does affect the equilibrium
price of contingent claims. In this section, we relax this assumption to allow
for a jump risk which is systematic and non-diversifiable. This will lead to
a different specification of the risk-neutral martingale measure under which
contingent claims are priced.

In particular, the approach we adopt relies on a well established technique
in actuarial science, the Esscher transform (Esscher, 1932), which is suitable in
the case that the log-returns of the underlying asset are governed by a process
with independent and stationary increments, as in our model. The application
of this technique to price contingent claims is due to Gerber and Shiu (1994),
and it can be described in general terms as follows. Consider the price at time
t ≥ 0 of a non-dividend paying stock S (t) = S0e

Y (t), where Y (t) is a process
with independent and stationary increments. Let MY (h, t) be its bilateral
Laplace transform, i.e.

MY (h, t) = E
(

ehY (t)
)

.

2Note the similarity with the option pricing formula derived by Merton (1976) for the
same market specification. Merton however priced the call option contract solving the
corresponding governing “mixed” partial differential-difference equation.
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Because of the independence property of the increments of Y ,

MY (h, t) = MY (h, 1)t
.

Moreover, the process

η (t) =
{

ehY (t)MY (h, 1)−t : t ≥ 0
}

is a positive P-martingale that can be used to define a change of probability
measure, i.e. the Radon-Nikodým derivative of a new equivalent probability
measure P̂h, called the Esscher measure of parameter h. The process η (t)
is called the Esscher transform of parameter h. In particular, it is possible
to select the risk-neutral Esscher measure as the measure P̂h such that the
discounted price process e−rtS (t) is a P̂h-martingale. This is obtained by
determining the parameter h as solution of

e−rtS (t) = Êh

(

e−ruS (u) |Ft

)

, t < u,

or, equivalently,

S0 = Êh

(

e−rtS (t)
)

= S0e
−rt

(

MY (1 + h, 1)

MY (h, 1)

)t

. (10)

The application of this procedure to the market model proposed in section
3, implies that we need to find the parameter h solving

r = ln ML (1 + h, 1) − ln ML (h, 1) ,

or, making use of the Lévy-Khintchine formula,

a − r −
∫

R

xν (dx) +
σ2

2
+ σ2h +

∫

R

ehx (ex − 1) ν (dx) = 0. (11)

It can be easily checked that this last expression corresponds to the martingale
condition (6) for the choices G = −σh and H (t, x) = ehx (see also equation
A8 in the Appendix). Consequently,

P̂h [N (t) = n] = P [N (t) = n] en ln µh−λt(µh−1), (12)

with

µh = ehµX+ h2

2
σ2

X ;

and

Êh

[

ekL(t) |N (t) = n
]

= e
k
((

r−σ2

2
−
∫

R
ehx(ex−1)ν(dx)

)

t+nµX+nhσ2
X

)

+ k2

2 (σ2t+nσ2
X)
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(see equation A9 in the Appendix), which implies that, conditioning on N (t),
the process L (t) still follows a Normal distribution with variance3

σ2t + nσ2
X ;

whilst its mean is

Êh [L (t) |N (t) = n ] =

(

r − σ2

2
− λ (µh+1 − µh)

)

t + nµX + nhσ2
X ,

where the last equality follows from the fact that X ∼ N (µX , σ2
X) under P,

and

µh = ehµX+ h2

2
σ2

X , µh+1 = e(1+h)µX+ (1+h)2

2
σ2

X .

The one-year European call option contained in equation (5) can be priced
following the same steps as in section 4.1. In particular,

Êh

[

e−r
(

βeL′(1) − (β + rG)
)+
∣

∣

∣

∣

N ′ (1) = n

]

= e
−λ(µh+1−µh)+n ln

µh+1
µh

[

βN (dn;h) − e−rn;h (β + rG) N
(

d′
n;h

)]

= e
−λ(µh+1−µh)+n ln

µh+1
µh f (n; h) ,

where

rn;h = r − λ (µh+1 − µh) + n ln
µh+1

µh

,

dn;h =
ln β

β+rG
+
(

rn;h + v2
n

2

)

vn

, d′
n;h = dn;h − vn,

and
v2

n = σ2 + nσ2
X .

Equation (12) implies that

Êh

[

e−r
(

βeL′(1) − (β + rG)
)+
]

= Êh

[

e
−λ(µh+1−µh)+N ′(1) ln

µh+1
µh f (N ′ (1) ; h)

]

=
∞
∑

n=0

e−λµh+1 (λµh+1)
n

n!
f (n; h)

3Note that the conditional variance of the process remains unaffected by each change of
measure considered in this paper. This is in line with the spirit of the Girsanov theorem
as the density process η shifts the drift of the distribution, i.e. it rescales the mean of the
process, without changing its shape.
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Hence, the pricing formula for the fair value of the policy reserve is

V P (0) = P0







α

T−1
∑

k=0

e−rk (1 − α)k

[

e−r (1 + rG) +

∞
∑

n=0

e−λµh+1 (λµh+1)
n

n!
f (n; h)

]T−k

+e−rT (1 − α)T
}

. (13)

We observe that the valuation formulae obtained for the policy reserve un-
der the P̂M -measure and the P̂h-measure, namely equations (9) and (13), share
the same structure. The fair value of the policy reserve, in fact, is calculated
as a weighted average with parameter α of the value of a risk-free “bond” and
an embedded option. More precisely, the prices of the embedded options are a
weighted sum of the price-function f , which represent the value of the option
conditional on knowing that exactly n jumps will occur over the lifetime of
the contract. The weights equal the probability that a Poisson arrival, with
rate λ′, will occur. Equations (9) and (13), though, differ essentially in the
instantaneous interest rate used in the the price-function f , and in the rate λ′

of the Poisson distribution. In particular, we use rn and λ′ = λµ under P̂M ,
and rn;h and λ′ = λµh+1 under P̂h. This fact reflects the different market price
of jump risk “attached” to the two pricing measures considered in this work.

4.3 Policy fair valuation: the Black-Scholes framework

We conclude this section by considering the special case in which the underlying
Lévy process is the traditional Brownian motion.

Note that the moment generating function of the Lévy motion (see equation
A2) implies that the total instantaneous volatility of the process L is

σ2 + λ
(

µ2
X + σ2

X

)

.

As our aim is to perform a sensible comparison between the prices obtained
in the Lévy framework considered in this work and the one deriving from
the standard Black-Scholes model, we need to outline the effect of the jump
component rather than the effect of changes in the overall volatility of the asset
price. In order to achieve this, let σA denote the instantaneous volatility of
the log-returns on the geometric Brownian motion, so that under the (unique)
risk-neutral martingale measure P̂, the reference portfolio A is described by:

A (t) = A (0) e

(

r−
σ2

A
2

)

t+σAŴ (t)
.

Then, set σA to be the same as the total instantaneous volatility of the Lévy
process used in the previous sections, i.e.

σ2
A = σ2 + λ

(

µ2
X + σ2

X

)

.
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The general pricing equation (5) implies that the one year call option em-
bedded in the policy reserve has value

Ê

[

e−r

(

βe

(

r−
σ2

A
2

)

+σAŴ ′(1) − (β + rG)

)+]

(14)

where Ŵ ′ is an independent copy of the standard one-dimensional P̂-Brownian
motion. Applying the Black-Scholes formula to (14) (see also Bacinello, 2001,
and Miltersen and Persson, 2003, for similar results), we obtain

Ê

[

e−r

(

βe

(

r−
σ2

A
2

)

+σAŴ (1) − (β + rG)

)+]

= βN (d1) − e−r (β + rG)N (d2) ,

where

d1 =
ln β

β+rG
+
(

r +
σ2

A

2

)

σA

; d2 = d1 − σA.

Consequently, the value of the policyholder’s account at inception is

V P (0) = P0

{

α

T−1
∑

k=0

e−rk (1 − α)k
[

e−r (1 + rG) + βN (d1) − e−r (β + rG)N (d2)
]T−k

+e−rT (1 − α)T
}

. (15)

5 Analysis of the price biases

In this section we use the results obtained above to analyze the differences in
the contract value implied by the Lévy process setting proposed, and their im-
plications on the no-arbitrage combinations of contract parameters (α, β, γ, rG).
By no-arbitrage combinations of parameters, we mean those combinations such
that the policy is sold at a price which is determined in a market consistent
manner, and in such a way that the contributions from the policyholders are
fair with respect to the value of the benefits that they entitle to receive. In
particular, since the market value of the policyholder’s claim is

C (0) = V P (0) + γV R (0) − V D (0) , (16)

against the payment of an initial (single) premium P0, as seen in section 2,
then the no-arbitrage combinations of contract parameters must be such that

C (0) = P0. (17)

Since the market parameters, like the volatility of the reference portfolio
σA, or the frequency with which jumps occur in the economy λ, are in general
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not under the control of the life insurance office, we analyze specifically how
the design parameters (α, β, γ, rG) need to be readjusted for the equilibrium
condition (17) to hold when σA and λ are allowed to change. Unless otherwise
stated, the base set of parameters4 is

P0 = 100; rG = 4%; α = 0.6; β = 0.5; γ = 0.7; T = 20 years;
a = 10%; σA = 20%; µX = −0.0537; σX = 0.07; λ = 0.59; r = 3.5%.

We recall that in section 4.3 we assumed

σ2
A = σ2 + λ

(

µ2
X + σ2

X

)

.

This assumption, however, imposes some restrictions on the range of feasi-
ble values that σA and λ can assume. In fact, since σ2 > 0, then σ2

A −
λ (µ2

X + σ2
X) > 0, which implies that, for the given base set of parameters,

σA > 0.07 and λ < 5.14.
Finally we note that, from equations (16) and (17), it follows that

P0 + V D (0) = V P (0) + γV R (0) .

Hence, the value of the default option, V D, can be considered as the extra
premium that the insurer has to charge the policyholder for no arbitrage op-
portunities to arise. Without receiving this extra amount, in fact, the insurer
would be offering the benefits too cheaply, as the solvency risk attached to the
contract would be ignored. Alternatively, V D can be considered, as Ballotta
et al. (2004) point out, as an estimate of the market loss that the policyholder
incurs if a shortfall occurs.

5.1 Implementation of the pricing formulae

We carry out the analyses for the three models considered in this paper; the
value of the policy reserve is calculated using the closed form expressions de-
veloped in sections 4.1, 4.2 and 4.3 (i.e. equations 9, 13 and 15). As seen in
the previous sections, the pricing formulae for the general Lévy process setting,
namely equations (9) and (13), require the computation of the infinite series
determining the Poisson distribution. However, when the rate of arrival, λ, is
small enough, it becomes unnecessary to compute many terms of the series, as
they become negligible for high values of n. In this regard, it is important to
note (see also Nahum, 1998) that in practice, on a common stock, not more
than one jump every three years (or at most two) is expected; which guar-
antees that a good approximation of the contract price can be given by only

4The values of the parameters of the jump distribution are taken from Bakshi, Cao and
Chen (1997), who estimated them for the S&P500 index using data over the period June
1988 - May 1991.
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Figure 1: Sensitivity of the overall policyholder’s claim and its component to the
reference portfolio’s volatility.

computing the first three or four terms of the series. In this study, we consider
the first 10 terms of the series in order to obtain a good approximation also
when the parameter λ is allowed to change.

As far as V R (0) and V D (0) are concerned, they are obtained using Monte
Carlo techniques. Precisely, we use standard Monte Carlo methods with
100,000 paths over 20 years. Each year includes 1 observation per month
of the equity portfolio A; the returns are calculated annually. We use the
antithetic variates methods for variance reduction purposes; we also make use
of the closed form expressions for the values of the policy reserve as a control
variate to reduce the variance of the estimates even further. In order to avoid
the introduction of bias in the estimation, we use a few pilot runs to estimate
the control variate parameter and then we use this estimate in the main sim-
ulation run. The approximation error across the three models of the obtained
estimates is then 0.008% for the value of the terminal bonus and 0.0006% for
the value of the default option.

The solutions to equation (17) are then sought using the bisection method.

5.2 Numerical results

Figure 1 shows the sensitivity to the reference portfolio’s volatility, σA, of the
policyholder’s overall claim, C (0), together with each contract’s component.
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As panel (a) highlights, the values of the claim C obtained under the three
models considered in this paper are very close (in fact the maximum mispricing
generated by the geometric Brownian motion model is a 0.26% overpricing with
respect to the P̂M -measure based model and a 0.65% overpricing with respect
to the Esscher model, both corresponding to σA = 10% p.a.).

The breakdown of C (0) into its building blocks, though, shows that this
information is misleading. Panels (b)−(c)−(d), in fact, reveal that the geomet-
ric Brownian motion-based model overestimates the value of the guaranteed
benefits and the probability of default when compared to the P̂M -measure
based model. In other words, the classical Black-Scholes framework leads to
a more prudential pricing rule, as it provides an upper bound for the value of
the policy reserve and the default option. However, it underprices the value
of the terminal bonus, i.e. it underestimates the capacity of the life insurance
company for generating enough surplus to distribute to the policyholders. The
maximum mispricing is 10.82%, again corresponding to σA = 10% p.a.

When compared with the valuation model based on the Esscher measure,
instead, the standard Black-Scholes framework leads to the underpricing of the
values of all the contract’s components. In particular, the biggest mispricing
is, once again for σA = 10% p.a., 5% for the value of the policy reserve, 25%
for the value of the terminal bonus and 18% for the value of the default option.
Hence, reserving on the basis of the geometric Brownian motion model would
lead us to set aside insufficient resources to cover the liabilities. Further,
the assumption of a reference portfolio driven by a diffusion process would
seriously underestimate the potential threat to the life insurance company
solvency represented by the participating contract, as the higher risk of default
would not be fully captured.

We also note the differences in the nature of the mispricing generated by
the Black-Scholes framework with respect to the P̂M -measure model and the
Esscher measure paradigm, especially for the case of the default option, as
V D

M < V D
GBM < V D

h . This result could be explained by the fact that, differently

from the pricing measure P̂M , the Esscher measure does not preserve the val-
uation approach’s independence of the investors’ risk preferences, which is one
of the main features of the classical Black-Scholes model. In fact, as equation
(A7) shows, the P̂h-dynamic of the process L depends on the parameter h solu-
tion to the Esscher martingale condition (11). In order to calculate h, we need
to make some assumptions regarding the “real” drift of the Lévy process, i.e.
the parameter a. Since the drift a represents the expected rate of growth of
the reference portfolio, specifying an assumption for its value effectively means
specifying the preferences structure of the investors. In this sense the Esscher
measure can be seen as the closest probability to the real probability measure P

in terms of information content. Chan (1999), in fact, shows that P̂h gives rise
to the equivalent martingale measure which has the minimal relative entropy,
or Kullback-Leibler index of “information distance” with respect to P. As such
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the Esscher measure appears to be the most suitable one to capture the ad-
ditional risk induced by the occurrence of crashes in the market, as shown in
Figure 2. In this Figure we represent two possible evolutions for the reference
portfolio and the policy reserve. The first scenario is represented in the top
three panels of Figure 2 and it is based on the geometric Brownian motion to
model the asset backing the participating contract. At the expiration of the
contract, the reference portfolio is worth £774 whilst the policy reserve has
value £581. In this case the policyholder would be paid the guaranteed ben-
efits in full. The second scenario, represented in the bottom panels of Figure
2, uses the same set of random numbers to generate the diffusion part of the
reference portfolio; however, on average λ times per year the asset price jumps
discretely of a random amount X. Since σA is kept constant, the final result
is a higher instability of the rate of returns rA and rP to the extent that, at
maturity, the portfolio is worth £183 against the £367 liability represented by
the policy reserve. In this case the life insurance company would default.

The instability produced in the model by the jump component is also il-
lustrated in Figure 3, in which we show how the probability of default changes
under both the Brownian motion and the Lévy process paradigm, when the
total volatility σA is allowed to change, and in Figure 4, in which, instead,
we represent the distributions of the asset and the policy reserve under both
market’s paradigm. The last Figure, in particular, shows the 99% percentile of
the policy reserve distribution; the probability that A (T ) is less than this 99%
percentile is 73% in the geometric Brownian motion-based model, and 86% in
the Lévy process-based model.

The effects on the fair combinations of the design parameters β and rG

produced by the inclusion of jumps in the market model are represented in
Figure 5. Here we show that the additional jump feature restricts the set
of optimal choices for the participation rate β. In particular, in panel (a),
we represent the values that the parameter β is allowed to assume in order
to satisfy equation (17) when σA changes. The optimal β set is smaller in
the case of the Esscher valuation framework because of the higher default
risk that characterizes this model, as already discussed earlier. Although the
geometric Brownian motion overprices the value of the claims with respect to
the PM measure, the participation rate β is set at a lower level in the PM -
based paradigm than in the geometric Brownian motion one. This fact is due
to the higher rates of increase of the value of the default option induced by
the same increase in σA, that characterizes the PM model. Panel (c) shows
that, the reference portfolio’s volatility σA being equal, the set of fair values
for the participation rate β becomes even smaller when the jumps are allowed
to occur more often, i.e. when the market becomes more unstable. The reason
is again to be sought for in the impact of higher λ on the default risk attached
to the participating contract.

The faster growth of the default risk, which is captured when pricing is
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motion and the Lévy process framework. In the panels it is also shown the 99%
percentile, P99, of the policy reserve distribution.

20



0.1 0.14 0.18 0.22 0.26 0.3
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94
C(0) = P

0

σ
A

β

0.1 0.120.140.160.18 0.2 0.220.240.260.28 0.3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(b)

σ
A

r G

0.5 0.65 0.8 0.95 1.1 1.25 1.4 1.55 1.7 1.85 2
0.68

0.72

0.76

0.8

0.84

0.88

0.92
(c)

λ

β

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1
(d)

λ

r G

(a) 

GBM model 

Merton model 

Esscher model 
GBM model 

GBM model 

GBM model 

Merton model 

Merton model 

Merton model 

Esscher model 

Esscher model 

Esscher model 

Figure 5: Isopremia curves: the fair set of the participation rate β and the guaran-
teed rate rG against the portfolio volatility σA and the jump’s frequency λ.

performed under the PM and the Ph measures, also explains the higher levels
of the guarantee rG needed to maintain the fairness of the contract, as shown
in both panels (b) and (d). The policyholder, in fact, will ask for a bigger
guaranteed fixed benefit as a compensation for the higher risk contained in
the contract. Panel (b), though, shows that rG needs to be reduced when the
market is very volatile in order to control better the exposure to the default
risk. On the other hand, panel (d) shows that, σA being equal, the policyholder
will seek increasingly higher levels of rG if he/she has the feeling that the value
of the portfolio is subject more frequently to possible crashes. Note that in
the PM -based paradigm and in the Esscher framework, no solution is possible
when more than one jump every 10 months and every 14 months respectively
is expected (corresponding to the values of λ equal to 1.2 and 0.9 respectively).

6 Concluding remarks

In this paper we have developed a valuation framework for participating life
insurance contracts based on a jump-diffusion specification of the asset backing
the policy. A market-based pricing methodology has been then applied to
these contracts and the complex guarantees and option-like features embedded
therein.
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This study finds its justification in the new recommendations from the
IASB and the financial authorities to adopt adequate models for both the
dynamic of the asset prices and the calculation of life insurance companies’
liabilities. The recent literature has addressed so far only the problem of
the implementation of suitable fair valuation techniques for participating con-
tracts. However, the results presented in this paper show the importance of
modelling the asset side as well of the company’s balance sheet, in order to
properly assess market risks, and their impact on the value of these contracts
and the company’ solvency. As shown in section 5, in fact, mispecifying the
underlying process driving the asset prices, can lead to underestimating the
insurance company’s risk of default, and consequently setting aside insufficient
resources.

We note that the alternative asset price process used in this study is a Lévy
process with finite activity, i.e. a process which can be decomposed as the sum
of a Brownian motion with drift (the diffusion part) and a compound Poisson
process (the jump part), as in Merton (1976). This form for the jump-diffusion
process has considerable intuitive appeal as it can be regarded as mirroring
the nature of the information flow from the market. This flow, in fact, is seen
as given by a sort of basic information of an “ordinary” kind causing only
marginal changes in prices, in addition to which there is also information of
a very important nature, originating abnormal movements in market prices.
The former can be interpreted as a continuous motion, like a diffusion process,
whilst the latter can be regarded intuitively as a compound Poisson process
since, by its very nature, important information arrives only at discrete points
in time. A recent analysis offered by Carr et al. (2002), however, shows that
in general market prices lack of a diffusion component, as if it was diversified
away. Carr et al (2002), hence, conclude that there is an argument for using
pure jump processes of infinite activity and with finite variation, given their
ability to capture both frequent small moves and rare large moves. Processes
of this kind extensively used in finance are the variance gamma (VG) process
(Madan et al., 1990, 1991, 1998) and the CGMY process (Carr et al., 2002).

As shown in this paper, an important issue linked to the implementation
of valuation schemes in a jump-diffusion context, is the selection of one spe-
cific pricing probability measure, which in the end requires the estimation of
parameters that are affected by the risk preferences of investors. Alternative
approaches rely on the so-called statistical martingale measure. In this case
a “calibration” procedure is implemented to single out a martingale measure
reflecting the risk profile of the market. More precisely, the solution to this
implicit estimation approach is a probability measure which minimizes the
Euclidean distance of the model prices to the actual prices observed in the
market over a given period of time. Eberlein et al. (1998), for example, use
this method in the Esscher transform framework for a market in which asset
prices are driven by a hyperbolic Lévy motion. Although this approach might
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be reasonable for derivatives actively traded in the market, its application to
the (fair) valuation life insurance liabilities might prove unsatisfactory for the
lack of suitable exchange prices. On the basis of the definition of fair value
provided by IASB, the “price” of an insurance liability should not be different
from the market value of a portfolio of traded assets matching the liability cas-
flows with sufficient degree of certainty. However, such traded assets are not
easy to identify mainly due to the long time horizons covered by participating
contracts, but also due to the mortality risk that in general affects these con-
tracts (and that we ignore in this paper). Alternatively, the required exchange
prices could come from secondary markets where (re)insurers can exchange
“books” of policies, although these kinds of markets are not fully developed at
the moment. Moreover, the statistical martingale measure approach might suf-
fer from the same potentially serious problem affecting any parametric model.
In fact, as Stanton (1997) observes, fitting historical data well is no guarantee
of matching, over the required time horizon, the entire distribution of future
prices (upon which the current value of the contingent claim depends), leading
to the possibility of large pricing and hedging errors. A possible solution to
this problem might rely on possible links between the structure of investors’
risk preferences, indices of risk aversion and the expected rate of growth of the
underlying asset. We leave this question for future research.

A Distribution properties of L (t) under P̂

In section 3, we specified the Lévy decomposition to be:

L (t) = at + σW (t) +

∫ t

0

∫

R

x (N (ds, dx) − ν (dx) ds) .

Hence, the Lévy-Khintchine formula implies that the moment generating func-
tion of the process L can be written as

E
[

ekL(t)
]

= etϕ(k)

where

ϕ (k) = ak +
σ2

2
k2 +

∫

R

(

ekx − 1 − kx
)

ν (dx) . (A2)

In particular, under the risk-neutral martingale measure P̂, the moment gen-
erating function will take the form

Ê
[

ekL(t)
]

= etϕ̂(k),

ϕ̂ (k) = Ak +
Γ2

2
k2 +

∫

R

(

ekx − 1 − kx
)

ν̂ (dx) .
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The aim of this section is to determine the functions A, Γ and ν̂, i.e. the char-
acteristic triplet of the semimartingale L, under the two alternative martingale
measures considered in this paper, using the fact that

Ê
[

ekL(t)
]

= E
[

η (t) ekL(t)
]

,

where η (t) is the density process defined in section 4.
Let’s consider the case of the Merton measure first. As discussed in section

4.1, the Radon-Nikodým derivative for the probability P̂M is

η (t) = e−GW (t)−G2

2
t.

Hence

Ê
[

ekL(t)
]

= E

[

e−GW (t)−G2

2
tek(at+σW (t)+

∫ t
0

∫

R
x(N(ds,dx)−ν(dx)ds))

]

= etϕ̂M (k),

with

ϕ̂M (k) = (a − σG) k +
σ2

2
k2 +

∫

R

(

ekx − 1 − kx
)

ν (dx) . (A3)

Therefore, the characteristic triplet is:

A = a − σG; Γ = σ; ν̂ (dx) = ν (dx) .

This implies that under P̂M the decomposition of the process L is

L (t) = (a − σG) t + σŴM (t) +

∫ t

0

∫

R

x (N (ds, dx) − ν (dx) ds) .

The martingale condition (7) implies

L (t) =

(

r − σ2

2
−
∫

R

(ex − 1) ν (dx)

)

t+σŴM (t)+

∫ t

0

∫

R

xN (ds, dx) . (A4)

Equations (A3) and (A4) imply that ŴM is a standard one-dimensional P̂M -
Brownian motion, whilst the P̂M -law of the compound Poisson process is the
same as the one under the real probability measure P.

Moreover,

ÊM

[

ekL(t) |N (t) = n
]

= e
k
(

r−σ2

2
−
∫

R
(ex−1)ν(dx)

)

t+ σ2

2
k2t

ÊM

[

ek
∫ t
0

∫

R
xN(ds,dx)

∣

∣

∣
N (t) = n

]

= e
k
(

r−σ2

2
−
∫

R
(ex−1)ν(dx)

)

t+ σ2

2
k2t

ÊM

(

ekx
)n

;

since X ∼ N (µX , σ2
X), then

ÊM

[

ekL(t) |N (t) = n
]

= e
k
((

r−σ2

2
−
∫

R
(ex−1)ν(dx)

)

t+nµX

)

+ k2

2 (σ2t+nσ2
X). (A5)
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Equation (A4) is used in section 5 to implement the Monte Carlo procedure
for the valuation of terminal bonus and the default option. Equation (A5) is
instead used in section 4.1 to calculate the value of the policy reserve.

Analogous calculations can be carried out for the case of the Esscher mea-
sure P̂h. In this case, the Radon-Nikodým derivative is defined as

η (t) = ehL(t)−tϕ(h).

Comparing the above expression of the process η to the more general one
provided in section 4, we deduce that G (t) = −σh and H (t, x) = ehx. The
moment generating function of the Lévy process is given by

Êh

[

ekL(t)
]

= e−tϕ(h)
E
[

e(h+k)L(t)
]

= ek(a+σ2h)t+ σ2

2
k2t+t

∫

R(ehx(ekx−1)−kx)ν(dx)

= ek(a+σ2h−
∫

R
xν(dx)+

∫

R
xehxν(dx))t+ σ2

2
k2t+t

∫

R(ekx−1−kx)ehxν(dx)

= etϕ̂h(k)

with

ϕ̂h (k) =

(

a + σ2h −
∫

R

xν (dx) +

∫

R

xehxν (dx)

)

k+
σ2

2
k2+

∫

R

(

ekx − 1 − kx
)

ν̂ (dx) .

(A6)
This implies that the P̂h-characteristic triplet is:

A = a + σ2h −
∫

R
xν (dx) +

∫

R
xehxν (dx) ; Γ = σ; ν̂ (dx) = ehxν (dx) .

Bearing in mind that h solves the Esscher martingale condition (11), it follows
that the corresponding decomposition of the process L is then:

L (t) =

(

r − σ2

2
−
∫

R

ehx (ex − 1) ν (dx)

)

t + σŴh (t) +

∫ t

0

∫

R

xN (ds, dx) .

(A7)
Equations (A6) and (A7) imply that, under P̂h, Ŵh is a standard one-dimensional
Brownian motion, and the compound Poisson process

∫ t

0

∫

R
xN (ds, dx) has

compensator measure ν̂ (dx) = ehxν (dx). Therefore, the P̂h-rate of the Pois-
son process N is

λh = λehµX+h2 σ2
X
2 ,

whilst the P̂h-distribution of the jump random size X is N (µX + hσ2
X , σ2

X). In
fact:

P̂h [N (t) = n] = Êh

[

1(N(t)=n)

]

= E
[

η (t) 1(N(t)=n)

]

= ML (h, 1)−t
E
[

ehL(t) |N (t) = n
]

P [N (t) = n]

=
P [N (t) = n]

ML (h, 1)t e
h
(

a−
∫

R
xν(dx)+ σ2

2
h
)

t+nhµX+nh2 σ2
X
2 .
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Let

µh = ehµX+h2 σ2
X
2 ,

then
P̂h [N (t) = n] = P [N (t) = n] en ln µh−λt(µh−1). (A8)

Therefore

P̂h [N (t) = n] =
e−λht (λht)

n

n!
.

Moreover

Êh

[

ek
∫ t
0

∫

R
xN(ds,dx)

]

=
e

h
(

a−
∫

R
xν(dx)+ σ2

2
h
)

t

ML (h, 1)t E

[

e(h+k)
∫ t
0

∫

R
xN(ds,dx)

]

= et
∫

R(ekx−1)ehxν(dx).

Since, under the real probability measure P, X ∼ N (µX , σ2
X) and ν (dx) =

λf (dx), then

Êh

[

ek
∫ t
0

∫

R
xN(ds,dx)

]

= e
λht



e
k(µX+hσ2

X)+
k2σ2

X
2 −1





.

On the other hand, the moment generating function of a compound Poisson
process has form:

Êh

[

ek
∫ t
0

∫

R
xN(ds,dx)

]

= eλht(Êh(ekx)−1),

which implies that

Êh

(

ekx
)

= ek(µX+hσ2
X)+

k2σ2
X

2 .

Finally, we can also calculate the conditional moment generating function of
the process L, which returns

Êh

[

ekL(t) |N (t) = n
]

= e
k
(

r−σ2

2
−
∫

R
ehx(ex−1)ν(dx)

)

t+ σ2

2
k2t

Êh

(

ekx
)n

.

Hence

Êh

[

ekL(t) |N (t) = n
]

= e
k
((

r−σ2

2
−
∫

R
ehx(ex−1)ν(dx)

)

t+nµX+nhσ2
X

)

+ k2

2 (σ2t+nσ2
X).
(A9)

B Valuation using the Merton measure

Equation (8) in section 4.1 shows that the one-year call option embedded in
the policy reserve has value

ÊM

[

e−r
(

βeL′(1) − (β + rG)
)+
]

= ÊM

{

ÊM

[

e−r
(

βeL′(1) − (β + rG)
)+
∣

∣

∣

∣

N ′ (1) = n

]}

.
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Since, as shown in the previous section, conditioning on the number of jumps
occurring in one year

L (t) − L (t − 1) ∼ N

(

rn − v2
n

2
, v2

n

)

,

then the inner expectation can be written as

ÊM

[

e−r
(

βeL′(1) − (β + rG)
)+
∣

∣

∣

∣

N ′ (1) = n

]

= ÊM

[

e−r

(

βern−
v2
n
2

+vny − (β + rG)

)+
]

,

where y ∼ N (0, 1). Therefore

ÊM

[

e−r

(

βern−
v2
n
2

+vny − (β + rG)

)+
]

= ÊM



βe−r+rn−
v2
n
2

+vny1(
βern−

v2
n
2 +vny>β+rG

)



− e−r (β + rG) P̂M

(

βern−
v2
n
2

+vny > β + rG

)

= βe−r+rn

∫ ∞

a

1√
2π

e−
(y−vn)2

2 dy − e−r (β + rG) P̂M (y > a) ,

with

a =
ln β+rG

β
−
(

rn − v2
n

2

)

vn

.

Hence

ÊM

[

e−r

(

βern−
v2
n
2

+vny − (β + rG)

)+
]

= βe−r+rnN (dn)−e−r (β + rG) N (d′
n) ,

(B1)
with

dn =
ln β

β+rG
+
(

rn + v2
n

2

)

vn

;

d′
n = dn − vn.

Since
rn = r − λ (µ − 1) + n ln µ,

we can rewrite equation (B1) as

βe−λ(µ−1)+n ln µN (dn) − e−r (β + rG) N (d′
n)

= e−λ(µ−1)+n lnµf (n) ,

where
f (n) = βN (dn) − e−rn (β + rG)N (d′

n) . (B2)
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