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LONGEVITY-CONTINGENT DEFERRED LIFE ANNUITIES 
 

M. Denuit1, S. Haberman2 and A.E. Renshaw3 
 
 
 
 
 
Abstract. 
 
Considering the substantial systematic longevity risk threatening annuity providers’ solvency, 
indexing benefits on actual mortality improvements appears to be an efficient risk management 
tool, as discussed in Denuit, Haberman and Renshaw (2011) and Richter and Weber (2011). 
Whereas these papers consider indexing annuity payments, the present work suggests that the 
length of the deferment period could also be subject to revision, providing longevity-contingent 
deferred life annuities. 
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1. Introduction and motivation 
 
In this paper, we revisit the problem of the sharing of longevity risk between an annuity provider 
and a group of annuitants. As advocated by Denuit, Haberman and Renshaw (2011) and Richter 
and Weber (2011), re-designing annuity products to mitigate the systematic longevity risk 
threatening the provider’s solvency offers promising perspectives. Part of this systematic risk 
is then left with the annuitants by letting annuity payments depend on actual mortality 
improvements experienced by a reference group (the general population of the country, for 
instance). See also Bravo et al. (2009), Donnelly et al. (2014) and Piggott et al. (2005) for 
related approaches to this problem. 
 
Even if the coverage against individual longevity risk provided by such a product is inferior to 
that of a life annuity offering guaranteed payments, transferring only part of the longevity risk 
to the annuity provider 

- decreases its need for risk capital and is expected to make the product less expensive: 
because of solvency margins and reserving requirements, substantial capital has to be 
set aside in respect of annuity products. Lowering the need for capital reduces the cost-
of-capital loading in the premium charged to policyholders. 

- still protects the annuitant against the risk of outliving assets: compared to alternatives 
like income drawdown, longevity indexed annuities still provide lifelong income, albeit 
subject to re-evaluation. 
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2 Cass Business School, City University London, UK 
3 Cass Business School, City University London, UK 



 2

For a given amount of premium, the policyholders will then be granted a higher initial periodic 
payment in a longevity-indexed life annuity.  
 
The present paper considers an alternative to (or complement to) payment indexing. Many life 
annuity contracts comprise a deferment period. The length of this deferment period can also be 
subject to revision, keeping the payments at a constant level when they start. Clearly, the two 
approaches can be combined, allowing for an adaptation of both the deferment period and 
annuity payments, and limits can be imposed on the extent to which these two components are 
subject to indexing on realized longevity. 
 
Indexing the deferment period keeping periodic payments constant once they start or adjusting 
the amounts of periodic payments as proposed by Denuit, Haberman and Renshaw (2011) are 
just two ways to share the systematic longevity risk with annuitants. From the annuity 
provider’s point of view, regular adjustments of the periodic payments better protect against 
unexpected longevity trends while the annuity is being paid. Unless appropriate caps and floors 
are specified to avoid excessive variations in periodic payments, annuitants may well prefer the 
alternative consisting in adjusting the length of the deferment period, leaving the periodic 
payments unchanged once they start, provided that an upper limit is placed on the longevity 
indexed delay in the deferment period. 
 
In practice, both mechanisms can be combined and subjected to restrictions on the amplitude 
of the correction resulting from realized longevity. For instance, the annuity provider could 
specify in policy conditions that variations in periodic payments are up to a maximum of 20% 
compared to the initially stated one and that the delay in the start of the payments is up to 6 
months. Given that these rules first apply to large cohorts, impacting the majority of annuitants 
except those who die early, they considerably improve the provider’s solvency at the cost of 
moderate variations induced by the longevity experienced by the policyholder. Of course, 
annuitants opting for this kind of flexible contracts should be granted an attractive premium 
discount. 
 
In this paper, we consider the indexing of the deferment period. We consider deferred life 
annuity contracts that might be acquired at a young age or bought at retirement age to provide 
protection against individual longevity risk4. We assume that no surrendering is possible. The 
payments are initially supposed to start at a given age. However, if longevity improves, the 
annuity provider is allowed to delay this starting age, according to some pre-defined 
mechanism. Saving a few periodic payments on the whole portfolio provides the annuity 
provider with considerable additional resources to increase the probability of remaining solvent.  
 
The type of annuity discussed in the present paper is similar to so-called contingent deferred 
annuities, including the ruin-contingent life annuity studied by Huang et al. (2013). In such 
products, two distinct events must be triggered before the annuitant gets paid: the individual 
must obviously be alive but a second event related to the financial market has also to occur (for 
instance, a reference portfolio index reaches zero, as in the ruin-contingent life annuity case). 
We extend this idea by considering biometric events instead of financial events, reflecting the 
longevity improvements experienced by a reference population. Of course, both approaches can 
be combined and annuity payments may start only if two or more events, related to mortality 
or longevity and to financial markets occur simultaneously. 
 
                                                 
4 In the latter case, the annuity may start paying at advanced ages, like in the ALDA proposed by Milevsky 
(2005) where life-contingent payments typically start at 80, 85 or even 90. 
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The indexing mechanism considered in this paper is based on period life expectancies. Of 
course, other demographic indicators can be used to index the length of deferment periods. 
Recall that demographic indicators can be calculated in two ways.  Period indicators are worked 
out using age-specific mortality rates for a given year, with no allowance for any later actual or 
projected changes in mortality.  Cohort indicators are worked out using age-specific mortality 
rates which allow for known or projected changes in mortality in later years.  In this paper, we 
consider the period life expectancy, computed from the set of death rates corresponding to a 
given calendar year for two important practical reasons. First, period life expectancies are 
regularly available from public bodies, including Eurostat or national institutes of statistics. 
Second, they are transparent and not subject to manipulation. 
 
The problem studied in the present paper shares similarities with indexing retirement age in 
Social Security systems. See, e.g., Stevens (2011). It is indeed likely that longevity risk sharing 
in Social Security will have to become intra rather than inter-generational. For instance, several 
industrialized countries have now introduced longevity adjustments in public pension schemes. 
In that respect, the indexing mechanism proposed in the present paper can also be used to adapt 
the retirement age in an automated way, without further political intervention. 
 
The remainder of the present paper is organized as follows. In Section 2, we propose a simple 
rule to make the length of the deferment period dependent on actual longevity improvements. 
In order to make the product transparent, we assume that the indexing mechanism is based on 
general population statistics, leaving the annuity provider with basis risk. Section 3 provides 
some numerical illustrations. The final Section 4 concludes and discusses the results.  
 
To end with, let us introduce some notation used throughout this paper. Henceforth, we analyze 
the changes in mortality as a function of both age x and calendar time t. This is the so-called 
age-period approach. The remaining lifetime of an individual aged x on January the first of year 
t is denoted as )(tTx . Thus, this individual will die at age )(tTx x in calendar year )(tTt x . 

Then,  1)()(  tTPtq xx  is the probability that an x-aged individual in calendar year t dies 

before reaching age x+1 and  1)()(1)(  tTPtqtp xxx  is the probability that an x-aged 

individual in calendar year t reaches age x+1. 
 
 
2. Deferred life annuities with deferment period subject to longevity indexing  
 
2.1. Indexing mechanism 
 
Let us consider an individual buying a deferred life annuity at age 0x in calendar year 0t , with 

deferment period of length d. According to this contract, the annuitant receives an annual 
payment as long as he or she survives, starting from age 0x +d. The amount specified in the 

contract is one monetary unit. However, in our proposed scheme, the value of d is not fixed but 
is subject to re-evaluation based on actual longevity improvements experienced by the general 
population (to make the product transparent). The initial computations at age 0x  are based on 

an appropriate life table and interest rate. This technical basis does not need to be disclosed to 
annuitants who are likely to be more interested in the length of the deferment period and the 
amount of periodic payments (assumed here to be 1 monetary unit, paid at the end of the year). 
 



 4

Specifically, the payments are delayed if the period life expectancy at age 0x +d recorded in 

calendar year 0t +d exceeds a contractual value specified in the policy conditions. The payments 

start at age 0x +d +Δ (thus, after an additional Δ years) if the period life expectancy at age 0x

+d+Δ is for the first time less than, or equal to this specified contractual value. Alternatively, 
payments may start after d years but at a reduced level. Let us precisely explain how this 
mechanism works. 
 
Assume that the contractual value is based on the period life table available for calendar year 

0t . When the product is issued, a contractual threshold value e* is specified. If at time 0t +d the 

observed period life expectancy  ݁௫బାௗ
↑ ሺݐ଴ ൅ ݀ሻ ൑ ݁∗ then the payments start at that time. The 

vertical arrow “↑” used as a superscript to the life expectancy recalls that this demographic 
indicator is computed in the period approach, i.e. along a vertical in the Lexis diagram. This 
means that its calculation is based on the life table for calendar year 0t +d obtained from the 

mortality experienced by the reference population during that year, without allowance for future 
changes.  
 
In contrast, annuity payments are further delayed as long as ݁௫బାௗା௞

↑ ሺݐ଴ ൅ ݀ ൅ ݇ሻ ൐ ݁∗. If at 

time 0t +d we observe ݁௫బାௗ
↑ ሺݐ଴ ൅ ݀ሻ ൐ ݁∗  then the payments start at age 0x +d +Δ where Δ 

satisfies 
 

  *)(,...3,2,1inf 00
ekdtek kdx  

 . 

 
Of course, the insurer does not need to wait until the end of the deferment period to inform the 
policyholder about possible variations in the value of d but may provide regular update about 
likely variations Δ based on available mortality statistics. 
 
Let us make the following comments: 
 
(i) This indexing mechanism is based on a period indicator. Its impact on the corresponding 
cohort indicator can be assessed using the techniques developed in Goldstein and Wachterb 
(2006) who derived formulas for gaps γ and lags λ such that 
 

݁௫↑ሺݐሻ ൌ ݁௫ାఊ↗ ሺݐሻ and ݁௫↑ሺݐሻ ൌ ݁௫↗ሺݐ െ  .ሻߣ
 
(ii) Also, indexing is based on life expectancies whereas the annuity provider is more interested 
in life annuity premiums. A limited Taylor expansion provides an approximation of annuity 
prices based on life expectancies. Denote  as ܭ௫ the curtate remaining lifetime of an individual 
aged x. Then, viewing the annuity price as a function of the interest rate i, we get 
 

ܽ௫ሺ݅ሻ ൌ෍ሺ1 ൅ ݅ሻି௞ܲሾܭ௫ ൒ ݇ሿ
௞ஹଵ

 

 
݀
݀݅
ܽ௫ሺ݅ሻ ൌ െ෍݇ሺ1 ൅ ݅ሻି௞ିଵܲሾܭ௫ ൒ ݇ሿ

௞ஹଵ
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ܽ௫ሺ݅ሻ ൎ ݁௫ െ 0.5 െ ݅෍݇ܲሾܭ௫ ൒ ݇ሿ
௞ஹଵ

ൌ ݁௫ െ 0.5 െ ݅
௫ܭሾሺܧ െ 1ሻሺܭ௫ െ 2ሻሿ

2
 

 
Higher-order approximations can easily be derived, if needed, but appear to be moderately 
useful for small enough interest rates. Because of the adoption of financial participation 
mechanisms, the choice i=0 is becoming rather common. This makes life expectancies even 
more relevant for longevity indexing. 
 
(iii) As mentioned previously, the annuitant may also decide that the payments start at time 
଴ݐ ൅ ݀, but at a reduced level. In this case, the annuity payments are scaled by the factor 
 

௘∗

௘ೣబశ೏
↑ ሺ௧బାௗሻ

. 

 
Alternatively, the annuitant can wait for an extra year. Either the condition is met and the 
payments start at the level initially guaranteed, or the annuitant requires the payments start at a 
reduced level 

݁ ∗

݁௫బାௗାଵ
↑ ሺݐ଴ ൅ ݀ ൅ 1ሻ

 

 
Or he can wait for another extra year. And so on.  
 
(iv) The concept underlying longevity indexed life annuities is essentially a profit share: the 
insurer absorbs risk and profit from interest rates and idiosyncratic mortality risk, and the 
annuitants share with the insurer the pooled systematic longevity risk. As the annuitant is 
unlikely to be in a position to absorb all of the longevity risk, it seems reasonable to limit the 
impact of the index on the annuity payments. Therefore, instead of allowing all possible delays 
Δ, we specify that the payments start at age max0  dx  at the latest, where max  is the 

maximal additional delay allowed under the longevity indexed annuity contract. 
 
(v) The additional delay ∆ only depends on general population life expectancy in order to ensure 
maximum transparency. Indeed, policyholders are used to the concept of life expectancy, which 
is widely used in the media to communicate about mortality improvements. These demographic 
indicators are regularly published by public bodies and are thus not subject to manipulations by 
the annuity provider. General population mortality statistics compiled by governmental 
agencies can be regarded as objective and are therefore preferred to portfolio specific mortality 
experience in that respect.  
 
Even if life expectancies seem to be a familiar notion for the majority of policyholders, other 
candidates for defining ∆ can nevertheless be envisaged. The proportion of individuals 
surviving the initially specified deferment period d might also be a good choice: as this 
probability is likely to increase over time, it is computed by increasing annuitants’ age until it 
reaches the value stated in policy conditions and ∆ is determined accordingly. 
 
Other internal factors, such as the insurance company profitability, should not be used to 
determine ∆ as it exposes the product to moral hazard. A combination of demographic and 
financial indicators could nevertheless be used, provided the financial component reflects 
market performances in terms of stocks or interest-related instruments. This is in line with the 
innovative product studied by Huang et al. (2013). A double-trigger mechanism, requiring that 
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both the demographic component and the financial one reach specified target could be specified 
to decide when the payments start. 
 
(vi) In practice, the compilation of mortality statistics needed for the publication of 
demographic indicators by governmental agencies may require some time. It is usual to wait 
for 12 to 18 months before life expectancies become publicly available. Basing re-evaluations 
on the lagged value of the life expectancy should nevertheless not constitute a significant 
problem. 
 
 
2.2. Example with the Lee-Carter model 
 
The method described in the preceding section can be applied with any mortality projection 
model. We refer the reader, e.g., to Pitacco et al. (2009) for a review. In this section, we consider 
the classical approach proposed by Lee and Carter (1992); see Section 3 for an application with 
another mortality projection model, based on modelling mortality improvement rates. 
 
We recall the basic features of the classical Lee-Carter approach.  In this framework, the 
population central death rate at age x in calendar year t, denoted as  xm t , is of the form 

 
 ln x x x tm t     .     (3.1) 

 
Interpretation of the parameters involved in model (3.1) is straightforward.  The value of x  is 

an average of ln ( )xm t  over time t so that exp x  represents the general shape of the age-specific 

mortality profile.  The actual forces of mortality change over time according to an overall 
mortality index t  which is modulated by an age response variable x .  The coefficient x  

indicates the sensitivity of different ages to the time trend so that the shape of the x  profile 

indicates which rates decline rapidly and which slowly over time in response to changes in t . 

 
In order to make forecasts, Lee and Carter (1992) assume that the x  and x  remain constant 

over time and forecast future values of t  using a standard univariate time series model. In the 

majority of studies based on the Lee-Carter mortality projection model, a simple random walk 
with drift, or ARIMA(0,1,0) model, is used to describe the dynamics of the time index t ; see, 

e.g., Denuit, Haberman and Renshaw (2010). In some cases, higher-order ARIMA models are 
needed to appropriately describe the dynamics of the time index.  
 

Let us denote as 
00( | )x t ke t k 
  the period conditional life expectancy at age x in year 0t k , 

given 
0t k  .  Assuming that the deaths are uniformly distributed over the calendar year, this 

demographic indicator is given by 
 

 
0 0

1

0
1 0

1
( | ) exp exp

2

d

x t k x j x j t k
d j

e t k    



   

 

 
     

 
  . 
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In many applications of the Lee-Carter model, we find that all of the x j   typically have the 

same sign.  It is then easy to see that 
00( | )x t ke t k 
  appears as a one-to-one monotone function 

of 
0t k   (and only depends on a single time index).  Let us assume that all of the x j   are 

positive.  Then, 
00( | )x t ke t k 
  is a decreasing function ݃௫ of the time index 

0t k  .  Then,  

 
∆൒ 1 if ݃௫బାௗ൫ߢ௧బାௗ൯ ൐ ݁∗ ⟺ ௧బାௗߢ ൏ ݃௫బାௗ

ିଵ ሺ݁∗ሻ 
 

∆൒ 2 if ݃௫బାௗାଵ൫ߢ௧బାௗାଵ൯ ൐ ݁∗ ⟺ ௧బାௗାଵߢ ൏ ݃௫బାௗାଵ
ିଵ ሺ݁∗ሻ 

 
etc., so that 
 

Δ ൌ Δሺߢሻ ൌ෍ߢൣܫ௧బାௗା௞ ൏ ݃௫బାௗା௞
ିଵ ሺ݁∗ሻ൧

௞ஹ଴

 

 
where I[A] is the indicator function of the event A, equal to 1 if A is realized and to 0 otherwise. 
Hence, payments start only when the trajectory of the time index ߢ௧బାௗା௞ does reach the barrier  
݃௫బାௗା௞
ିଵ ሺ݁∗ሻ, k=0,1,… Now, the conditional survival probabilities are decreasing in the time 

index whereas the additional deferment period Δ is increasing in the time index, providing the 
hedge against unexpected longevity improvements. 
 
 
3. Numerical illustrations 
 
In order to compute the simulations described below we follow the approach of Haberman and 
Renshaw (2012, 2013). Specifically, we have fitted the Gaussian cohort-based mortality 
improvement rate model (which we abbreviate as - MIRCO) with a multiplicative bilinear 
parametric predictor structure xt x t    to the UK male mortality experience, ages 1-89, for 

periods 1961 to 0t . We recall from Haberman and Renshaw (2013) that this approach targets 

the mortality improvement rate (MIR) which is defined the ratio of the period one-step mortality 
improvements to the average of the two adjacent mortality rates.  
 
The fitted period component t  is extrapolated by treating it as an ARI(1,0) process.  

Retirement age is set at age 65, and we have focused on individuals aged 0 65x   in year 0t  and 

define 065d x  .  For each choice of focus point  0 0,x t  (and fitted MIRCO model), the 

associated ARI(1,0) process has been simulated 1,000 times to generate the reported sequences 

of median period life expectancies  
0 0x d ke t d k
    ; 0,1,2,...,24k  .  All simulations are 

subject to topping out to age 110 (by a hyperbolic function with the setting of 1q   at age 110). 
 

In the present exercise, we have generated 16 such sequences by cross-classifying the periods 

0 2009,2004,1999,1994t   with ages 0 60,55,50,45x  .  Figures 1-2 display the values of 

 
0 0x d ke t d k
     as a function of k for these 4 different generations. Thus, in the first panel of 

Figure 1 which relates to 0t  = 2009, we present curves for 0x  = 60 (and hence d=5) and k = 0, 

1, 2, 3…and 0x  = 55, 50 and 45. The other panels relate to 0t  = 2004, 1999 and 1994. Similarly, 
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the first panel of Figure 2 relates to 0x = 60 (and hence d=5) and we present curves for 0t  = 

1994 and k = 0, 1, 2, 3... and 0t  = 1999, 2004 and 2009. The other panels relate to 0x  = 55, 50 

and 45. The corresponding values have been listed in Table 1. 
 
If we set e*=15 (corresponding to some contractual value fixed at policy issue, say) and we 
follow the generation aged 45 in 1994, the prediction for  Δ based on the then available mortality 
statistics are 6 in 1994, 6 in 1999, 7 in 2004, and 8 in 2009. Alternatively, the payments could 
still start at age 65 but at a reduced level estimated to 0.840=15/17.857 in 1994, 
0.837=15/17.919 in 1999, 0.802=15/18.707 in 2004, and 0.788=15/19.047 in 2009. With 
e*=17, the predicted Δ would have been 2 in 1994, 2 in 1999, 4 in 2004, and 4 in 2009. Of 
course, more accurate computations are possible, expressing Δ in months or weeks, if needed. 
 
 
 

 

 period period 

 

 period period 

Fig 1. Simulated median deferred period life expectancy projections, focus ages 
60(−5)45, based on retirement age 65.  UK male mortality 1961−2009(−5)1994 

experience (by panel), ages 1−89. MIRCO joint modelling with multiplicative bi−linear 
age−period parametric structure. ARI(1,0) time series. 
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  period period 

 

  period period 

Fig 2. Simulated median deferred period life expectancy projections, focus ages 60(−5)45 (by 
panel), based on retirement age 65.  UK male mortality 1961− 
2009(−5)1994 experience, ages 1−89. MIRCO joint modelling with multiplicative bi−linear 
age−period parametric structure. ARI(1,0) time series. 
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0 60,  5x d   
k   year 0 09t    0 04t    0 99t    0 94t   
0   2014 19.047 17.653 16.231 15.397 
1   2015 18.499 17.159 15.704 14.857 
2   2016 17.925 16.596 15.127 14.288 
3   2017 17.403 16.076 14.626 13.764 
4   2018 16.842 15.538 14.116 13.232 
5   2019 16.377 15.077 13.550 12.774 
6   2020 15.824 14.514 13.063 12.257 
7   2021 15.342 14.070 12.620 11.812 
8   2022 14.781 13.546 12.098 11.313 
9   2023 14.310 13.073 11.644 10.895 
10  2024 13.807 12.652 11.244 10.393 
11  2025 13.306 12.167 10.774  9.994 
12  2026 12.788 11.708 10.348  9.573 
13  2027 12.251 11.240  9.916  9.150 
14  2028 11.836 10.862  9.593  8.823 
15  2029 11.317 10.378  9.176  8.428 
16  2030 10.879  9.959  8.806  8.033 
17  2031 10.376  9.525  8.400  7.709 
18  2032  9.908  9.099  8.107  7.389 
19  2033  9.528  8.715  7.782  7.113 
20  2034  9.018  8.260  7.432  6.804 
21  2035  8.755  8.003  7.115  6.570 
22  2036  8.211  7.517  6.807  6.296 
23  2037  7.855  7.181  6.557  6.107 
24  2038  7.375  6.905  6.225  5.891 

0 55,  10x d   

k   year 0 09t    0 04t    0 99t    0 94t   
0   2019 20.009 18.707 17.035 16.218 
1   2020 19.404 18.101 16.490 15.644 
2   2021 18.810 17.539 15.927 15.077 
3   2022 18.238 17.008 15.391 14.563 
4   2023 17.728 16.492 14.884 14.095 
5   2024 17.139 15.984 14.398 13.519 
6   2025 16.529 15.385 13.804 12.988 
7   2026 15.984 14.900 13.347 12.539 
8   2027 15.411 14.390 12.866 12.065 
9   2028 14.827 13.837 12.361 11.564 
10  2029 14.286 13.335 11.915 11.137 
11  2030 13.780 12.852 11.465 10.678 
12  2031 13.242 12.374 11.015 10.298 
13  2032 12.705 11.878 10.625  9.894 
14  2033 12.217 11.386 10.178  9.483 
15  2034 11.668 10.891  9.762  9.107 
16  2035 11.266 10.496  9.321  8.729 
17  2036 10.681  9.967  8.927  8.367 
18  2037 10.233  9.541  8.557  8.043 
19  2038  9.728  9.190  8.165  7.738 
20  2039  9.283  8.819  7.749  7.404 
21  2040  8.727  8.481  7.513  7.080 
22  2041  8.312  7.876  7.092  6.802 
23  2042  7.813  7.591  6.749  6.509 
24  2043  7.376  7.220  6.476  6.200 

0 50,  15x d   

k   year 0 09t    0 04t    0 99t    0 94t   
0   2024 20.751 19.512 17.919 16.983 
1   2025 20.124 18.900 17.318 16.437 
2   2026 19.441 18.261 16.706 15.829 
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3   2027 18.903 17.784 16.252 15.384 
4   2028 18.265 17.174 15.691 14.824 
5   2029 17.672 16.608 15.170 14.326 
6   2030 17.046 15.995 14.597 13.740 
7   2031 16.415 15.421 14.051 13.255 
8   2032 15.793 14.827 13.548 12.736 
9   2033 15.318 14.362 13.123 12.355 
10  2034 14.707 13.786 12.622 11.885 
11  2035 14.250 13.340 12.137 11.453 
12  2036 13.554 12.690 11.610 10.956 
13  2037 13.014 12.167 11.137 10.514 
14  2038 12.474 11.754 10.698 10.144 
15  2039 11.909 11.235 10.150  9.661 
16  2040 11.387 10.883  9.880  9.332 
17  2041 10.859 10.215  9.367  8.921 
18  2042 10.295  9.813  8.920  8.510 
19  2043  9.846  9.410  8.595  8.166 
20  2044  9.470  8.894  8.240  7.789 
21  2045  8.953  8.424  7.922  7.521 
22  2046  8.465  7.916  7.425  7.079 
23  2047  7.959  7.440  7.207  6.784 
24  2048  7.609  7.188  6.788  6.564 
 

0 45,  20x d   

k   year 0 09t    0 04t    0 99t    0 94t   
0   2029 21.217 20.098 18.612 17.857 
1   2030 20.531 19.423 17.971 17.209 
2   2031 19.914 18.856 17.420 16.720 
3   2032 19.196 18.165 16.821 16.115 
4   2033 18.683 17.656 16.339 15.673 
5   2034 17.956 16.963 15.715 15.084 
6   2035 17.380 16.400 15.123 14.543 
7   2036 16.664 15.717 14.540 13.988 
8   2037 16.130 15.204 14.065 13.555 
9   2038 15.530 14.714 13.554 13.105 
10  2039 14.916 14.144 12.961 12.572 
11  2040 14.275 13.647 12.535 12.104 
12  2041 13.686 12.939 11.955 11.615 
13  2042 13.112 12.499 11.482 11.178 
14  2043 12.499 11.920 10.964 10.650 
15  2044 12.044 11.352 10.526 10.203 
16  2045 11.475 10.826 10.114  9.836 
17  2046 10.936 10.281  9.582  9.357 
18  2047 10.436  9.806  9.286  9.010 
19  2048  9.940  9.381  8.737  8.611 
20  2049  9.374  8.793  8.212  8.171 
21  2050  8.903  8.456  7.917  8.026 
22  2051  8.379  8.020  7.441  7.417 
23  2052  7.851  7.671  6.939  7.096 
24  2053  7.392  7.093  6.530  6.711 
 

Table 1. Median period life expectancies  
0 0x d ke t d k
    , 0,1,2,...,24k  , by cross-

classifying the periods 0 2009,2004,1999,1994t   with ages 0 60,55,50,45x  . Notice 

specifically in this tabulation that the second column headed year matches with the life 
expectancy entries in the third column only.  It is necessary to deduct an additional 5 years to 
match this column up for each move to the right through columns 4, 5 and 6.   
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4. Discussion 
 
In this paper, we have examined indexed life annuities, where the length of the deferment period 
is subject to re-evaluation, as opposed to periodic payments scaled by the ratio of the proportion 
of the population still alive compared to some reference forecast as in Denuit, Haberman and 
Renshaw (2011). Considering a deferred life annuity bought at age 0x  with payments starting 

at age 0x +d, we let d vary according to actual longevity improvements: if longevity increases 

in the future, then payments start at age 0x +d +Δ instead of 0x +d. In the Lee-Carter case, Δ is 

the time needed by the time index to reach a specified barrier. The systematic risk is thus passed 
to the annuitants. Considering the difficulties that have been experienced in issuing longevity-
based financial instruments, this might well be an efficient alternative to help insurers to write 
annuity business. 
 
The approach developed here applies to life annuities bought at young ages starting at 
retirement as well as to contracts bought at retirement with payments starting at more advanced 
ages, typically 80, 85 or even 90, as a protection against individual longevity risk. 
 
The annuity provider can inform the policyholder on a regular basis about the adjustment to the 
length of the deferment period so that the annuitant is able to adapt his or her consumption level 
during the deferred period.  
 
Of course, alternative indexing mechanisms can be considered as any longevity index can be 
used to adapt the length of the deferment period. We could play with the proportion of 
policyholders still alive at the end of the deferment period and delay the payments until this 
proportion is in line with a conventional value, for instance. However, we believe that this kind 
of rule is less transparent than indexing based on the period remaining life expectancy of the 
general population, a concept which seems natural to most individuals. 
 
The indexing mechanisms that are discussed here and in Denuit, Renshaw and Haberman 
(2011) are also relevant for other financial products subject to substantial longevity risk, such 
as reverse mortgages, for instance. The adaptation of the length of the deferment period is 
similar to the problem of linking retirement age to actual longevity in public pension systems. 
 
Of course, the question about the demand for such new annuity products remains. More 
specifically, what are the premium discounts required by policyholders to sacrifice some 
certainty in their annuity payments? Policyholders valuing income stability might well continue 
to take the highly loaded conventional delayed life annuity contracts whereas others may 
consider that some decrease in the premium compensates for future income variability. A 
careful product design is certainly needed to make the new products acceptable to 
policyholders. In that respect, the restrictions placed on the maximal delay (and on the 
variations of the periodic payments in the case where both indexing mechanisms are combined) 
are likely to play a central role. 
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