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Abstract

In this paper we deal with contribution rate and asset allocation strategies in
a pre-retirement accumulation phase. We consider a single cohort of workers
and investigate a retirement plan of a defined benefit type in which an accu-
mulated fund is converted into a life annuity. Due to the random evolution of
a mortality intensity, the future price of an annuity, and as a result, the liabil-
ity of the fund, is uncertain. A manager has control over a contribution rate
and an investment strategy and is concerned with covering the random claim.
We consider two mean-variance optimization problems, which are quadratic
control problems with an additional constrain on the expected value of the
terminal surplus of the fund. This functional objectives can be related to the
well-established financial theory of claim hedging. The financial market con-
sists of a risk-free asset with a constant force of interest and a risky asset
which price is driven by a Lévy noise, whereas the evolution of a mortality in-
tensity is described by a stochastic differential equation driven by a Brownian
motion. Techniques from the stochastic control theory are applied in order to
find optimal strategies.

Keywords: Lévy diffusion financial market, stochastic mortality intensity pro-
cess, Hamilton-Jacobi-Bellman equation, Feynman-Kac representation.

JEL: G11, G23, C61.
IM10, IE43, IB13.
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1 Introduction

Pension funds have gained a lot of interest in recent years since they become large
investors in financial markets and their role in providing retirement benefits sub-
stantially increased.

In this paper we investigate a retirement plan of a defined benefit type in contin-
uous time economy. We deal with a single cohort of workers, who enter the plan and
retire at the same age, and assume that the cohort is stable across an accumulation
phase, which means that every member who withdraws is replaced by another at
the same age. At the time of retirement an accumulated fund is used to purchase
life annuities whose amounts are related to the final salaries of the participants. The
total value of the salaries is known in advance and instead of dealing with the risk
of labour income we focus on the risk of annuity price.

We extend the existing results from the insurance literature. We consider a finan-
cial market with an asset driven by a Lévy process and we assume that a mortality
intensity follows a diffusion process. The common, in the pension fund control, mean-
square error criterion is replaced by the mean-variance criterion. These extensions
are not only theoretically interesting, but are also of great practical relevance. To
best our knowledge the optimal control problem in this framework is taken up for
the first time. The main goal of this paper is to derive the optimal investment strat-
egy and the optimal supplementary cost in our new model. The contribution from
the mathematical point, is to find classical solutions of the corresponding Hamilton-
Jacobi-Bellman equations.

One of the most important characteristic of financial assets returns is their high
variability, resulting from the heavy-tailed nature of empirical returns and observ-
able large sudden movements in stock prices. The so-called six-standard deviation
market moves are repeatedly seen in the financial markets around the world. This
properties rule out the possibility that the marginal distribution of an asset return is
Gaussian. Moreover, all models of the stock price dynamics which generate continu-
ous sample paths are also inadequate. It is now well-known, see chapters 1 and 7 in
Cont, Tankov (2005), that Lévy processes can easily reproduce heavy tails, skewness
and other distributional properties of asset returns, and, what is very important as
well, can generate discontinuities in the price dynamics. As Lévy processes generate
more realistic sample paths of stock prices, one should replace, in the celebrated
Black-Scholes model, a Gaussian noise by a Lévy noise. This extension is worth the
effort, as a "good model" of investment returns is a crucial factor when constructing
strategies for an accumulation phase of a retirement plan.

In 1980’s and 1990’s the mortality improvements turned out to be much greater
than forecasts and the unexpected decrease in mortality rates effected the solvency
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of pension providers. Over the last 20 years the mortality improvements varied sub-
stantially and mortality rates were evolving in a random fashion, see Cairns et al
(2004b). One can notice the general trend but there is still an unpredictable factor
left which cannot be handled by any deterministic model. This is the reason why
probabilistic models of the mortality evolution have appeared in the literature, see
Dahl (2004), Luciano, Vigna (2005), Schrager (2006), Ballotta, Haberman (2006).
We follow this probabilistic approach to mortality modelling and we consider the an-
nuity price as a random variable whose randomness arises due to the unpredictable
evolution of a mortality intensity. Clearly, the level of a mortality intensity is one
of the two important factors which influences the annuity price. The second factor,
which is the level of the interest rate, is investigated in the paper of Cairns et al
(2004a) in a framework of a defined contribution pension plan.

There are a lot of papers dealing with defined benefit pension plans, see for ex-
ample Haberman, Sung (1994), Haberman et al (2000), Cairns (2000), Chang et
al (2003), Haberman, Sung (2005). However, we are aware of only two in which a
pension liability is a random variable. In Josa-Fombellida, Rincón-Zapatero (2004)
an aggregate pension plan in infinite time is considered and benefits are modelled as
a geometric Brownian motion, which introduces another state variable in a control
problem. A similar optimization model is investigated in the recent paper of Ngwira,
Gerrard (2006), in which an asset return follows an exponential, jump-diffusion, Lévy
process with lognormally distributed jumps (the so-called Merton asset model). The
main contribution of this work is the analysis of the effect of a jump magnitude on
an asset allocation strategy.

A plan manager faces the task of accumulating enough funds to cover the price of
the required annuities. This problem can be viewed, from the point of mathematical
finance, as a hedging problem of a liability. More precisely, it is the hedging problem
in an incomplete financial market where there are two " risky assets", one of which
is tradeable, while the contingent claim is a function of the second, non-tradeable
instrument. This kind of problem, in a more general setting of correlated assets
and contingent claims, was introduced by Duffie, Richardson (1991) and Schweizer
(1992), and solved by applying martingale techniques and projection methods. Re-
cently, this issue has been taken up in Hipp, Taksar (2005) and stochastic control
techniques are applied to minimize a hedging error in p−norm. Explicit solutions
to Hamilton-Jacobi-Bellman equations are only derived in the cases of constant li-
abilities. In Kohlmann, Peisl (2000) techniques of Backward Stochastic Differential
Equations are applied to solve the problem. The explicit result is given for some
simple case.

All above papers deal with the most common criterion of minimization of a
mean-square error, while our objective is to minimize variance given the fixed ex-
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pected value of the terminal surplus. A mean-variance problem was introduced in
Markowitz (1952) and this work has laid down foundations of the modern financial
theory. In the financial literature the mean-variance objective is usually applied to
solve portfolio selection problems for self-financing wealth processes. We refer the
reader to Zhou, Li (2000), where the original mean-variance problem is embedded
into an auxiliary problem, which is then solved by stochastic control methods, as well
as to Bielecki et al (2005) and Lim (2004), where techniques of Backward Stochas-
tic Differential Equations are used in the presence of random market coefficients.
Recently, in Bielecki et al (2004) the mean-variance approach is applied to hedge
general claims. Some results, based on orthogonal projection methods, are derived
for defaultable claims. We would like to point out that in all mentioned papers,
except in Ngwira, Gerrard (2006), the diffusion dynamics of a risky asset’s price is
assumed.

This paper is structured as follows. In section 2 we introduce a financial market,
a stochastic mortality intensity process, a retirement plan and its liability. Our prob-
lems are formulated in section 3. A mean-variance optimization problem is solved in
section 4, whereas a generalized mean-variance problem with a running cost of sup-
plementary contribution rates is considered in section 5. We also investigate some
numerical examples. Summarizing comments are stated in section 6.

2 The model

Let us consider a probability space (Ω,F ,P) with a filtration F = (Ft)0≤t≤T ′ for some
finite T ′ which denotes the maximum future life-time of the plan’s participants. The
filtration satisfies the usual hypotheses of completeness (F0 contains all sets of P-
measure zero) and right continuity (Ft = Ft+). The filtration F consists of two
subfiltrations: we set F = FF ∨FM , where FF contains information about the finan-
cial market and FM contains information about the mortality intensity. We assume
that the subfiltrations FF and FM are independent, which means that the dynamics
of the price of a risky asset is independent of a mortality intensity. The measure P
is the real-world, objective probability measure. All expected values are taken with
respect to measure P and the conditional expected value EP[·|X(t) = x, λ(t) = λ] is
denoted as Et,x,λ[·]. The class of C1,2,2([0, T )× R× (0,∞)) ∩ C([0, T ]× R× (0,∞))

functions is denoted simply by C.
In the following subsections we introduce a financial market, a stochastic mor-

tality intensity process and a defined benefit plan.
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2.1 The financial market

We consider a Lévy diffusion version of a Black-Scholes financial market. The price
of a risk-free asset S0 := (S0(t), 0 ≤ t ≤ T ′) is described by the ordinary differential
equation

dS0(t)

S0(t)
= rdt, S0(0) = 1, (2.1)

where r denotes a rate of interest. The second tradeable financial instrument in the
market is a risky stock and the dynamics of its price S := (S(t), 0 ≤ t ≤ T ′) are
given by the stochastic differential equation

dS(t)

S(t−)
= µdt+ ξdL(t), S(0) = 1, (2.2)

where µ and ξ denote a drift and a volatility, and L := (L(t), 0 ≤ t ≤ T ′) denotes
a zero-mean Lévy process (a process with independent and stationary increments),
FF -adapted with càdlàg sample paths (paths which are continuous on the right and
have limits on the left).

The zero-mean Lévy process L is assumed to satisfy the following Lévy-Itô de-
composition, see chapter 2.4 in Applebaum (2004),

L(t) = σW (t) +

∫
(0,t]

∫
R
z
(
M(ds× dz)− ν(dz)ds

)
, (2.3)

where W := (W (t), 0 ≤ t ≤ T ′) is a Brownian motion and M((s, t] × A) = #{s <
u ≤ t : (L(u)−L(u−)) ∈ A} is a Poisson random measure, independent of W , with
a deterministic, time-homogeneous intensity measure ν(dz)dt. The Poisson random
measure counts the number of jumps of a particular size in the given time inter-
val. The measure ν is called a Lévy measure and verifies

∫
R(z2 ∧ 1)ν(dz) <∞. Let

us recall that the compensated measure M̃((0, t] × A) = M((0, t] × A) − ν(A)t is
a martingale-valued measure, that is M̃ := (M̃((0, t] × A), 0 ≤ t ≤ T ) is a FF -
martingale for all all Borel sets A ∈ B(R− {0}). We refer the reader to Applebaum
(2004) for mathematical details concerning Lévy processes and Poisson random mea-
sures.

We make the following assumptions concerning the coefficients and the intensity
measure:

(A1) r, µ, σ are non-negative constants and r < µ,

(A2) we set ξ ≡ 1, this is no loss of generality as the process ξL has also independent
and stationary increments and satisfies the Lévy-Itô decomposition,

(A3) ν is a Lévy measure on (−1,∞), such that ν({0}) = 0 and
∫

z≥1
z4ν(dz) <∞.
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The condition (A1) is not necessary from the mathematical point, but it is reason-
able from the economic point. It simplifies the interpretation of the derived optimal
strategies. The moment condition in (A3) ensures that supt∈[0,T ′] E[|L(t)|4] <∞.

The stochastic differential equation (2.2) has a unique, positive and almost surely
finite solution, given explicitly by Doléans-Dade exponential

S(t) = exp
{(
µ− 1

2
σ2 +

∫
z>−1

(log(1 + z)− z)ν(dz)
)
t

+σW (t) +

∫
(0,t]

∫
z>−1

log(1 + z)M̃(ds× dz)
}

= exp
{
µEt+ σW (t) +

∫
(0,t]

∫
R
zM̃E(ds× dz)

}
(2.4)

which is an exponential Lévy process with νE(A) = ν({z : log(1 + z) ∈ A}), see
propositions 8.21 and 8.22 in Cont, Tankov (2005). The measure νE should satisfy
the equivalent condition (A3’):

(A3’) νE is a Lévy measure on R, such that νE({0}) = 0 and
∫

z≥1
e4zνE(dz) <∞.

There is one to one correspondence between the measures and stock price models
(2.2) and (2.4). Notice that our financial model is general enough to include not
only jump-diffusion processes, like Merton or Kou models, but we can also work
with infinite activity Lévy processes. We point out that in chapter 3 in Kyprianou
et al (2005) the intensity measures νE for Variance Gamma and CGMY processes
are estimated for five world index markets and in each case the estimated measure
satisfies (A3’). We refer the reader to Cont, Tankov (2005) and Kyprianou et al
(2005) in which different aspects of financial modelling with Lévy diffusion processes
are investigated.

2.2 The stochastic mortality intensity

We consider the mortality intensity, Λ := (λ(t), 0 ≤ t ≤ T ′), as a stochastic process
with the dynamics given by the stochastic differential equation

dλ(t) = θ(t, λ(t))dt+ η(t, λ(t))dW̄ (t), λ(0) = λ, (2.5)

where W̄ := (W̄ (t), 0 ≤ t ≤ T ′) is an FM -adapted Brownian motion independent of
W . We assume that the process Λ is FM -adapted, which means that at each point of
time it is possible to estimate the "true" level of the mortality intensity and use this
estimate in the decision-making process. We adopt the notation that λ(t) denotes
the level of the mortality intensity in the considered cohort of participants t years
after they entered a plan.

We make the following assumptions concerning the mortality intensity process:
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(B1) θ : [0, T ′]× (0,∞) → R, η : [0, T ′]× (0,∞) → (0,∞) are continuous functions,
locally Lipschitz continuous in λ, uniformly in t,

(B2) there exists a sequence (En)n∈N of bounded domains with Ēn ⊆ (0,∞) and⋃
n≥1En = (0,∞), such that the functions θ(t, λ) and η(t, λ) are uniformly

Lipschitz continuous on [0, T ′]× Ēn,

(B3) P(∀s∈[t,T ′]λ(s) ∈ (0,∞)|λ(t) = λ) = 1 and for all starting points (t, λ) ∈
[0, T ′]× (0,∞).

The diffusion dynamics of the intensity seems to be very reasonable, as changes in
mortality occurs slowly and without sudden jumps. We would like to point out that
the mortality intensity models appearing in the literature, see Dahl (2004), Luciano,
Vigna (2005), Schrager (2006), Ballotta, Haberman (2006). satisfy (B1)-(B3) and
arise as the special case of (2.5).

Under the assumptions (B1) and (B3), for each starting point (t, λ) ∈ [0, T ′]×
(0,∞), the mortality intensity process is nonexplosive on [t, T ′] and there exists a
unique strong solution to the stochastic differential equation (2.5), such that the
mapping (t, λ, s) → λt,λ(s) is P-a.s. continuous, see Heath, Schweizer (2000) and
Becherer, Schweizer (2005). The assumption (B2), together with (A3)/(A3’), is
required in order to show the smoothness of the candidate value function and to
prove the optimality of the derived strategy.

2.3 The retirement plan and its random liability

During the accumulation phase [0, T ], where T < T ′ denotes the common time
of retirement of all participants, a sponsor contributes to the plan and the funds
are invested in the financial market (2.1)- (2.2). Let X(t) denote the value of the
accumulated fund at time t. The dynamics of the process Xπ,c := (Xπ,c(t), 0 ≤ t ≤
T ) are given by the stochastic differential equation

dXπ,c(t) = π(t)
(
µdt+ σdW (t) +

∫
z>−1

zM̃(dt× dz)
)

+
(
Xπ,c(t−)− π(t)

)
rdt+ c(t)dt, X(0) = x, (2.6)

where π(t) denotes the amount of the fund invested in the risky asset and c(t)

denotes the contribution rate at time t.
We assume that the market price of the annuity is calculated as the expected

present value of future payments discounted with the risk-free rate, conditioned on
the given level of the mortality intensity. The liability of the plan at time T is then
equal to

Da(λ) = DET,λ[

∫ T ′

T

e−r(s−T )e−
∫ s

T λ(u)duds], (2.7)
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where D denotes the aggregate promised amount and we ignore the residual proba-
bility of payments after T ′, which is set in our model to zero. Consider the function
a : [0, T ]× (0,∞) → (0,∞) defied as

a(t, λ) = Et,λ[a(λ(T ))]

= E[

∫ T ′

T

e−r(s−T )e−
∫ s

T λt,λ(u)duds], (2.8)

where the second equality follows from the Markov property of the mortality inten-
sity and the law of iterated expectations. We remark that Da(t, λ) is the expected
liability of the plan at time t ∈ [0, T ] given the level of the mortality intensity at that
time. Notice that the mapping (t, λ) 7→ a(t, λ) is continuous, and we can conclude,
based on the theorem 1 from Heath, Schweizer (2000), that a ∈ C is the unique
solution of the partial differential equation

∂a

∂t
(t, λ) + θ(t, λ)

∂a

∂λ
(t, λ) +

1

2
η2(t, λ)

∂2a

∂λ2
(t, λ) = 0, a(T, λ) = a(λ). (2.9)

Example 2.1. In the numerical example we consider a member who joins the plan
at the age of 45 and retires at the age of 65. We assume that the mortality intensity
follows an exponential Ornstein-Uhlenbeck process of the form

λ(t) = 0, 0025e0,08t+0,1Y (t), dY (t) = −0, 2Y (t) + dW̄ (t). (2.10)

An exponential Ornstein-Uhlenbeck process, as a process describing the evolution
of the mortality intensity over time, is applied for example in Ballotta, Haberman
(2006).

Below, in table 1, we give the prices of the annuity depending on the values of
the mortality intensity at time T = 20. The maximum future life-time is taken to
be 100 years, T ′ = 55, and the discount rate is set to r = 0, 05. The price of the
annuity calculated based on deterministic mortality intensity λ̄(t) = E[λ(t)] is equal
to 11,901.

It is rather clear that randomness of the mortality intensity should be taken
into account. The observed differences in the annuity prices can have a significant
impact on the aggregate liability of the plan. �

We assume that the contribution rate which funds the liability combines two
elements: a normal cost and a supplementary cost amortizing the unfunded liability.
Let F (t) denote a distribution function according to which the liability (2.7) is
accumulated, it denotes a percentage of the value of the benefit (2.7) accumulated
during the first t years. We need the following assumption

(C) F : [0, T ] → [0, 1] is absolutely continuous with respect to Lebesgue measure,
and its density f(t) is Lipschitz continuous on [0, T ].
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Table 1: Prices of the annuity

λ Pr(λ(20) ≤ λ) a(λ)

0,007 0,0002 12,2616
0,008 0,0028 12,1937
0,009 0,0216 12,1199
0,01 0,0878 12,0460
0,011 0,2265 11,9908
0,012 0,4212 11,9463
0,013 0,6211 11,8893
0,014 0,7817 11,8227
0,015 0,8879 11,7766
0,016 0,9478 11,7290
0,017 0,9777 11,6996
0,018 0,9911 11,6221
0,019 0,9967 11,6098
0,02 0,9988 11,5474
0,021 0,9996 11,5043

The normal cost and the actuarial liability can be defined as in Josa-Fombellida,
Rincón-Zapatero (2004)

NC(t, λ) = e−ρ(T−t)f(t)Et,λ[Da(λ(T ))], 0 ≤ t ≤ T, (2.11)

AL(t, λ) = e−ρ(T−t)F (t)Et,λ[Da(λ(T ))], 0 ≤ t ≤ T, (2.12)

where ρ is a plan’s valuation rate. The supplementary contribution rate can be a
control variable, to be determined, or can be set as

u(t, λ) = κ
(
AL(t, λ)−Xπ(t−)

)
, 0 < t ≤ T, (2.13)

which would reflect the spread method of the fund amortization, where κ is some
predefined constant and the control process (Xπ, 0 ≤ t ≤ T ) depends now only on
an investment strategy π.

3 Problem formulation

The aim of the manager is to manage the fund in order to cover the liabilityDa(λ(T ))

at time T . This problem can be viewed as a hedging problem. Clearly, the liability is
FM

T -measurable random variable and it is not attainable as it cannot be replicated
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by investing in the financial market (2.1)-(2.2). The question arises how to quantify
the risk of not covering the claim and how to minimize the chosen functional to
arrive at optimal controls. One of the well-established methods of hedging in in-
complete financial markets is a quadratic hedging which was introduced in Föllmer,
Sondermann (1986) in a martingale case and then extended in Schweizer (1996) with
the concept of a minimal variance martingale measure.

Let us first assume that the supplementary contribution rate is set according
to (2.13). Under the quadratic hedging approach the manager should construct the
investment portfolio in order to minimize the hedging error at maturity T in a mean
square sense

inf
π

E
[
Xπ(T )−Da(λ(T ))

]2
. (3.1)

Such an objective is quite reasonable as the main goal of any retirement plan should
be its safety and stability. However, more intuitive is to minimize the variance of
the surplus at maturity T

inf
π

Var
[
Xπ(T )−Da(λ(T ))

]
. (3.2)

In fact we would like to solve the problem in which the variance of the surplus is
minimized given the fixed expected value of the surplus. In this paper we deal with
the following constrained quadratic control problem{

infπ Var
[
Xπ(T )−Da(λ(T ))

]
E

[
Xπ(T )−Da(λ(T ))

]
= 0

(3.3)

We can also add the supplementary contribution rate into our optimization problem
and minimize the variance of the surplus along with the expected value of the squares
of future supplementary costs which leads to the generalized version of (3.3){

infπ,u E
[ ∫ T

0
u2(t)dt

]
+ αVar

[
Xπ,u(T )−Da(λ(T ))

]
E

[
Xπ,u(T )−Da(λ(T ))

]
= 0

, (3.4)

where α > 0 attaches a weight to the terminal variance with respect to the running
cost of contributions. Without difficulty we can equate the expected value of the
surplus in (3.3) and (3.4) to some constant K or just load the benefit D.

It is well-recognized that the goal of the pension manager should be to minimize
the solvency risk and the contribution risk. The common approach in the defined
benefit pension literature is to measure the risk by means of a quadratic objective,
see Haberman, Sung (1994), Haberman et al (2000), Cairns (2000), Chang et al
(2003), Josa-Fombellida, Rincón-Zapatero (2004), Haberman, Sung (2005), Ngwira,
Gerrard (2006). In all this papers the mean-square error objective is applied, whereas
we are interested in the mean-variance objective.
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4 Mean-variance optimization problem

In this section we solve the mean-variance hedging problem (3.3). The variance
optimization criterion can be handled by incorporating the equality constraint on
the expected value of the surplus into the objective function by using Lagrange
multiplier. Instead of dealing with (3.3) we can first solve the following stochastic
control problem

inf
π∈A

E0,x,λ
[(
Xπ(T )−Da(λ(T ))

)2 − β
(
Xπ(T )−Da(λ(T ))

)]
(4.1)

and then choose a Lagrange multiplier β such that the constraint on the expected
value of the terminal surplus is satisfied

E0,x,λ
[
X π̂,β(T )−Da(λ(T ))

]
= 0, (4.2)

where π̂ is the optimal strategy for (4.1).
Let us introduce the set of admissible strategies and two operators.

Definition 4.1. A strategy (π(t), 0 < t ≤ T ) is admissible, π ∈ A, if it satisfies the
following conditions:

1. π : (0, T ]× Ω → R is a predictable mapping with respect to filtration F,

2. E0,x,λ[
∫ T

0
π2(t)dt] <∞,

3. the stochastic differential equation (2.6) has a unique solution Xπ on [0, T ].

It is well-known that it is sufficient to consider only Markov strategies, see chapter 3
in Øksendal, Sulem (2005). We point out that for any π ∈ A the process Xπ, which
satisfies (2.6), is a square integrable semimartingale with cádlág sample paths, see
chapter 4.3.3 in Applebaum (2004).

Definition 4.2. The integro-differential operator LF is given by

Lπ
Fφ(t, x, λ) =

(
π(µ− r) + xr +NC(t, λ) + k(AL(t, λ)− x)

)∂φ
∂x

(t, x)

+
1

2
π2σ2∂

2φ

∂x2
(t, x)

+

∫
z>−1

(
φ(t, x+ πz)− φ(t, x)− πz

∂φ

∂x
(t, x)

)
ν(dz), (4.3)

whereas the differential operator LM is given by

LMφ(t, λ) = θ(t, λ)
∂φ

∂λ
(t, λ) +

1

2
η2(t, λ)

∂2φ

∂λ2
(t, λ). (4.4)

This operators are defined for all functions φ such that the partial derivatives and
the integral in (4.3) and (4.4) exist pointwise.
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Let us introduce the optimal value function for the problem (4.1)

V (t, x, λ) = inf
π∈A

Et,x,λ
[(
Xπ(T )−Da(λ(T ))

)2 − β
(
Xπ(T )−Da(λ(T ))

)]
, (4.5)

We can prove the following classical verification theorem.

Theorem 4.1. Let v ∈ C satisfy for every π ∈ A

0 ≤ ∂v

∂t
(t, x, λ) + Lπ

Fv(t, x, λ) + LMv(t, x, λ), (4.6)

for all (t, x, λ) ∈ [0, T )× R× (0,∞), with

v(T, x, λ) =
(
x−Da(λ)

)2 − β
(
x−Da(λ)

)
, ∀(x, λ) ∈ R× (0,∞). (4.7)

Assume also that for every π ∈ A

E0,x,λ
[ ∫ T

0

∫
z>−1

|v(t,Xπ(t−) + π(t)z, λ(t))− v(t,Xπ(t−), λ(t))|2ν(dz)dt
]
<∞,

(4.8)

E0,x,λ
[ ∫ T

0

∫
z>−1

|v(t,Xπ(t−) + π(t)z, λ(t))− v(t,Xπ(t−), λ(t))

−π(t)z
∂v

∂x
(t,Xπ(t−), λ(t))|ν(dz)dt

]
<∞, (4.9)

and

{v+(τ,Xπ(τ), λ(τ))}0<τ≤T is uniformly integrable for all F-stopping times τ.(4.10)

Then

v(t, x, λ) ≤ V (t, x, λ), ∀(t, x, λ) ∈ [0, T ]× R× (0,∞). (4.11)

Moreover, if there exists an admissible control π̂ ∈ A such that

0 =
∂v

∂t
(t, x, λ) + Lπ̂

Fv(t, x, λ) + LMv(t, x, λ) (4.12)

holds for all (t, x, λ) ∈ [0, T )× R× (0,∞), and

{v(τ,X π̂(τ), λ(τ))}0<τ≤T is uniformly integrable for all F-stopping times τ, (4.13)

then

v(t, x, λ) = V (t, x, λ), ∀(t, x, λ) ∈ [0, T ]× R× (0,∞), (4.14)

and π̂ is the optimal strategy for the problem (4.1).
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Proof:
For each (t, x, λ) ∈ [0, T )×R×(0,∞) define a sequence of stopping times tn = inf{s ∈
(t, T ]; |Xπ(s) − x| + |λ(s) − λ| > n}, and choose ε such that 0 < ε < T − t. Then
apply Itô formula for semimartingales, see theorem 4.4.7 in Applebaum (2004), to the
function v on the time interval [t, tn∧ (T − ε)]. The expected values of the stochastic
integrals with respect to the Brownian motion and the compensated Poisson measure
are equal to zero due to the localizing sequence and the condition (4.8) The next steps
are rather standard and we refer the reader to theorem 3.1 in Øksendal, Sulem (2005)
for details. Taking the limit n → ∞, ε → 0, the inequality (4.11) and the equality
(4.14) are established with Fatou’s lemma and Lebesgue’s dominated convergence
theorem. �

We point out that our localization procedure is crucial as we can omit some
of the conditions stated in theorem 3.1 in Øksendal, Sulem (2005). Without this
localization procedure it would be hard, and would require stronger assumptions, to
check the general conditions of the verification theorem and verify that our solution
is optimal.

As our optimization problem (4.1) is quadratic it is natural to try to find a
solution in the form v(t, x, λ) = A(t, λ)x2 + B(t, λ)x + C(t, λ). However, we would
like to point out that finding the solution in this form seems to be a novelty in the
stochastic control theory, see also Delong, Gerrard (2007). With this choice of the
value function the optimal strategy π̂ which minimizes the right hand side of (4.6)
is given by

π̂(t, x, λ) = −δ̄
(
x+

B(t, λ)

2A(t, λ)

)
, δ̄ =

µ− r

σ2 +
∫

z>−1
z2ν(dz)

. (4.15)

Substituting (4.15) into (4.12) and collecting the terms we arrive at three partial
differential equations{

0 = ∂A
∂t

(t, λ) + LMA(t, λ) + (2r − 2κ− δ)A(t, λ),

A(T, λ) = 1,
(4.16)

0 = ∂B
∂t

(t, λ) + LMB(t, λ) + (r − κ− δ)B(t, λ)

+2A(t, λ)(NC(t, λ) + κAL(t, λ)),

B(T, λ) = −β − 2Da(λ),

(4.17)

{
0 = ∂C

∂t
(t, λ) + LMC(t, λ) +B(t, λ)(NC(t, λ) + κAL(t, λ))− B2(t,λ)

4A(t,λ)
δ,

C(T, λ) = D2a2(λ) + βDa(λ),
(4.18)

where δ = δ̄(µ− r).
A solution to (4.16) can be stated explicitly by noticing that the time-dependent

function of the form

A(t) = e(2r−2κ−δ)(T−t) (4.19)
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satisfies (4.16). As far as the next two partial differential equations are concerned
we can prove the following lemma.

Lemma 4.1. There exist unique, uniformly bounded solutions in class C to the
partial differential equations (4.17) and (4.18). In particular, the unique solution to
(4.17) satisfies the Feynmam-Kac formula

B(t, λ) = Et,λ
[
−

(
β + 2Da(λ(T ))

)
e(r−κ−δ)(T−t)

+

∫ T

t

2A(s)
(
NC(s, λ(s)) + κAL(s, λ(s))

)
e(r−κ−δ)(s−t)ds

]
. (4.20)

Proof:
We follow the proof of proposition 2.3 in Becherer, Schweizer (2005). Choose ε > 0

and consider the partial differential equation (4.17) on the time interval [0, T − ε].
Notice that the functions NC and AL are uniformly Hölder continuous on compact
subsets of [0, T − ε] × Ēn, due to the assumption (C) and the smoothness of the
function a. Applying Lebesgue’s dominated convergence theorem one can easily show
that the mapping (t, λ) 7→ B(t, λ), defined in (4.20), is continuous. Based on the
theorem 1 in Heath, Schweizer (2000) we can conclude that the function

B(t, λ) = Et,λ
[
B(T − ε, λ(T − ε))e(r−κ−δ)(T−ε−t)

+

∫ T−ε

t

2A(s)
(
NC(s, λ(s)) + κAL(s, λ(s))

)
e(r−κ−δ)(s−t)ds

]
,(4.21)

is the unique classical solution to the equation (4.17) on the time interval [0, T − ε].
As ε is arbitrary, the existence of the classical solution B on [0, T ]× (0,∞) follows.
The uniform boundness is obvious.

The result concerning the partial differential equation (4.18) is proved analo-
gously. �

By substituting (2.11), (2.12), (4.19), applying Fubini’s theorem, the Markov
property of the mortality intensity and the law of iterated expectations we can
arrive at

B(t, λ) = −βe(r−κ−δ)(T−t) +
(
− 2e(r−κ−δ)(T−t) + 2e(r−κ−ρ)T+(r−κ−δ)(T−t)

×
∫ T

t

e(κ+ρ−r)s
(
f(s) + κF (s)

)
ds

)
Et,λ[Da(λ(T ))]. (4.22)
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Moreover, integration by parts∫ T

t

e(κ+ρ−r)s(f(s) + κF (s))ds

= e(κ+ρ−r)T − e(κ+ρ−r)tF (t)− (ρ− r)

∫ T

t

e(κ+ρ−r)sF (s)ds

=
κ

κ+ ρ− r
(e(κ+ρ−r)T − e(κ+ρ−r)tF (t))

+
ρ− r

κ+ ρ− r

∫ T

t

e(κ+ρ−r)sf(s)ds, (4.23)

yields

B(t, λ) = −βe(r−κ−δ)(T−t) − 2e(r−κ−δ)(T−t)
(
e(r−κ−ρ)(T−t)F (t)

+(ρ− r)e(r−κ−ρ)T

∫ T

t

e(k+ρ−r)sF (s)ds
)
Et,λ[Da(λ(T ))]

= −βe(r−κ−δ)(T−t) − 2e(r−κ−δ)(T−t)
( ρ− r

κ+ ρ− r
+

κ

κ+ ρ− r
e(r−κ−ρ)(T−t)F (t)

− ρ− r

κ+ ρ− r
e(r−κ−ρ)T

∫ T

t

e(κ+ρ−r)sf(s)ds
)
Et,λ[Da(λ(T ))]. (4.24)

Notice that B is non-positive in the case of ρ ≥ r and β ≥ 0. We would like to point
out that the choice of the plan’s valuation rate ρ ≥ r is very reasonable.

Let us now investigate the fund process X π̂ under the optimal strategy. Its dy-
namics are given by the stochastic differential equation

dX π̂(t) =
{
− δ

(
X π̂(t−) +

B(t, λ(t))

2A(t)

)
+X π̂(t−)rdt

+NC(t, λ(t)) + κAL(t, λ(t))− κX π̂(t−)
}
dt

−δ̄
(
X π̂(t−) +

B(t, λ(t))

2A(t)

)(
σdW (t) +

∫
z>−1

zM̃(dt× dz)
)
, (4.25)

with the initial condition X(0) = x. We can prove the following lemma.

Lemma 4.2. The stochastic differential equation (4.25), given the initial condi-
tion X(0) = x ∈ R, has a unique solution on [0, T ] in the space of semimartin-
gales processes with cádlág sample paths. This solution has finite fourth moment
supt∈[0,T ] E0,x,λ[|X π̂(t)|4] <∞.

Proof:
The existence and uniqueness follow from the general theory of stochastic differ-
ential equations driven by discontinuous semimartingales in the case of functional
Lipschitz coefficients, see theorem V.7 in Protter (2005). To arrive at the second
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part of the lemma, one should define the sequence of stopping times τm = inf{s ∈
(0, T ], |X π̂(s)− x| > m} and show that

E0,x,λ
[
|X π̂(t)|41{τm > t}

]
≤ K

(
1 +

∫ t

0

E0,x,λ
[
|X π̂(s)|41{τm > s}

]
ds

)
, (4.26)

for arbitrary (t, x, λ) ∈ [0, T ]× R× (0,∞) and some constant K <∞. This can be
obtained by applying an estimate of moments of stochastic integrals of predictable
processes with respect to Lévy processes, see Protter (2005). The result follows from
Gromwell inequality and Fatou’s lemma by taking the limit as m→∞. �

We proceed now to find the value of the Lagrange multiplier. The Itô differential
(4.25) can be rewritten in the integral form

X π̂(t) = x+

∫ t

0

{
− δ

(
X π̂(s−) +

B(s, λ(s))

2A(s)

)
+X π̂(s−)r

+NC(s, λ(s)) + κAL(s, λ(s))− κX π̂(s−)
}
ds

−
∫ t

0

δ̄
(
X π̂(s−) +

B(s, λ(s))

2A(s)

)(
σdW (s) +

∫
z>−1

zM̃(ds× dz)
)
.(4.27)

Taking the expected value on both sides of (4.27) and applying Fubini’s theorem we
arrive at

ϕ(t) = x+

∫ t

0

{
− δ

(
ϕ(s−) +

B(s)

2A(s)

)
+ rϕ(s−)

+NC(s) + κAL(s)− κϕ(s−)
}
ds, (4.28)

where we define for 0 ≤ s ≤ T

ϕ(s) = E0,x,λ[X π̂(s)], (4.29)

NC(s) = e−ρ(T−s)f(s)E0,λ[Da(λ(T ))], (4.30)

AL(s) = e−ρ(T−s)F (s)E0,λ[Da(λ(T ))], (4.31)

and

B(s) = −βe(r−κ−δ)(T−s) +
(
− 2e(r−κ−δ)(T−s)

+2e(r−κ−ρ)T+(r−κ−δ)(T−s)

∫ T

s

e(κ+ρ−r)u
(
f(u) + κF (u)

)
du

)
E0,λ[Da(λ(T ))].(4.32)

We point out that the expected values of the stochastic integrals in (4.27) are indeed
equal to zero due to the square integrability of the process X π̂ (lemma 4.2) and the
P-a.s. uniform boundness of B(s, λ(s))/2A(s), whereas (4.30)-(4.32) arise due to the
Markov property and the law of iterated expectations.

It is easy to show that the function ϕ satisfying (4.28) must be continuous and
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differentiable. The integral equation (4.28) can be transformed back into the ordinary
differential equation

dϕ

dt
(t) =

(
r − δ − κ

)
ϕ(t)− δ

B(t)

2A(t)
+NC(t) + κAL(t), ϕ(0) = x, (4.33)

which can be solved resulting in

ϕ(T ) = xe(r−δ−κ)T +

∫ T

0

(
− δ

B(t)

2A(t)
+NC(t) + κAL(t)

)
e(r−δ−κ)(T−t)dt. (4.34)

It is left to find the value of β such that the constraint ϕ(T ) = E0,λ[Da(λ(T ))] is
satisfied. With a little algebra we arrive at the value of the Lagrange multiplier

β =
2e(r−κ)T

eδT − 1

(
(ρ− r)e−ρT

∫ T

0

e(ρ−r+κ)sF (s)dsE0,λ[Da(λ(T ))]− x

)
=

2e(r−κ)T

eδT − 1

(
ρ− r

κ+ ρ− r

(
e−(r−κ)T − e−ρT

∫ T

0

e(ρ−r+κ)sf(s)ds
)
E0,λ[Da(λ(T ))]− x

)
,(4.35)

where the similar identity to (4.23) is applied. Let us notice that

β ≥ 2e(r−κ)T

eδT − 1

(
(ρ− r)e−ρT

∫ T

0

e(ρ−r)sF (s)dsE0,λ[Da(λ(T ))]− x

)
=

2e−κT

eδT − 1

(
E0,λ[Da(λ(T ))]−

∫ T

0

er(T−s)NC(s)ds− xerT

)
, (4.36)

provided ρ ≥ r. Moreover, in the case of κ = 0 we have that

β =
2

eδT − 1

(
E0,λ[Da(λ(T ))]−

∫ T

0

er(T−s)NC(s)ds− xerT

)
. (4.37)

It is reasonable to assume that the plan’s valuation rate ρ would be chosen, such that
the term in the bracket of (4.37) would be positive. Otherwise, the future contribu-
tions (normal costs) invested in the bank account would be sufficient, on average,
to cover the liability. The rate ρ should be set to reflect the plan manager’s expec-
tations concerning higher returns in the financial market and the future inflow of
supplementary contributions. In this case, the Lagrange multiplier would be positive
due to (4.36).

Below we state the theorem summarizing our results.

Theorem 4.2. The investment strategy given by

π̂(t) = −δ̄
(
X π̂(t−) +

B(t, λ(t))

2A(t)

)
, δ̄ =

µ− r

σ2 +
∫

z>−1
z2ν(dz)

, (4.38)

is the optimal investment strategy for the mean-variance problem (3.3), and the
minimum variance of the surplus at time T is equal to A(0)x2 +B(0, λ)x+C(0, λ).
The functions A, B, C and the constant β are given by (4.16)-(4.18), (4,35), whereas
X π̂ is the fund process under the optimal strategy, evolving according to (4.27).
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Proof:
The investment strategy (4.38) is admissible, as it is a square integrable, predictable
process, such that the optimal fund processX π̂ is unique, see lemma 4.2. Our solution
of the Hamilton-Jacobi-Bellman equation, in the form of A(t)x2 +B(t, λ)x+C(t, λ),
is smooth as required, see lemma 4.1. The conditions (4.6), (4.7) and (4.12) are
clearly satisfied, by the method of constructing the solution, and (4.15) is indeed
the minimizer of the quadratic function in π. Finiteness of the fourth moment of
X π̂, established in lemma 4.2, guarantees the conditions (4.8), (4.9), as well as the
uniform integrability of the sequence in (4.10) and (4.13). We can conclude that the
strategy (4.38) is optimal for the optimization problem (4.5). The parameter β is
chosen such that the constraint on the expected value of the surplus is satisfied and,
as a result, the value function for (4.5) at time 0 is equal to the minimum variance
of the surplus at time T . �

We end up with giving the interpretation of the investment strategy (4.38). The
derived optimal strategy has the well-known form, which is typical for quadratic
control problems. However, it is modify and takes into account the underlying fi-
nancial market and the stochastic mortality.

Notice that the effect of the jumps on the optimal investment strategy is un-
clear, as all δ̄, A and B involve the measure ν. In Ngwira, Gerrard (2006) the effect
of the mean jump magnitude on the asset allocation is investigated numerically.
They conclude that as the mean jump magnitude becomes larger in absolute value,
the optimal allocation in the risky asset decreases. The pension manager who applied
the investment strategy, which is optimal for the lognormally distributed returns, in
the market in which jumps can occur, would take too much financial risk. Moreover,
the optimal allocation is highly sensitive to changes in the mean jump magnitude if
the mean jump magnitude takes very small positive or negative values. The manager
should be concerned about small discontinuities in the price quotations, which are
always observable, and should apply the appropriate strategy which will protect the
fund from the loss in the case of large drawdown movement in the stock.

The effect of the mortality intensity on the optimal strategy can easily be stud-
ied. One should only consider mortality processes under which the expected liability
Da(t, λ) is an decreasing function of λ, as the lower mortality must yield the longer
life-time and the longer duration of the annuity payments. If this is the case, then
the lower level of the intensity results in the higher amount of the fund invested
in the risky asset (provided that ρ ≥ r). Moreover, the lower level of the intensity
results in the higher normal cost (2.11) and the higher supplementary cost (2.13) as
well. If the future life-time of the pensioners increases, the manager should collect
higher contributions and take greater financial risk in order to accumulate sufficient
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funds to cover the claim. The pension manager who does not follow this adjustments
is very likely not to fullfill its commitments.

Finally, it is straightforward to note that the constraint concerning the expected
value of the surplus leads to the higher allocation of the fund in the risky asset,
provided that β > 0.
Example 4.1. We continue example 2.1. We assume that the stock price follows an
exponential Variance Gamma process of the form

S(t) = e0,28t+L(t), L(t) = −0, 2h(t) + 0, 2W (h(t)), (4.39)

where h(t) is a Gamma distributed random variable with the density function

gh(t)(y) =
1

Γ(t/0, 003)(0, 003)t/0,003
y

t
0,003

−1e−
y

0,003 . (4.40)

For the subordinated Brownian motion representation of a Variance Gamma pro-
cess we refer the reader to chapter 2.3 in Kyprianou et al (2005). This choice of
parameters corresponds to µ = 0, 1.

In table 2, based on our simulation results, we give some quantities of the em-
pirical distribution of the ratio X(T )/Da(λ(T )) in two cases: a) when the fund is
controlled in order to minimize the mean square hedging error (3.1) and the stochas-
tic nature of mortality is not taken into account in the derivation of the optimal
strategies, β = 0,Et,λ[Da(λ(T ))] = E0,λ[Da(λ(T ))] = 11, 901; b) when the fund is
controlled according to the strategy (4.38) in order to minimize the variance of the
surplus and when the stochastic nature of mortality is taken into account as well.
We assume that κ = 0, ρ = 0, 08, D = 1000, x0 = 500 and f(t) = 1/20.

Table 2: Distribution of the ratio X(T )/a(λ(T ))

Case "a" Case "b"
Mean value 95,096% 100,926%

Standard deviation 6,508% 10,477%

1st percentile 70,476% 60,344%

5th percentile 86,571% 86,682%

10th percentile 91,400% 94,549%

90th percentile 99,726% 107,608%

95th percentile 100,252% 108,019%

99th percentile 101,029% 108,824%

First of all one should notice that in the case "a" the accumulated fund is not
sufficient, on average, to cover the liability. The average deficit in the terminal sur-
plus is about -566,5. However, due to the additional constraint, the variance of the
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ratio in case "b" is higher. The terminal constraint and positive value of β lead to
the strategy of investing higher amounts in the stock and this explains the increase
in the mean value and standard deviation for the case "b", compared with the case
"a". The Lagrange multiplier in our example is equal to β = 1975. It should also be
noticed that the distribution of the ratio in the case "b" has a thicker left tail (1st
percentile), as well as the right tail (90th, 95th, 99th percentiles), compared with
the case "a". �

5 Generalized mean-variance optimization problem

In this section we solve the generalized problem (3.4) and find the optimal investment
and contribution strategy which minimize the variance of the surplus along with the
expected value of squares of future contribution rates. The problem (3.4) can be
transformed, as in section 4, by using a Lagrange multiplier. First we solve the
stochastic control problem

inf(π,u)∈B E0,x,λ
[ ∫ T

0
u2(t)dt+ α

(
Xπ,u(T )−Da(λ(T ))

)2

−γ
(
Xπ,u(T )−Da(λ(T ))

)]
, (5.1)

find the optimal strategy (π̃, ũ) and then choose a Lagrange multiplier γ such that

E0,x,λ
[
X π̃,ũ,γ(T )−Da(λ(T ))

]
= 0. (5.2)

Mathematical details of arriving at the solution of (5.1) and (5.2) are very similar
to those in section 4 and are omitted. They can be obtained from the authors upon
request.

The differential operator LM remains the same, whereas the integro-differential
operator LF takes a slightly different form

Lπ,u
F φ(t, x, λ) =

(
π(µ− r) + xr +NC(t, λ) + u

)∂φ
∂x

(t, x)

+
1

2
π2σ2∂

2φ

∂x2
(t, x)

+

∫
z>−1

(
φ(t, x+ πz)− φ(t, x)− πz

∂φ

∂x
(t, x)

)
ν(dz). (5.3)

We define the new set of admissible strategies.

Definition 5.1. A strategy (π(t), u(t), 0 < t ≤ T ) is admissible, (π, u) ∈ B, if it
satisfies the following assumptions:
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1. π : (0, T ] × Ω → R and u : (0, T ] × Ω → R are predictable mappings with
respect to filtration F,

2. E0,x,λ[
∫ T

0
π2(t)dt] + E0,x,λ[

∫ T

0
u2(t)dt] <∞,

3. the stochastic differential equation (2.6) has a unique solution Xπ,u on [0, T ].

The verification theorem 4.1 can be extended to include the running cost of
u. It is not difficult to realize that the Hamilton-Jacobi-Bellman equation for the
optimization problem (5.1) is of the form

0 = min
(π,u)∈R2

{
u2 +

∂w

∂t
(t, x, λ) + Lπ,u

F w(t, x, λ) + LMw(t, x, λ)
}
. (5.4)

As in the previous section we try to find a quadratic solution w(t, x, λ) = P (t, λ)x2+

Q(t, λ)x+R(t, λ). The optimal strategies for which the minimum on the right hand
side of (5.4) is attained are given by

ũ(t, x, λ) = −Q(t, λ)

2
− P (t, λ)x, (5.5)

π̃(t, x, λ) = −δ̄
(
x+

Q(t, λ)

2P (t, λ)

)
. (5.6)

Substituting (5.5), (5.6) into (5.4) and collecting the terms we arrive at the following
partial differential equations{

0 = ∂P
∂t

(t, λ) + LMP (t, λ) + (2r − δ)P (t, λ)− P 2(t, λ),

P (T, λ) = α,
(5.7){

0 = ∂Q
∂t

(t, λ) + LMQ(t, λ) +
(
r − δ − P (t, λ)

)
Q(t, λ) + 2P (t, λ)NC(t, λ),

Q(T, λ) = −γ − 2αDa(λ),
(5.8){

0 = ∂R
∂t

(t, λ) + LMR(t, λ)− Q2(t,λ)
4P (t,λ)

(P (t, λ) + δ) +Q(t, λ)NC(t, λ),

R(T, λ) = αD2a2(λ) + γDa(λ).
(5.9)

We can solve the equation (5.7) explicitly and arrive at

P (t) =
1

1
α
e(δ−2r)(T−t) + 1

δ−2r

(
e(δ−2r)(T−t) − 1

) . (5.10)

We can also conclude that the partial differential equations (5.8) and (5.9) have
unique solutions in the class C. We state the Feynman-Kac representation of the
unique solution to (5.8)

Q(t, λ) = −γe(r−δ)(T−t)−
∫ T

t P (s)ds +
(
− 2αe(r−δ)(T−t)−

∫ T
t P (s)ds + 2e−ρ(T−t)

×
∫ T

t

P (s)f(s)e(r+ρ−δ)(s−t)−
∫ s

t P (u)duds
)
Et,λ[Da(λ(T ))]. (5.11)
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It is easy to check that the denominator in (5.10) is positive and bounded away from
zero. It is also not difficult to realize that − log( 1

α
+ 1

δ−2r
− 1

δ−2r
e(2r−δ)(T−t)) is the

antiderivative of P (t) and that the following equality holds∫ s

t

P (u)du = log
P (s)

P (t)
+ (2r − δ)(s− t). (5.12)

Applying (5.12) in (5.11) we can arrive at

Q(t, λ) = −P (t)e−r(T−t)
{γ
α

+ 2
(
1− e(r−ρ)T

∫ T

t

e(ρ−r)sf(s)ds
)
Et,λ[Da(λ(T ))]

}
.(5.13)

Notice that Q is non-positive in the case of ρ ≥ r and γ ≥ 0, as the following trivial
equality holds

e(r−ρ)T

∫ T

t

e(ρ−r)sf(s)ds ≤ 1, t ∈ [0, T ]. (5.14)

It is left to find a Lagrange multiplier γ. The dynamics of the fund X π̃,ũ under
the optimal strategy (π̃, ũ) are given by

dX π̃,ũ(t) =
{
− δ

(
X π̃,ũ(t−) +

Q(t, λ(t))

2P (t)

)
+X π̃,ũ(t−)r +NC(t, λ(t))

−P (t)X π̃,ũ(t−)− 1

2
Q(t, λ(t))

}
dt

−δ̄
(
X π̃,ũ(t−) +

Q(t, λ(t))

2P (t)

)(
σdW (t) +

∫
z>−1

zM̃(ds× dz)
)
,(5.15)

with the initial condition X(0) = x. As in section 4 we can derive the ordinary
differential equation for ψ(t) = E0,x,λ[X π̃,ũ(t)], which is

dψ

dt
(t) =

(
r − δ − P (t)

)
ψ(t)−

( δ

P (t)
+ 1

)Q(t)

2
+NC(t), ψ(0) = x, (5.16)

where

Q(t) = −P (t)e−r(T−t)
{γ
α

+ 2
(
1− e(r−ρ)T

∫ T

t

e(ρ−r)sf(s)ds
)
E0,λ[Da(λ(T ))]

}
.(5.17)

With algebraic manipulations, we can arrive at the value of the Lagrange multiplier

γ = 2α

(
αe2rT + (γ3 − γ2)e

(r−ρ)T − γ1

)
E0,λ[Da(λ(T ))]− xerTP (0)

γ1

, (5.18)

where

γ1 =

∫ T

0

e2rt(δ + P (t))P (t)dt, (5.19)

γ2 =

∫ T

0

e(ρ+r)tP (t)f(t)dt, (5.20)

γ3 =

∫ T

0

e2rt(δ + P (t))P (t)

∫ T

t

e(ρ−r)sf(s)dsdt. (5.21)

We conclude with the following theorem.
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Theorem 5.1. The investment strategy

π̃(t) = −δ̄
(
X π̃,ũ(t−) +

Q(t, λ(t))

2P (t)

)
, δ̄ =

µ− r

σ2 +
∫

z>−1
z2ν(dz)

, (5.22)

and the supplementary contribution rate

ũ(t) = −Q(t, λ(t))

2
− P (t)X π̃,ũ(t−), (5.23)

is the optimal strategy for the generalized mean-variance problem (3.4), and the
minimum cost is equal to P (0)x2 +Q(0, λ)x+ R(0, λ). The functions P , Q, R and
the constant γ are given by (5.7)-(5.9), (5.18), whereas X π̂,û is the fund process
under the optimal strategy, evolving according to (5.15).

The effect of the terminal constraint, the jumps and the intensity on the optimal
investment strategy is the same as in section 4. Notice that, as expected, the opti-
mal supplementary costs (5.23) is the decreasing function of λ; the lower mortality
intensity yields the higher contribution (provided that ρ ≥ r).

6 Conclusions

In this paper we have investigated a retirement plan of a defined benefit type which
accumulated funds are converted into annuities for participants. We have consid-
ered the price of the annuity as a random variable which randomness arises due to
stochastic evolution of a mortality intensity. We have assumed that the asset return
is driven by a Lévy process. We believe that this are very important extensions as far
as pension modelling is concerned. We have solved two new optimization problems
and arrived at the optimal strategies and the optimal value functions.

We have only dealt with one cohort of participants and it might be desirable to
extend the results and incorporate more cohorts of workers who continuously join
the plan. This means modelling mortality intensities for each age and would lead
to the multidimensional (or even infinitely dimensional) process of the mortality
intensity. Deriving a result in this framework seems to be challenging. This is left
for further research.

Even though we have presented solutions for one cohort, we believe that they
might be useful in the management of defined benefit pension plans. The simple
heuristic strategy for an aggregate pension plan is to apply our results, at each
point of time, for each of the cohort separately, and then rebalance the individual
accounts with any profits or losses which arises when paying out a benefit for retiring
members.

Finally, we would like to refer the interested reader to the paper of Delong (2007)
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where indifference pricing of a life insurance portfolio is investigated, in the case when
mortality follows a diffusion process and an insurer invests in a financial market with
an asset which price is driven by a Lévy process.
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