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Characterization of the oblique projectd(V U)"V with
application to constrained least squares
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Abstract

We provide a full characterization of the oblique projedttqVU)'V in the general case where
the range otJ and the null space of are not complementary subspaces. We discuss the new
result in the context of constrained least squares miniteizavhich finds many applications in
engineering and statistics.
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1. Introduction

Let E € C™™ be idempotentE? = E. The null space and range of any idempotent matrix
are complementary, ci.\[1, Theorem 2.8],

R(E) + N(E) = C™ R(E) n N(E) = {0},

and we say thaE is an oblique projector ontB(E) alongN(E). For any two complementary
subspaces of™ we denote the oblique projector oritalongM by P, \. The orthogonal pro-
jector ontoL is denoted byP, := P ., wherelL* is the orthogonal complement &f Oblique
projectors arise in numerous engineering and statistigaliations, see [1, Chapter 8], [2] and
references therein. Many of their properties follow frora feneral solution to the matrix equa-
tion XAX = X studied in 1960-ies in the context of the various pseudoges cf. |[3]. This
literature is mature, with excellent monographs such laslfiparticular it is very well under-
stood how to construct an oblique projector with a prescritamge and null space.

Proposition 1.1. Let L, M be complementary subspaced®t. For any two matrices I/ with
R(U) = Land NV) = M one has

PLm = U(VU)V,
where the superscript 1" denotes the Moore-Penrose inverse. If U and V are in addito-

thogonal projectors (i.e. they are Hermitian and idempoéteme obtains an even simpler form
due to Greville|[4, (3.1) and Theorem 2],

Pim = PL(Pm:PL) Py = (Pw:PL)". 1)
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The converse problem of characterizing the range and nadlespf a given idempotent matrix
has not received the same amount of attention. The motivétio studying idempotents of
the formU(VU)'V in the general case wheR{U) + N(V) € C™ andor R(U) N N(V) # {0}
comes, among others, from constrained least squares aptiom with a range of applications
mentioned above. Briefly, the problem

m(icn||A1x — by||?, subject toAxx = by,
xeCn

gives rise to the projectoD»(AD,)TA; where D, is an arbitrary but fixed matrix with the
propertyR(D2) = N(Ap). In this situation we typically have neith&®D,) + N(A;) = C™ nor
R(D2) N N(A;) = {0}. Oblique projectors of the forrd (VU)'V with R(U) + N(V) = C™ and
R(U) n N(V) # {0} feature also in signal reconstruction, ¢f. [5].

Given thatU(VU)'V has a wide range of applications it is desirable to undedsitargeo-
metric nature. One might conjecture that in general

U(VU)'V = P_y, where (2)
L = PruyN(V)*™ = R(U) N (R(U) N N(V))*, 3)
M = N(V) + (N(V) + R(U))", 4)

but the behaviour of the projector is somewhat more inteieatd cannot be described based on
the knowledge oR(U) andN(V) alone. The conjectur€l(2)i(4) turns out to be true only when
bothU andV are orthogonal projectors. Surprisingly, the main toolrioving the general result

is the Zlobec formula_[6] in conjunction with Propositiodll.

The result presented here igfdrent from the problem discussed by Rao and Yanai [7] in
which projectors onto and along two given subspaces arddemesl under the assumption that
the subspaces are not necessarily spanning the whole $paceh a situation, the projector no
longer needs to be idempotent.

The paper is organized as follows. In section 2 we introdageired terminology and nota-
tion, we establish the main tools and prove Propositioh th 5ection 3 we state and prove the
main result. In section 4 we discuss application of the megult to constrained least squares
minimization and the link to the minimal norm solution of Eti[8].

2. Preliminaries

We use notation of [1]A* denotes the conjugate transpose of maiixve writer(A), R(A),
N(A) for the rank, range and null space/Afrespectively. Consider the following relations

AXA= A, (1.1)
XAX = X, (1.2)
AX = (AX)", (1.3)
XA= (XA)". (1.4)

We write X € Afi, j, ..., k}, if X satisfies conditions (), (I.j), ..., (1.k). A" denotes the Moore-
Penrose inverse which is the unique elemem\df 2, 3, 4}. The following theorem is our main
tool.



Theorem 2.1 ([1, Theorem 2.13]) Let Ac C™", U € C™S,V € C™*™ and
Z =U(VAJ)DY,

where(VAJ)® is a fixed but arbitrary element ¢¥ AU){1}. Then

a) Z € A(1} if and only if (VAD) = r(A);

b) Z € A{2} and RZ) = R(U) if and only if (VAU) = r(0);

c)Ze A{g}2 )and N(Z) = N(V) if and only if (VAU) = r(V); 2

dz= AR(U),N(V) if and only~|f rJ) =rVv) = r(VNAU) = r(A), where N 1S the unique
element of AL, 2} with range RU) and null space V), also known as the oblique pseudoinverse

(cf. [9]).
Corollary 2.2. The Zlobec formula 6],

AT = A*(A*AA) DAY, (5)
is now obtained by setting = V = A" in part d) and arguing &%) ) = A"

The following is a pre-cursor to the main result in this ndtbe “if” part appears, for example,
in [10, (3.51)].

Corollary 2.3. U(VO)WV = Pggy ) if and only if (V0) = r(V) = r(U).
Next we show that the forid (VU)'V covers all idempotent matrices.

Lemma24. LetU e C™P,V e C*™M R(U) and N(V) are complementary subspaces®t if
and only if (U) = r(V) = r(VU).

Proor. If: By Corollary[Z3U(VU)'V = Pgru)nv) Which implies thatR(U), N(V) are comple-
mentary.

Only if: i) complementarity implies dini(U)) + dim(N(V)) = m. On rearranging we obtain
r(U) = m-dim(N(V)) and by the rank-nullity theorem{U) = r(V).

i) Complementarity also implieR(U) N N(V) = {0} which yieldsN(VU) = N(U). By
rank-nullity theorem we obtainVU) =r (U). O

Proposition 2.5. Matrix E € C™™Mis idempotent if and only if there are matricesddC™P, V €
C%™M such that
E:=U(VU)'V. (6)

Proor. The ‘if’ statement follows easily froni{6) and (1.2),
E? = U(VU)'VU(VU)'V = E.

The ‘only if’ part: constructU so that its columns form a basis B{E) and construcv* so
that its columns form the basis &f(E)*. This impliesR(U) = R(E), N(V) = N(E). SinceE
is idempotenR(U), N(V) are by construction complementary and from Lenima 2.4 waiobt
r(U) = r(V) = r(VU). By CorollarylZ3U(VU)'V = Prg)nE) = E. d

Remark 2.6. A comprehensive characterization of projectors appear8jn Proposition[Z.5
resembles a result of Mitra [11, Theorem 3a] who shows thidtiampotent matrices are of the
form U(VU)2V where(VU)®2 is an arbitrary element 0¥ U{1, 2}. This result is generalized
further in [1, Theorem 2.13] to the fortd (VU)®V, see Corollary 2]3. Propositidn 2.5 goes in
the opposite direction in order to avoid the ambiguity assted with{1, 2}-inverses.
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To conclude we provide a proof of Propositfon]1.1.

Proor (ProposiTion[L.T). The first statement follows from the ‘only if’ part ingtlproof of Propo-
sition[2.5. The second part follows from identitie®(. P.)" = P.(Pu:PL)" = (Pw:PL) Pwu-,
seel[l, Exercise 2.57]. O

3. Reault

Theorem 3.1. Given two arbitrary matrices Us C™P,V € C*™ the matrix E= U(VU)V is
idempotent with range and null space given by

R(E) = RUU*V*) = RUU*V*V) = R(U) N (UU*)T(RU) N N(V)))*, (7
N(E) = N(U*V*V) = N(UU*V*V) = N(V) & (V*V)T (RU) + N(V))*. (8)
Proor. By Zlobec’s formulal(b) withA = VU we obtain
E = UU*V*(U*V*VUU*V*)DU*V*V.
SettingU = UU*V*,V = U*V*V we claimr(U) = r(V) = r(VU) = r(VU). Indeed,

r(vU) = r(VUU*V*) = r(VUU*V*VUU*V*) < r(U*V*VUU*V*) = r(VU0), (9)
r(v0) < r(U) = r(UU*V*) < r(U*V*) = r(VU), (10)
r(VU) < r(V) = r(U*V*V) < r(U*V*) = r(VU). (11)

Corollary(Z.3 yieldR(E) = R(U), N(E) = N(V). From
r(VU) = r(VUU*V*) = r(VUU*V*VUU*V*) < r(UU*V*V) < r(U*V*) = r(VU),
and from [9){(11L) we obtain(VU) = r(UU*V*) = r(UU*V*V) which impliesRUU*V*) =
R(UU*V*V). The proof ofN(U*V*V) = N(UU*V*V) proceeds similarly by showingU*V*V) =
r(u'llgo\;h\g/;/ the last equality i {8) we obser@& = N(V) & R(V*). SinceN(V) € N(U*V*V)
we have
N(U*V*V) = N(V) @ (R(V*) N N(U*V*V)). (12)
Continuing with the second term on the right hand side weinbta
ye R\V)NNUVYV) < (V'Vye NU*)NR(V*)) A (y e R\VY))
= ye(V'V)'(NU)NRVY),

which yields

R(V*) N N(U*V*V) = (V*V)T(RU)* n N(V)*) = (V*V)T(R(U) + N(V))*. (13)
On substituting[{113) intd(12) we obtain the desired result.

The last equality in[{]7) is obtained by writig(UU*V*) = N(VUU*)* and then evaluating
N(VUU*) by exchanging the role & andV* in (I2) and [IB). O

Remark 3.2. Special cases of Theorém[3.1 include situations covereafl@ry[Z.3 in which
r(U) = r(V) = r(vU) and we have ) = R(U),N(E) = N(V); the Langenhop form_[12,
Lemma 2.2] with VU= | is a case in point. The Greville formulal(1) also falls intag category.
Hirabayashi and Unsel |5, Lemma 3] encounter the cafd)R N(V) = C"and RU) N N(V) #
{0}, yielding RE) = R(UU*V*), N(E) = N(V).

4



4. Application

Proposition 4.1. Let Ay € C™" b; € C™ Ay € C*" r(Ay) = k > 1, b, € CX. Solutions of the
problem
m(icn IALx — by||?, subjectto Ax = by, (14)
xeCn

lie in the set

E = {D2(A1D2) AiALbr + (I = Do(A1D2) A)(ASb +2) : Z€ N(A2)), (15)
where [} is an arbitrary but fixed matrix with the property(B,) = N(A2).
Proor. Seel[l, Exercise 3.10]. O

In general, the projectdd»(A;D,)"A; will depend on howD, is chosen. However, Theorem
[3.1 shows that there is a special case wWhefA1 D,) A; is actually invariant to the choice @f,.

Corallary 4.2. Using the notation of Propositidn 4.1 assume furth@a) = n. Then
D2(A1D2) A1 = Pryay).(asan-tRAY)-
andE is a singleton,
2 = (Alby + (A A) A5 (Ao(ATAL) LAY L(bz — AsAlby)).

Proor. We haveN(A;) = 0 and by Theoref 3.1

R(D2(A1D2) A1) = R(D2) N (10" = N(Ag),

N(D2(A1D2) A1) = (A;A) IR(D2)* = (AjAD) TR(A).
This implies ( — D2(A1D2)"A1)z = 0 for all ze N(A;) and by Proposition 111

(I = D2(A1D2)Ar) = (A1 A) A5 (Ax(ALA) Ay 1A,
The rest follows from Propositidn 4.1. O

Note that Corollary 42 is not covered by Corollaryl2.3 sincek = r(D,) = r(A;D,) <
r(A7) = n. In situations where the choice B} impacts on the projectd,(A;D,)"A; Theorem
[3.7 guides us to the convenient choicedgfwhich simplifies the geometry of the result and also
helps to identify the element & with minimal distance from a given reference point.

Corallary 4.3. Using the notation of Propositidn 4.1 the following statemsehold:
1. The constrained least squares minimizeiin (14) lies in &te s

E = {Alby + Py x(AJbp — Alby) + 21 ze N(A7) N N(A)}, (16)
with
Pry =1 =Pyx = (Al - AjA)) Ay, (17)
X = PnayR(AT) = N(A2) N (N(A2) N N(AL)*, (18)
Y = N(A1) & (A{A)T(N(AL) + N(A2))*. (19)
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2. The element & with the smallest Euclidean norm is given by
&= Alby + Py x(Albr — Alby).
3. For any ye C" the solution ominycz ||X — y|| is given by
Y(y) = € + Pnagnnay) Y- (20)
Proor. 1. On settingd, = | - A;Ag = Pn(ap) Propositioi 4]l and TheordmB.1 yield
E = Alby + Py x(Alby — Alby + N(AY)), (21)

with Py y, X andY given in [17){I9). From{18) we obtaM(Az) = X& (N(A1) "N(A2)) which
implies
Py xN(A2) = Py x(N(A1) N N(Az)) = N(A1) N N(Ay), (22)

the last equality following fromN(A;) N N(Az) € Y. Substitution of[(2R) intd (21) yield§ (16).
2. By (18) we haveX C (N(A2) N N(A1))* = R(A]) + R(A%). Consequently
Py x(R(A]) + R(A)) = (I = Pxy)(R(A) + R(A) € R(A) + R(A). (23)
This implies
& € R(A) + R(A) = (N(A2) N N(A1) (24)
By (I8) x — ¢ € N(A1) N N(Ay) for any x € E which together with[(24) yields

2 2 2 2 =
IXIIZ = lIx =&+ &7 =lIx= &I + [l ||° for all x € E.

3. By (16), [20) and(24) we obtai- y(y) € N(A2) N N(A7) andy(y) -y € (N(A2) N N(Al))l
which implies|x — y |12 =[x = y(y) + ¥(y) - YII? = lIx = &[> + [|€ - y|I%, for all x € E.

Remark 4.4. It is well known that vector T@l has the smallest Euclidean norm among all
solutions of the unconstrained least squares probi@mcn ||A1X — by||. We have shown in part
2. of Corollary[4:3 that = Alb; + Py x(Ajb, — Alby) is the shortest solution of the constrained
least squares problern (114).
Eldén [8, Theorem 2.1] studied minimal norm solutions ofisteained least squares. On
setting
h=Db, - AAlby, f=x-Alb, K=A, L=A, M=l,

Eldén’s solution yields that
£ 1= Abr + (I = Pray (ArPray) A Aj(bz — AsATby)

minimizes the Euclidean distanjpe— A1b1|| among all constrained minimizersexz.
With a little bit of work one findg = & — Py xPnay)Alby = &, since Ria,Al € X by virtue
of (I8). Thus part 3. of Corollary_4l.3 simplifies and extentteR’s result.
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