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Abstract

We consider the ordinary differential equation

x2u′′ = axu′ + bu− c(u′ − 1)2, x ∈ (0, x0),

with a ∈ R, b ∈ R, c > 0 and the singular initial condition u(0) = 0, which in financial
economics describes optimal disposal of an asset in a market with liquidity effects. It
is shown in the paper that if a+ b < 0 then no continuous solutions exist, whereas if
a + b > 0 then there are infinitely many continuous solutions with indistinguishable
asymptotics near 0. Moreover, it is proved that in the latter case there is precisely
one solution u corresponding to the choice x0 = ∞ which is such that 0 ≤ u(x) ≤ x
for all x > 0, and that this solution is strictly increasing and concave.

Key words: singular, ODE, initial value problem, supersolution, subsolu-

tion, nonuniqueness

AMS Classification: 34A12, 91G80

Introduction

The paper is concerned with solutions of the problem

x2u′′ = axu′ + bu− c(u′ − 1)2, x > 0, (0.1)

u(0) = 0, (0.2)
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where a and b are real numbers and c > 0. By a solution of (0.1) in [0, x0] we mean a
function u ∈ C0([0, x0]) ∩ C2((0, x0)) which satisfies (0.1) for x > 0.

Equation (0.1) arises in the study of a specific stochastic optimization similar to the
classical LQ problem. The equation is singular at x = 0 which in itself is not particularly
noteworthy, since stochastic LQ problems with geometric Brownian state variable invari-
ably give rise to nonlinear singular ODEs/PDEs of the type seen in (0.1) and in (0.3) below,
see for example [9]. Our problem derives its rich structure from the fact that the initial
condition (0.2), too, refers to the singular point x = 0. This, as we demonstrate below,
poses certain technical obstacles in establishing existence and, more importantly, gives rise
to infinitely many solutions with indistinguishable asymptotics near zero (Corollary 3.4).

As was already highlighted, the ODE (0.1), (0.2) is not artificial, rather it stems from a
well-defined optimization problem in financial economics. Specifically, it is obtained from
the PDE {

1
2y

2σ2wyy + λywy + r∗zwz − ρw + (y−wz)2

4η = 0,

w(y, 0) = 0,
(0.3)

using the scaling

w(y, z) =
y2

η
u(x), x = η

z

y
.

The PDE (0.3) in turn represents the Hamilton-Jacobi-Bellman equation for the opti-
mal value function w of the following dynamic optimization problem:

w(y(0), z(0)) = max E

(∫ T (z=0)

0
e−ρsf(y(s), z(s))(y(s) − ηf(y(s), z(s)))ds

)
, (0.4)

subject to

dy(t) = λy(t)dt+ σy(t)dB(t), (0.5)

dz(t) = (r∗z(t)− f(y(t), z(t)))dt, (0.6)

over the controls f : R+ × R+ 7→ R, T (z = 0) being the first arrival time at z = 0 and
B(t) the standard Wiener process.

Optimization (0.4) with dynamics given by (0.5, 0.6) models optimal liquidation of a
large quantity of an asset whose market price is adversely affected by its ongoing sale. In
this context z(0) represents the quantity of the asset yet to be sold, y(0) is the prevailing
price and w captures the expected revenue of an optimal sale of quantity z conditional on
the current price being y. For more details we refer the reader to [3].

The problem of existence is the first principal subject of this paper. It is shown that
for a+ b > 0 the problem (0.1), (0.2) has a continuum of local solutions and at least one
global solution bounded between 0 and x (Section 1), while for a+b < 0 no solutions exist
(Section 2).

If one admits the possibility that there are multiple solutions to (0.1), (0.2), one imme-
diately has to deal with the additional challenge of identifying “the” right solution relevant
to the associated optimization problem. The economic nature of the optimization (0.4-
0.6) strongly suggests that the relevant solution of (0.1), (0.2) should be increasing (larger
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amount of asset means larger revenue) but concave (decreasing returns to scale, since
larger volume of sales has greater adverse effect on the sale price of the asset). However,
there is no indication in the form of equation (0.1) that a solution with these properties
should exist in the first place. In Section 3 we thus analyze monotonicity and convexity
properties of a solution bounded between 0 and x (Proposition 3.5), the upper bound
corresponding to an immediate sale of the entire stock of the asset without any adverse
price effect.

In Section 4 we address the question of global uniqueness. We show that there is
exactly one solution on R+ which remains bounded between 0 and x, and this solution
is necessarily increasing and concave (Proposition 4.1). Finally, in Section 5 we examine
finer aspects of local non-uniqueness.

In the current paper we focus on the intricacies of the initial value problem (0.1), (0.2).
The implication of the results for the underlying optimal control problem is a delicate issue
left to further research.

A paper similar in spirit to ours is [4]. It studies a specific second order equation with
a singularity at 0, arising in the theory of general relativity. As in our case, the existence
of infinitely many solutions is established by the method of upper and lower solutions and
then the properties of the set of solutions are studied.

As far as the local existence is concerned, Liang in [7] carried out a systematic study
of second order singular initial value problems of the form

u′′ =
1

x
F (x, u, u′), (0.7)

where F is a continuous function and the initial conditions satisfy F (0, u(0), u′(0)) = 0.
The key quantity in this study is γ := ∂

∂u′F (0, u(0), u′(0)). It is shown that for γ < 0 local
uniqueness holds, while for γ > 0 solutions become unique only after the asymptotics of
u′ have been fixed to the order xγ near x = 0. The case γ = 0 is not treated. Each
solution has an asymptotic expansion in powers of x and xγ (provided γ is not an integer),
and asymptotic expansion of u(n) is obtained by differentiating n-times the asymptotic
expansion for u.

In contrast, we study a specific singular IVP from a wider class

u′′ =
1

xα
F (x, u, u′), (0.8)

with α = 2, u(0) = 0, u′(0) = 1 and F (x, u, u′) := axu′ + bu − c(u′ − 1)2. Like in [7]
our ODE arises from a self-similar solution of a PDE. However, we deal with a borderline
case where ∂

∂u′F (0, u(0), u′(0)) = 0. As a result, standard blow-up techniques are not
productive and we have to resort to the method of sub-supersolutions.

Finally, we remark that it is not uncommon for HJB equations associated with stochas-
tic optimization to exhibit multiple solutions. The meaningful solution then has to be
selected by employing additional criteria. In the case of linear-quadratic problems the
relevant solution is identified as the maximal/minimal one. In other cases the optimal
solution can be singled out as the unique viscosity solution of the HJB equation, cf. [1].
In our case these criteria do not seem to be helpful. Rather, the significant solution is
uniquely determined by its global monotonicity and concavity properties.
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1 Existence for a+ b ≥ 0

In essence, existence will be proved similarly as in [4]. That is, ordered pairs of sub- and a
supersolutions of (0.1) will be found, and an application of a standard existence result for
second order boundary-value problems will provide solutions lying in between, cf. [5]. As
in [4], due to the singularity in the ODE (0.1), an approximation procedure will be involved
in the proof. However, compared to [4], the presence of u′ in the equation will require
additional arguments. We isolate technical arguments in the following propositions.

Proposition 1.1. Let 0 < x1 < x2 and suppose that there exist u, u ∈ C2([x1, x2]) such
that

u ≤ u in [x1, x2]; (1.1)

Eu < 0 in [x1, x2]; (1.2)

Eu > 0 in [x1, x2]; (1.3)

the operator E being defined according to

Eu := −x2u′′ + axu′ + bu− c(u′ − 1)2 (1.4)

for functions u which belong to C2([x1, x2]). Then for each u1 ∈ [u(x1), u(x1)], u2 ∈
[u(x2), u(x2)] there exists a solution u ∈ C2([x1, x2]) to (0.1) in [x1, x2] satisfying u ≤ u ≤
u, u(x1) = u1, u(x2) = u2.

Proof. Rewrite equation (0.1) as

u′′ = f(x, u, u′)

with
f(x, u, u′) = x−1au′ + x−2bu− x−2c(u′ − 1)2.

For x1 ≤ x ≤ x2 and u(x) ≤ u ≤ u(x), f satisfies the Bernstein condition [2]

|f(x, u, u′)| ≤ A+Bu′2

for suitable A,B > 0. Therefore, the result follows from Nagumo [8], Satz 2, cf. also [5],
Theorem II-1.3 for a more recent reference.

Remark. Recall that regularity of a differential equation is inherited by its solutions
(cf. [6], Chapter V, Corollary 4.1). In particular, since the expression for u′′ is C∞ in
x, u, u′ for x > 0, any solution u of (0.1) in [x1, x2] with 0 < x1 is in C∞([x1, x2]).

Proposition 1.2. (i) Let x0 ∈ (0,∞). Suppose that there exist u, u ∈ C0[0, x0]∩C2(0, x0)
satisfying

u(0) = u(0) = 0 (1.5)

in addition to (1.1)-(1.3) with x1 = 0, x2 = x0. Then, for each u0 ∈ [u(x0), u(x0)] there
exists a solution of (0.1),(0.2) in [0, x0] such that u ≤ u ≤ u in (0, x0) and u(x0) = u0.
(ii) Let u, u satisfy (1.1)-(1.3) for x1 = 0 and x2 = ∞ as well as (1.5). Then, there exists
a solution of (0.1), (0.2) in [0,∞) such that u ≤ u ≤ u.
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Proof. (i) By Proposition 1.1, for each ε ∈ (0, x0) and each u0 ∈ [u(x0), u(x0)]
there exists a solution uε ∈ C2([ε, x0]) of

{
Euε = 0 in [ε, x0],

uε(ε) = u(ε), uε(x0) = u0,
(1.6)

which satisfies
u(x) ≤ uε(x) ≤ u(x) for all x ∈ (ε, x0). (1.7)

Let now εn ց 0 for n → ∞. For fixed n, the functions uεk with k ≥ n are uniformly
bounded on [εn, x0] . By [2] (cf. also [5], I.4.3 page 45), the same holds for their derivatives
u′εk . Therefore, on [εn, x0], uεk are equicontinuous and, moreover, from (0.1) it follows that
u′′εk , k ≥ n are uniformly bounded on [εn, x0]. Thus u′εk are equicontinuous and, in turn,
because od (0.1), u′′εk are equicontinous as well on [εn, x0]. Therefore, one can pick a
subsequence uεkj which converges C2 uniformly to a C2 function un satisfying (0.1) on

[εn, x0] together with un(x0) = u0 and u(x) ≤ un(x) ≤ u(x) . By standard diagonal
selection we can pick a subsequence from the sequence uεkj which converges pointwise in

[0, x0] and uniformly in [ε, x0] for each 0 < ε ≤ x0 to a function u ∈ C0[0, x0] ∩ C2(0, x0]
and satisfying the requriements of item (i) of the Proposition.
(ii) By (i), for each ε we have a solution of (0.1), (0.2) such that uε(0) = 0 and u ≤ u ≤ u
in [0, 1/ε]. Applying for ε > 0 the same extraction idea as in (i) we obtain the claimed
solution in [0,∞). ////

Proposition 1.3. i) For a + b > 0 and any x0 > 0 there is a continuum of solutions to
(0.1), (0.2) on [0, x0] such that 0 ≤ u ≤ x.

ii) For a + b ≥ 0 there is at least one solution of (0.1), (0.2) on [0,∞) such that
0 ≤ u ≤ x.

Proof. For a + b > 0 it is readily checked that u(x) ≡ 0 is a subsolution and
u(x) = x is a supersolution in [0,∞). The claim thus follows from Proposition 1.2. For
a+ b = 0, u(x) = x is a global solution. ////

The problem (0.1), (0.2) can for a+ b > 0 be formally solved by a power series. We let

k0 := 1, k1 := −2

3

√
a+ b

c
, (1.8)

and inductively define

fn(x) :=

n∑

i=0

kix
1+i/2, (1.9)

where

kn+1 := lim
x→0+

2Efn
3ck1(n + 3)x(n+2)/2

(1.10)

for n ≥ 1.
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Lemma 1.4. Let a + b > 0. Then the coefficients {ki}ni=0 are well-defined and Efn =
O(x(n+2)/2) as x ց 0 for all n ∈ N.

Proof. The statement clearly holds for n = 1. Arguing by induction, we suppose
that it is valid for some n ≥ 1. Then

Efn+1 = Efn − 2c(f ′
n − 1)(1 + (n+ 1)/2)kn+1x

(n+1)/2 +O(x(n+3)/2)

= Efn − 3

2
ck1(n+ 3)kn+1x

(n+2)/2 +O(x(n+3)/2) as x ց 0. (1.11)

Since Efn is a polynomial in powers of
√
x and Efn = O(x(n+2)/2) it follows that kn+1 is

well defined and that Efn − (3/2)ck1(n + 3)kn+1x
(n+2)/2 = O(x(n+3)/2). In view of (1.11)

this implies that Efn+1 = O(x(n+3)/2) and thus completes the proof. ////

Easy calculations show that the coefficients {kn}n≥2 satisfy the recursion

k2i =
1

6(i+ 1)k1

[
2
k2i−1

c

(
a+ b+ (i− 1

2
)a− (i2 − 1

4
)

)

−
i−1∑

j=1

(3 + j)(2 + 2i− j)kj+1k2i−j

]
, (1.12)

k2i+1 =
1

3(2i + 3)k1

[
2
k2i
c

(a+ b+ ia− i(1 + i))− 1

2
(3 + i)2k2i+1

−
i−1∑

j=1

(3 + j)(3 + 2i− j)kj+1k2i−j+1

]
. (1.13)

¿From here it is readily seen that the radius of convergence of the power series (1.9) is
nil when a < 3

2 and b ∈ (−a, 34 − 3
2a], firstly by showing inductively ki > 0 for i ≥ 2 and

subsequently neglecting all quadratic terms in ki in (1.12), (1.13) and proving the easy
estimate kn+1/kn ≥ −2(n − 1)/(3k1c) for sufficiently large n. Hence the power series fn
does not define a solution directly via limn→∞ fn(x) outside x = 0. We conjecture this
remains to be the case for arbitrary parameter values as long as a+ b > 0.

We will show later (Corollary 3.4) that every local solution of (0.1), (0.2) with the
property u(x) ≤ x satisfies

u(k)(x) = f (k)
n (x) + o(x(n+3)/2−k),

for k ∈ {0, 1} and n = 1. Whether this is true for n > 1 or k > 1 remains an open
question.

2 Nonexistence for a+ b < 0

In this second part we shall deduce Proposition 2.2 below which will exclude the existence
of any continuous solution to (0.1) for any x0 > 0 under the assumption a+ b < 0 which
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is complementary to the hypothesis of Proposition 1.3.
To this end we first prove that any supposedly existing continuous solution must satisfy
u′(x) → 1 as x → 0. This property can formally easily be guessed upon tracing the
possible solution behavior near x = 0.

Lemma 2.1. Suppose that for some x0 > 0, the function u ∈ C0([0, x0]) ∩ C2((0, x0)) is
a solution of (0.1), (0.2). Then

lim
xց0

u′(x) = 1. (2.1)

Proof. Letting v := u′ − 1 we can rewrite (0.1) as

u′ = v + 1,

x2v′ = ax(v + 1) + bu− cv2.

Let X(t) := −t−1 for t < 0. Then X ′(t) = t−2 and X(t) ց 0 as t → −∞. We next
introduce U(t) := u(X(t)) and V (t) := v(X(t)) for t < 0. Then the pair (U, V ) solves the
following system of differential equations

U ′ = t−2(V + 1),

V ′ = −at−1(V + 1) + bU − cV 2.

By assumption, we have U(t) → 0 as t → −∞ and thus

V ′(t) = p(t) + q(t)V (t)− cV 2(t) (2.2)

with
p(t) → 0 and q(t) → 0 as t → −∞. (2.3)

We wish to show that if V (t) is defined for all t ≤ −x−1
0 then V (t) → 0 as t → −∞. The

proof proceeds in several steps.
i) Given ε > 0 there is T < −x−1

0 such that |p(t)| < ε2c/3 and |q(t)| < εc/3 for all t ≤ T ,
by virtue of (2.3).
ii) Consider t0 ≤ T . We claim that if |V (t)| ≥ ε for all t ≤ t0 then

V (t) ≥ 1

V (t0)−1 + c
3(t− t0)

for all t ≤ t0. (2.4)

while defined. To this end note that (2.2) and i) yield

V ′(t) ≤ − c

3
V 2(t) if t ≤ T and |V (t)| ≥ ε. (2.5)

By the comparison theorem for ordinary differential equations we conclude that

V (t) ≥ Y (t) for t ≤ t0,

where Y solves the differential equation Y ′ = − c
3Y

2 with Y (t0) = V (t0). On solving for
Y we obtain (2.4).
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iii) Now we prove that there exists t1 ≤ T such that V (t1) > −ǫ. Suppose to the contrary
that V (t) ≤ −ǫ for all t ≤ T . Then, (2.4) gives V (t) ≥ −ε/2 for t < t0 − 6

cε , yielding the
desired contradiction.

Next we show that V (t) > −ε for all t ≤ t1. Arguing by contradiction, suppose this
is not the case. Then there is t2 such that −∞ < t2 = sup{t ≤ t1 : V (t) ≤ −ε} < t1. By
continuity we have V (t2) = −ε. From (2.5) we obtain V ′(t2) < 0 which is in conflict with
V (t2) = −ε and V (t) > −ε for t ∈ (t2, t1).

iv) Finally, we show that V (t) ≤ ǫ for all t ≤ T . If not, there is t3 ≤ T such that
V (t3) > ǫ and we have t4 := sup{t ≤ t3 : V (t) ≤ ǫ} < t3. The same argument as in part
iii) shows that t4 = −∞ and therefore V (t) > ε for all t ≤ t3. From (2.4) we now obtain
V (t) → ∞ for t ց t3 − 3

cV (t3)
−1 Therefore, V (t) is not defined for some t ≤ −x−1

0 which
is inconsistent with differentiability of U in (−∞, 0).

Since ǫ was arbitrary this completes the proof of the lemma. ////

It is now possible to rule out local existence of a continuous solution of (0.1), (0.2)
under the condition that a+ b be strictly negative.

Proposition 2.2. Suppose that a+ b < 0. Then for each x0 > 0, the problem (0.1), (0.2)
does not possess any solution u in [0, x0].

Proof. Suppose that such a solution exists for some x0 > 0. Then from Lemma
2.1 we know that u actually belongs C1([0, x0]) with u′(0) = 1, and hence the functions
ϕ1 and ϕ2 defined by

ϕ1(x) := u′(x)− 1, x ∈ (0, x0), and ϕ2(x) :=
u(x)− x

x
, x ∈ (0, x0),

satisfy ϕ1(x) → 0 and ϕ2(x) → 0 as x → 0. Since a+ b < 0, we can thus find x ∈ (0, x0)
such that

a+ b+ aϕ1(x) + bϕ2(x) ≤
a+ b

2
for all x ∈ (0, x).

Therefore, (0.1) shows that

x2u′′(x) = axu′(x) + bu(x)− c(u′(x)− 1)2

≤ axu′(x) + bu(x)

= ax(1 + ϕ1(x)) + bx(1 + ϕ2(x))

=
(
a+ b+ aϕ1(x) + bϕ2(x)

)
· x

≤ −δx for all x ∈ (0, x)

holds with δ := −a+b
2 > 0. By integration we find that

u′(x)− u′(x) ≤ −δ ln
x

x
for all x ∈ (0, x).
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This implies that u′(x) → +∞ as x → 0 and thereby contradicts Lemma 2.1. ////

3 Monotonicity and concavity properties of solutions

In this section we assume a+ b > 0 and we study monotonicity and convexity properties
of solutions to (0.1), whose existence was established in Section 1.

The following lemma is the key to establishing monotonicity, concavity, and ultimately
also uniqueness in a certain restricted class of solutions.

Lemma 3.1. Consider a nonconstant function y ∈ C0([0,∞)) ∩C2((0,∞)) satisfying

x2y′′(x) = f(x)y′(x) + g(x, y(x)), (3.1)

for some continuous functions f and g. Suppose there is a constant y∗ ∈ [−∞,∞] such
that for all x > 0 one has g(x, y) > 0 for y > y∗ and g(x, y) < 0 for y < y∗. Then there
is at most one x0 ∈ (0,∞) such that y′(x0) = 0. If such x0 exists then one, and only one,
of the following two alternatives is possible: Either

y′(x) < 0 for x < x0, y
′(x) > 0 for x > x0, and y(x) > y(x0) > y∗ for all x 6= x0,

or

y′(x) > 0 for x < x0, y
′(x) < 0 for x > x0, and y(x) < y(x0) < y∗ for all x 6= x0.

Proof. We first note that because of continuity of g we have g(x, y∗) = 0 for all
x > 0 whenever y∗ is finite. By an ODE uniqueness argument, y(x0) = y∗ and y′(x0) = 0
implies y(x) ≡ y∗. Therefore, if y(x) is not constant and y′(x0) = 0 then y(x0) 6= y∗.
Now suppose that y(x0) > y∗. Then from (3.1) it follows that y′′(x0) > 0, hence y′(x) < 0
for x < x0 sufficiently close to x0. Arguing by contradiction, let us suppose that there
exists 0 < x1 < x0 such that y′(x1) ≥ 0. Then there is x2 ∈ [x1, x0) such that

y′(x2) = 0, y′(x) < 0 for x2 < x < x0, (3.2)

which implies y′′(x2) < 0 and also y(x) > y(x0) > y∗ for x2 ≤ x < x0. On the other hand,
(3.1) together with y(x2) > y∗ and y′(x2) = 0 entails that y′′(x2) > 0, yielding the desired
contradiction. Therefore, y′(x) < 0 for all x ∈ (0, x0). The proof of y′(x) > 0 for x > x0
follows the same lines. Finally, the case y(x) < y∗ can be reduced to the case y(x) > y∗

by the transformation y 7→ −y, y∗ 7→ −y∗. ////

We now apply this to derive some monotonicity properties of solutions. Here in order
to abbreviate notation, we call a function φ : [0,∞) → R eventually monotonic if it is
monotonic on [x0,∞) for some x0 ≥ 0.
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Lemma 3.2. Let u be a nonconstant solution of (0.1) on (0,∞).
i) If b 6= 0 and u is bounded and eventually monotonic, then u(x) converges to the unique
stationary solution û = c/b as x → ∞. If b = 0 and u is eventually monotonic, then u is
unbounded.
ii) If b > 0 and u ≥ 0, then one of the following alternatives occurs: Either

u′(x) < 0 for all x > 0, u(x) > c/b for all x > 0 and u(x) → c/b as x → ∞,

or

u′(x) > 0 for all x > 0, and either u(x) < c/b for all x > 0 and u(x) → c/b as x → ∞,

or u is unbounded,

or finally

there exists a unique x0 > 0 such that u′(x0) = 0, and we have u′′(x0) > 0,

u(x) > u(x0) > c/b for all x 6= x0, u
′(x) < 0 for x < x0, u

′(x) > 0 for x > x0,

and u is unbounded.

iii) If b ≤ 0 and u ≥ 0 then u′(x) > 0 for all x > 0 and u is unbounded.

Proof. i) The substitution x(t) = et, ũ(t) = u(x(t)) transforms equation (0.1) into

ũ′′ = (a+ 1)ũ′ + bũ− c(e−tũ′ − 1)2. (3.3)

Being bounded and eventually monotonic, ũ has a limit l as t → ∞ and consequently
limt→∞ ũ′(t) = 0. From (3.3) it now follows that limt→∞ ũ′′(t) = bl− c. If bl− c 6= 0 then
limt→∞ ũ′′(t) 6= 0 which is inconsistent with the convergence of ũ′. This proves bl− c = 0.
For b = 0 this is a contradiction with c > 0, for b 6= 0 it yields l = c/b.

ii) If u′(x) < 0 for all x then u is bounded and, by i), tends to c/b as x → ∞ which is
possible only if u(x) > c/b for all x. If u′(x) > 0 for all x then thanks to monotonicity,
u(x) approaches a limit in [0,∞] as x → ∞. If this limit is finite it has to equal c/b by
virtue of i), and in the remaining case u is unbounded.
Suppose now there is x0 > 0 such that u′(x0) = 0. Lemma 3.1 applied to equation (0.1)
with y ≡ u ≥ 0, g(x, y) := by− c and y∗ := c/b yields two alternatives, the first of which is
stated in part ii). The second alternative is not possible since it implies 0 ≤ u ≤ c/b but
at the same time u′(x) < 0 for x > x0 which means that u 6→ c/b as x → ∞. A bounded
solution not converging to c/b contradicts part i).

iii) If u′ is not positive everywhere then Lemma 3.1 applied to equation (0.1) with
y ≡ u ≥ 0, g(x, y) := by − c and y∗ := ∞ implies that there is x0 such that u(x) < u(x0)
and u′(x) < 0 for x > x0. Therefore u is bounded and eventually monotonic. This contra-
dicts i) when b = 0. For b < 0, i) dictates that u should converge to c/b as x → ∞, which
contradicts u ≥ 0 since c/b < 0. ////
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Proposition 3.3. Suppose that a+ b > 0 and that u(x) ≤ x is a solution of (0.1), (0.2)
on (0, x0) with some x0 > 0. Then there exists x1 ∈ (0, x0) such that u′(x) > 0, u′′(x) < 0
and u′′′(x) > 0 for all x ∈ (0, x1). Furthermore, in this case we have

lim
x→0

u′(x)− 1√
x

= −
√

a+ b

c
. (3.4)

Proof. We recall that by Lemma 2.1 u′(0) = 1 and that by the remark following
Proposition 1.1, u(x) is C∞ for x > 0 . As an immediate consequence we must have
u′(x) > 0 for all sufficiently small x > 0. On differentiating the equation (0.1) we obtain

x2u′′′ + 2xu′′ = axu′′ + (a+ b)u′ − 2c(u′ − 1)u′′ on (0, x0). (3.5)

Lemma 3.1 applied to equation (3.5) with y ≡ u′, g(x, y) := (a+ b)y, y∗ := 0 implies that
u′′ has a constant non-zero sign near x = 0. This, together with u(x) ≤ x and u′(0) = 1,
yields that necessarily u′′(x) < 0 for all sufficiently small x > 0.
We now differentiate equation (3.5) once more to obtain

x2u′′′′ = ((a− 4)x− 2c(u′ − 1))u′′′ + (2a+ b− 2)u′′ − 2c(u′′)2 on (0, x0). (3.6)

Lemma 3.1 applied to equation (3.6) with y ≡ u′′ ≤ 0, g(x, y) := (2a + b − 2)y − 2cy2

and y∗ := (2a + b − 2)/(2c) implies that u′′′(x) has a constant non-zero sign near x = 0.
Arguing by contradiction, we suppose that u′′′ < 0 near x = 0. Since u′′ < 0, this
implies that L := limxց0 u

′′(x) exists and is finite. This however contradicts equation
(0.1), since on integrating we find x2u′′(x) = Lx2 + o(x2), xu′(x) = x+ Lx2 + o(x2) and
u(x) = x + Lx2/2 + o(x2) as x → 0, and on substituting these expressions into equation
(0.1) one concludes that it cannot hold near x = 0. We have thus proved u′′′ > 0 near
zero.
Next, dividing (0.1) by x we obtain

xu′′(x) = au′(x) + b
u(x)

x
+ c

(u′(x)− 1)2

x
for all x ∈ (0, x0). (3.7)

Since u′′ is increasing and negative, by (2.1) we find that

u′(x)− 1 =

∫ x

0
u′′(ξ)dξ ≤ xu′′(x) ≤ 0,

and, consequently,
xu′′(x) → 0 as x → 0. (3.8)

Substituting this into (3.7) we obtain

lim
x→0

c
(u′(x)− 1)2

x
= a+ b.

Since u′(x)− 1 ≤ 0, this is equivalent to (3.4). ////
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Corollary 3.4. There is a continuum of local solutions of (0.1),(0.2), with the property
0 ≤ u(x) ≤ x and they all satisfy

u(x) = x− 2

3

√
a+ b

c
x3/2 + o(x3/2) (3.9)

u′(x) = 1−
√

a+ b

c
x1/2 + o(x1/2). (3.10)

Proof. Multiplicity of solutions was proved in Proposition 1.3. Expansion (3.10)
follows from (3.4), and (3.9) follows by integration of (3.10). ////

Proposition 3.5. Let u be a solution of (0.1), (0.2) with x0 = ∞ such that 0 ≤ u(x) ≤ x
for all x > 0. Then, in addition to (3.9) and (3.10), we have that u′(x) > 0, u′′(x) < 0
and u′′′(x) > 0 for all x > 0. Moreover,

lim
x→∞

u′(x) = 0. (3.11)

Proof. The conclusion u′(x) > 0 for all x > 0 is a trivial consequence of Lemma
3.2 iii) for b ≤ 0. In the case b > 0, Lemma 3.2 ii) implies that if u is not increasing
everywhere then there is x0 > 0 such that u′(x) < 0 on (0, x0) and this contradicts the
facts that u(0) = 0 and u ≥ 0.

Next, Lemma 3.1 applied to equation (3.5) with y ≡ u′ ≥ 0, g(x, y) := (a+b)y ≥ 0 and
y∗ := 0 shows that if u′′ < 0 does not hold over (0,∞) then u′′(x) > 0 for all sufficiently
large x > 0. We show that the latter alternative is impossible. To this end, we let
v := u′ and ṽ(t) := v(x(t)) with x(t) = et. Arguing by contradiction, since v is eventually
increasing and u(x) ≤ x, we must have v ≤ 1, which implies that v and ṽ converge as
x → ∞ and t → ∞, respectively. This in turn implies v′(x(t)) → 0 and ṽ′(t) → 0 as
t → ∞. Since from (3.5) we see that

ṽ′′(t) = (a− 1)ṽ′(t) + (a+ b)ṽ(t)− 2c(ṽ(t)− 1)v′(x(t)), (3.12)

we therefore obtain ṽ′′(t) − (a + b)ṽ(t) → 0 as t → ∞. Since ṽ > 0 is increasing and
convergent, so is ṽ′′. This is inconsistent with ṽ′(t) → 0 as t → ∞. We have thus proved
u′′(x) < 0 for all x > 0.

Now since v is decreasing and bounded below by 0, it converges as t → ∞. Therefore,
both v′(x(t)) and ṽ′(t) converge to 0 as t → ∞. From (3.12) we thus obtain ṽ′′(t) − (a +
b)ṽ(t) → 0 as t → ∞. Should the limit of ṽ for t → ∞ not be zero, the same would hold
for ṽ′′. This, however, is in conflict with the convergence of ṽ′ for t → ∞. This proves
statement (3.11).

Finally, in order to verify that u′′′ > 0 throughout (0,∞), we note that from Lemma
3.3 we know that u′′′ is positive near zero. Arguing by contradiction, we assume that u′′

is not increasing everywhere. Lemma 3.1 applied to equation (3.6) implies that in such
case u′′ must be eventually decreasing and therefore limx→∞ u′′(x) 6= 0 which contradicts

12



statement (3.11). ////

The following inequality is related to the theory of speculative attacks, in which an agency
artificially supports a (low) fixed price of an asset, using a limited amount of reserves. The
inequality indicates that in order for the speculator to make expected profit or at least for
her to break even, the price of the asset must always jump upwards after the speculative
attack has exhausted the entire supply of the asset at the subsidized price.

Corollary 3.6. Let u be a solution of (0.1), (0.2) with a+ b > 0 such that 0 ≤ u(x) ≤ x
for all x > 0. Then

1 + u′(x) > 2
u(x)

x
for all x > 0. (3.13)

Proof. Since u′′′(x) > 0 for x > 0 by Proposition 3.5, the function u′ is strictly
convex on [0,∞). Therefore

u′(x)− u′(0)
x

< u′′(x) for all x > 0.

On multiplying both sides by x, utilizing u′(0) = 1 and integrating we obtain

u(x)− x < xu′(x)− u(x) for all x > 0,

which yields the desired inequality. ////

4 Uniqueness of the global solution bounded between

0 and x

Proposition 4.1. There is one, and only one, solution u of (0.1), (0.2) in [0,∞) which
has the additional property that 0 ≤ u(x) ≤ x for all x > 0. This solution necessarily
satisfies u > 0, u′ > 0, u′′ < 0, and u′′′ > 0 on (0,∞).

The proposition stems from the following result:

Lemma 4.2. Let u 6= v be two solutions of (0.1) in [0,∞) which satisfy u(0) = v(0),
u′(0) = v′(0) and u′′ ≤ 0 on (0,∞). Then w := v − u satisfies either w′′ > 0 on (0,∞) or
w′′ < 0 throughout (0,∞).

Proof. The function w solves

x2w′′ = axw′ + bw − 2c(u′ − 1)w′ − cw′2 on (0,∞),

which on differentiation yields

x2w′′′ = (a− 2)xw′′ + (a+ b)w′ − 2cu′′w′ − 2c(u′ − 1)w′′ − 2cw′w′′ on (0,∞). (4.1)
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Lemma 3.1 applied to equation (4.1) with y ≡ w′, g(x, y) := (a+b−2cu′′(x))y and y∗ := 0
shows that w′′ can have at most one root. Now the existence of such a root x0 > 0 would
imply either w′ > 0, w′′(x) < 0 for 0 < x < x0 and w′′(x) > 0 for x > x0; or w′ < 0,
w′′(x) > 0 for 0 < x < x0 and w′′(x) < 0 for x > x0. This however contradicts w′(0) = 0.
Thus one must have either w′′(x) > 0 or w′′(x) < 0 for all x > 0. ////

Proof of Proposition 4.1. Suppose there are two solutions u 6= v bounded between 0
and x and let w := v − u. Proposition 3.5 yields limx→∞ u′(x) = limx→∞ v′(x) = 0 and
therefore

lim
x→∞

w′(x) = 0. (4.2)

On the other hand, Proposition 3.5 also gives u′(0) = v′(0) = 1, implying w′(0) = 0. We
can thus employ Lemma 4.2 to obtain that either w′′(x) > 0 or w′′(x) < 0 for all x > 0.
In view of w′(0) = 0 both alternatives contradict (4.2). The claimed further properties of
the unique solution bounded between 0 and x follow from Proposition 3.5. ////

5 Finer aspects of non-uniqueness

By Corollary 3.4 there is a continuum of local solutions sharing the same asymptotics
up to degree 3/2 at 0. The solutions are parametrized by their values at any x > 0. In
this section we establish existence of disjoint continua of local solutions of (0.1), (0.2)
distinguished by refinement of their asymtotics at 0.

We first show that the higher order terms specification of (3.10) can be somewhat
sharpened. Denote

k =

√
a+ b

c

Lemma 5.1. Let u, x0, x1 be as in Corollary 3.4. Then there exists l > 0 such that

∣∣∣u
′(x)− 1√

x
+ k
∣∣∣ ≤ l

√
x for all x ∈ (0, x1). (5.1)

If u is the unique solution provided by Proposition 4.1 then (5.1) holds for all 0 ≤ x < ∞
for some l > 0.

Proof. Since u′(x)−1√
x

→ −k as x ց 0 by Proposition 3.3, we can find x1 > 0, c1 > 0

such that
|u′(x)− 1| ≤ c1

√
x for 0 < x < x1. (5.2)

Therefore trivially

|au′(x)− a| ≤ c1|a|
√
x for all 0 < x < x1 (5.3)
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and also

∣∣∣bu(x)
x

− b
∣∣∣ = |b|

x
·
∣∣∣
∫ x

0
(u′(y)−1)dy

∣∣∣ ≤ c1|b|
x

·
∫ x

0

√
ydy =

2c1|b|
3

√
x for all 0 < x < x1.

(5.4)
Taking x1 sufficiently small, using Proposition 3.3 we obtain that u′′ ≤ 0 and u′′′ ≥ 0 and
hence |xu′′(x)| ≤ |u′(x)− 1| for all 0 < x < x1, from (5.2) we also infer that

|xu′′(x)| ≤ c1
√
x for all 0 < x < x1.

Accordingly, from (0.1) we obtain that ϕ(x) := u′(x)−1√
x

, 0 < x < x1, satisfies

∣∣∣cϕ2(x)− ck2
∣∣∣ =

∣∣∣∣(au
′(x)− a) +

(bu(x)
x

− b
)
− xu′′(x)

∣∣∣∣
≤ c2

√
x for all 0 < x < x1 (5.5)

with c2 := c1|a|+ 2c1|b|
3 + c1. Therefore ϕ2(x) ≤ k2 + c2

c

√
x, so that

− ϕ(x) = |ϕ(x)| ≤ k ·
√

1 +
c2
√
x

ck2
≤ k ·

(
1 +

c2
√
x

2ck2

)
for all 0 < x < x1, (5.6)

where we have used that
√
1 + ξ ≤ 1 + ξ

2 for all ξ > 0. Likewise, (5.5) entails that

ϕ2(x) ≥ k2 − c2
c

√
x for all x > 0. Thus, since

√
1− ξ ≥ 1 − ξ√

2
for all ξ ∈ (0, 12), we see

that

− ϕ(x) ≥ k ·
√

1− c2
√
x

ck2
≥ k − c2

√
x√

2ck
for all x ∈ (0, x2), (5.7)

where x2 := min{x1, ( ck
2

2c2
)2}.

If u is the global solution of Proposition 4.1, then (5.1) is obvious in [x1,∞) because
u′(x) → 0 as x → ∞. This, together with (5.6) and (5.7) concludes the proof of the
lemma. ////

The core of our approach will be formed by the usage of on ordered pair of sub- and
supersolutions which deviate from our original solution by an exponentially small term
near x = 0. As a preparation, let us compute the action of the operator E , as defined in
(1.4), on such functions.

Lemma 5.2. Suppose that u is a solution of (0.1), (0.2) in (0, x0) for some x0 > 0. Then
for all ε > 0, α ∈ R and β ∈ R, the function v defined by

v(x) := u(x)− εxαe
− β√

x , x ∈ (0, x0), (5.8)

15



satisfies

Ev = εe
− β√

x ·
{
β2

4
xα−1

+
[(

α− 3

2

)β
2
+

αβ

2
− aβ

2

]
· xα− 1

2

+
[
α(α− 1)− aα− b

]
· xα

+2c · u
′ − 1√
x

·
[β
2
xα−1 + αxα−

1
2

]

−εc ·
[β
2
xα−

3
2 + αxα−1

]2
· e−

β√
x

}
(5.9)

for all x ∈ (0, x0).

Proof. We write

w(x) := εxαe
− β√

x , x ∈ (0, x0),

so that v = u− w and consequently

Ev = −x2u′′ + axu′ + bu

+x2w′′ − axw′ − bw

+c(u′ − w′ − 1)2 in (0, x0).

Since (u′ − w′ − 1)2 = (u′ − 1)2 − 2(u′ − 1)w′ + w′2, using that Eu ≡ 0 we see that

Ev = x2w′′ − axw′ − bw + 2c(u′ − 1)w′ − cw′2 in (0, x0). (5.10)

We now compute

w′(x) = ε
β

2
xα−

3
2 e

− β√
x + εαxα−1e

− β√
x

and

w′′(x) = ε
β2

4
xα−3e

− β√
x + ε

(
α− 3

2

)β
2
xα−

5
2 e

− β√
x + ε

αβ

2
xα−

5
2 e

− β√
x + εα(α − 1)xα−2e

− β√
x

and hence obtain from (5.10) that

Ev = εe
− β√

x ·
{
β2

4
xα−1 +

(
α− 3

2

)β
2
xα−

1
2 +

αβ

2
xα−

1
2 + α(α− 1)xα

−aβ

2
xα−

1
2 − aαxα − bxα

+2c · u
′ − 1√
x

·
√
x ·
[β
2
xα−

3
2 + αxα−1

]

−εc
[β
2
xα−

3
2 + αxα−1

]2
e
− β√

x

}
in (0, x0).
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On straightforward rearrangements, this yields (5.9). ////

We can now identify an appropriate family of subsolutions for (0.1).

Lemma 5.3. Suppose that for some x0 > 0, u is a solution of (0.1), (0.2) in (0, x0)
satisfying (5.1) with some l > 0. Then for any real number α < 3

2 + a − 2cl there exists
x3 = x3(α) ∈ (0, x0) such that for each ε > 0, the function v defined by

v(x) := u(x)− εxαe
− 4ck√

x , x ∈ (0, x3), (5.11)

satisfies
Ev < 0 in (0, x3). (5.12)

Proof. Given α < 3
2 + a − 2cl, thanks to the positivity of c and k we can find

x1 ∈ (0, x0) such that both
2ck√
x1

+ α ≥ 0 (5.13)

and
2ck · (32 + a− 2cl − α)

√
x1

> α(α− 1)− aα− b+ 2clα (5.14)

hold. Then for ε > 0 we define v as in (5.11) and thus obtain from Lemma 5.2, applied
to β := 4ck, that (5.9) holds for v = v and all x ∈ (0, x1). In order to utilize (5.1)
appropriately, we note that in view of (5.13) we have

β

2
xα−1 + αxα−

1
2 =

(2ck√
x
+ α

)
· xα− 1

2 ≥ 0 for all x ∈ (0, x1).

We may thus multiply this by the inequality

u′(x)− 1√
x

≤ −k + l
√
x for all x ∈ (0, x1),
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as resulting from (5.1), to infer from (5.9) on dropping a nonpositive term that

Ev ≤ εe
− β√

x ·
{
β2

4
xα−1

+
[(

α− 3

2

)β
2
+

αβ

2
− aβ

2

]
· xα− 1

2

+
[
α(α − 1)− aα− b

]
· xα

+2c(−k + l
√
x) ·

[β
2
xα−1 + αxα−

1
2

]}

= εe
− β√

x ·
{[β2

4
− ckβ

]
· xα−1

+
[(

α− 3

2

)β
2
+

αβ

2
− aβ

2
− 2ckα + clβ

]
· xα− 1

2

+
[
α(α − 1)− aα− b+ 2clα

]
· xα

}
in (0, x1).

Here the leading term disappears because β = 4ck, whereas

(
α− 3

2

)β
2
+

αβ

2
− aβ

2
− 2ckα + clβ = 2ck ·

[
α− 3

2
+ α− a− α+ 2cl

]

= 2ck ·
[
α− 3

2
− a+ 2cl

]
< 0.

Hence, using (5.14) we infer that

Ev ≤ εe
− β√

x · xα ·
{
− 2ck · (32 + a− 2cl − α)√

x
+ α(α− 1)− aα− b+ 2clα

}

< 0 in (0, x1),

as desired. ////

Our construction of supersolutions to (0.1) is similar.

Lemma 5.4. Let u be a solution of (0.1), (0.2) in (0, x0) for some x0 > 0, which satisfies
(5.1) with some l > 0. Then for each ε0 > 0 and α > 3

2 + a + 2cl one can pick x4 =
x4(α) ∈ (0, x0) such that for any ε ∈ (0, ε0), the function v defined by

v(x) := u(x)− εxαe
− 4ck√

x , x ∈ (0, x4), (5.15)

satisfies
Ev > 0 in (0, x4). (5.16)
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Proof. Relying on our assumption on α, let us first pick x4 ∈ (0, x0) such that
besides again

2ck√
x3

+ α ≥ 0, (5.17)

the inequality

2ck(α − 3
2 − a− 2cl)
√
x4

>
∣∣α(α−1)−aα−b−2clα

∣∣+c· sup
x∈(0,x4)

{
x−α·

[
2ckxα−

3
2+αxα−1

]2
·e−

4ck√
x

}

(5.18)

holds. Then writing β := 4ck, we again have β
2x

α−1 + αxα−
1
2 ≥ 0 in (0, x4). Hence, using

that (5.1) implies that

u′(x)− 1√
x

≥ −k − l
√
x for all x ∈ (0, x0),

from (5.9) we obtain

Ev ≥ εe
− 4ck√

β ·
{
β2

4
xα−1

+
[(

α− 3

2

)β
2
+

αβ

2
− aβ

2

]
· xα− 1

2

+
[
α(α− 1)− aα− b

]
· xα

+2c · (−k − l
√
x) ·

[β
2
xα−1 + αxα−

1
2

]

−ε0c ·
[β
2
xα−

3
2 + αxα−1

]2
· e−

β√
x

}
in (0, x4).

Since β = 4ck, this reduces to

Ev ≥ εe
− 4ck√

x · xα ·
{
2ck(α − 3

2 − a− 2cl)√
x

+ α(α − 1)− aα− b− 2clα

−ε0cx
−α ·

[
2ckxα−

3
2 + αxα−1

]2
· e−

4ck√
x

}
in (0, x4),

and hence (5.18) asserts (5.16). ////

By means of Proposition 1.2, we can now infer the existence of infinitely many classes of
continua of local solutions to (0.1), (0.2). Here we shall strongly rely on the fact that the
numbers α in Lemma 5.3 and Lemma 5.4 can be chosen in such a way that the functions
v and v defined in (5.11) and (5.15) are ordered appropriately.
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Proposition 5.5. Suppose that for some x0 > 0, u is a solution of (0.1), (0.2) in (0, x0)
satisfying (5.1) with some l > 0. Then for all α ∈ (−∞, 32+a−2cl) and α ∈ (32+a+2cl,∞)
there exists x̂0 ∈ (0, x0) such that given ε ∈ (0, 1) and any û0 satisfying

û0 ∈
(
u(x)− εxαe

− 4ck√
x , u(x)− εxαe

− 4ck√
x

)
at x = x̂0,

(0.1), (0.2) possesses a solution û on (0, x̂0) fulfilling

u(x)− εxαe
− 4ck√

x ≤ û(x) ≤ u(x)− εxαe
− 4ck√

x for all x ∈ (0, x̂0) (5.19)

as well as û(x̂0) = û0.

Proof. We invoke Lemma 5.3 and Lemma 5.4 with ε0 := 1 to obtain x3 ∈ (0, x0)
and x4 ∈ (0, x0) such that for any ε ∈ (0, 1), the functions v and v defined by v(x) :=

u(x)− εxαe
− 4ck√

x , x ∈ (0, x3), and v(x) := u(x)− εxαe
− 4ck√

x , x ∈ (0, x4), have the properties
Ev < 0 on (0, x3) and Ev > 0 on (0, x4). Writing x̂0 := min{1, x3, x4}, we moreover see
using α < α that v < v throughout (0, x̂0). Therefore the claim results upon an application
of Proposition 1.2(i). ////
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Brunovský gratefully acknowledges support by the grants VEGA 1/0711/12 and VEGA
1/2429/12.

References

[1] Barles, G.: ”Convergence of numerical schemes for degenerate parabolic equations
arising in finance theory”. In L. C. G. Rogers and D. Talay eds., Numerical methods
in finance, 1-21 (1997)

[2] Bernstein, C.: Sur certaines quations diffrentielles ordinaires du second ordre. C. R.
Acad. Sci. Paris 138(1904), 950-951
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