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Abstract

Tsanakas and Barnett (2002) employed concepts from cooperative

game theory (Aumann and Shapley, 1974) for the allocation of risk

capital to portfolios of pooled liabilities, when distortion risk measures

(Wang et al., 1997) are used. In this paper we generalise previously ob-

tained results in three directions. Firstly, we allow for the presence of

non-linear portfolios. Secondly, based on the concept of correlation or-

der (Dhaene and Goovaerts, 1996) we proceed with discussing the links

between dependence structures, capital allocation and pricing, as well

as dropping a restrictive assumption on the continuity of probability

distributions. Finally, we generalise the capital allocation methodology

to a dynamic setting and conclude with a numerical example.
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1 Introduction

One of the imperatives of risk management and regulation is the determi-

nation of capital requirements for portfolios of risky positions, that is, the

calculation of the ‘risk capital’ that has to be safely invested to compen-

sate for the risk of holding random assets and liabilities. For this purpose,

risk measures, which are real-valued functions from a collection of risky po-

sitions to the real line, are used. A set of properties that a risk measure

should satisfy has been proposed by Artzner et al. (1999) in their influential

definition of coherent measures of risk. We note that investigations of alter-

native classes of risk measures and their respective sets of properties have

been part of actuarial science for more than thirty years, with risk measures

interpreted as principles of premium calculation. From such a perspective,

coherent risk measures based on distorted probabilities have been proposed

by Denneberg (1990) and Wang et al. (1997).

A financial entity that holds a number of (possibly dependent) risky

portfolios, such as the liability portfolios of an insurance company, allocates

risk capital to them. The aggregate allocated capital should be equal to

the risk measure of the insurance company’s aggregate liabilities. Capital

allocation can be considered as a method of measuring the performance of a

portfolio, in terms of the diversification that it contributes to the company,

or as a tool for pricing insurance liabilities. Such considerations must be

reflected in the properties that the capital allocation rule satisfies.

The use of concepts originating in cooperative game theory for allocat-

ing risk capital has been proposed by Denault (2001), who identified the

Aumann-Shapley (1974) value and the fuzzy core (Aubin, 1981) as possible
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solutions. Allocation methodologies based on the fuzzy core are derived on

the premise that no linear portfolio should be allocated more capital than its

risk measure. Tsanakas and Barnett (2002) obtained an explicit allocation

formula for the fuzzy core, in the case that distortion risk measures are used,

and highlighted the relationship between capital allocation and the pricing

of insurance liabilities.

In this paper we extend previously obtained results into several direc-

tions. Allocation methods based on the fuzzy core only consider the for-

mation of linear portfolios. However, non-linear contracts are very common

both in the insurance (e.g. stop-loss treaties) and the financial (e.g. options)

markets. Hence we define the non-atomic core, as an extension of the fuzzy

core allowing for the presence of non-linear portfolios. Subsequently we show

that a result from the theory of non-additive integrals (Denneberg, 1994)

guarantees the existence of an allocation methodology in the non-linear set-

ting that belongs to the non-atomic core.

It is possible that two portfolios whose random payoffs are characterised

by identical probability distributions are allocated different amounts of risk

capital. This is due to the different degrees to which the portfolios stochas-

tically depend on the aggregate, as such dependence determines the amount

of diversification that a portfolio contributes to the aggregate position of its

holder. We formalise these considerations using the correlation order on sets

of random vectors with fixed marginals that was discussed by Dhaene and

Goovaerts (1996) and Wang and Dhaene (1998). Using correlation order we

also show that the capital allocation formula calculated by Tsanakas and

Barnett (2002) holds in the more general setting considered in this paper.

Capital allocation in essence produces a system of prices, according to
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which a financial entity values its portfolios. Invoking concepts from coop-

erative game theory ensures that these prices are internally consistent, from

the perspective of the financial entity’s risk management. The question

then arises of whether these prices are also consistent with prices in a mar-

ket where the portfolios can be traded. Based on an equilibrium model by

Tsanakas and Christofides (2003), we show how the prices produced by cap-

ital allocation can be interpreted as market prices in an insurace/financial

market, where competing entities determine their investment by minimising

a distortion risk measure.

Risk measurement and capital allocation has been discussed so far in a

static rather than a dynamic setting. The effect of time and the situation

where additional information on the development of risks becomes gradu-

ally available have not been considered. The rest of the paper is devoted

to a dynamic generalisation of the risk measurement and capital allocation

methodologies discussed. Distortion risk measures are updated using the

general conditioning rule for non-additive set functions (Denneberg, 1994b).

Based on that rule, we show that distortion risk measures can be updated by

simultaneously conditioning the original probability distribution and using

a modified distortion function, which we call an updated distortion. Sub-

sequently, we discuss the properties of updated distortion functions, also

analysing the case that conditioning events have zero probability. Using the

dynamic extension of risk measures, we then produce a dynamic generalisa-

tion of the capital allocation methodology.

Finally, the results presented in the paper are illustrated via a simple nu-

merical example, where correlated Brownian motions with drift correspond

to stochastic liability processes.
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The structure of the paper is as follows. Risk measures based on dis-

torted probabilities and the concept of correlation order are introduced in

sections 2 and 3 respectively. Risk capital allocation with distortion mea-

sures is discussed in section 4, where we present our results on non-linear

portfolios, the relationship between dependence and capital allocation, and

the link between allocated capital and market prices. The extension of

capital allocation to a dynamic setting is discussed in section 5, while the

numerical example is presented in section 6.

2 Distortion risk measures

Fix a probability space (Ω,F ,P0). A risk measure is a real-valued functional,

ρ, defined on a set of random variables X , standing for risky portfolios of

assets and/or liabilities. For a portfolio X ∈ X , its risk measure, ρ(X), rep-

resents the amount of safely invested capital that a regulator would require

the owner of X to hold. Specifically, ρ(X) is interpreted as “the minimum

extra cash that the agent has to add to the risky position X, and to invest

‘prudently’, to be allowed to proceed with his plans” (Artzner et al., 1999).

For simplicity in this paper we take ‘invest prudently’ to mean ‘with zero

interest’. Also note that here and in the subsequent discussion, positive val-

ues of elements of X will be considered to represent losses, while negative

values will represent gains.

A coherent measure of risk is defined by Artzner et al. (1999) as a risk

measure that satisfies the following properties:

Monotonicity: If X ≤ Y a.s. then ρ(X) ≤ ρ(Y )

Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y )
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Positive Homogeneity: If a ∈ R+ then ρ(aX) = aρ(X)

Translation Invariance: If a ∈ R then ρ(X + a) = ρ(X) + a

It is furthermore shown in Artzner et al. (1999) that all functionals

satisfying the above properties allow a representation:

ρ(X) = sup
P∈P

EP[X] (1)

where P is a collection of probability measures, or ‘generalised scenarios’.

An additional desirable property is defined via the concept of comono-

tonicity (e.g., Denneberg, 1994a):

Definition 1. Two random variables X,Y are called comonotonic if there

is a random variable U and non-decreasing real functions e, d such that X =

e(U), Y = d(U).

As discussed in the next section, comonotonicity corresponds to the

strongest form of positive dependence between random variables (e.g. Wang

and Dhaene (1998), Embrechts et al. (2002)). In economic terms, comono-

tonic investment positions cannot used as hedges for each other and pooling

comonotonic positions yields no gains from diversification (Yaari, 1987).

An additional desirable property of risk measures is additivity for comono-

tonic risks:

Comonotonic Additivity: If X, Y comonotonic then ρ(X+Y ) = ρ(X)+ρ(Y )

It can be shown that, if and only if ρ(X) is a coherent risk measure sat-

isfying comonotonic additivity, it has a representation as a Choquet integral

with respect to a set function (capacity), v (Denneberg, 1990):

ρ(X) =
∫

Xdv =
∫ 0

−∞
(v(X > t)− 1)dt +

∫ ∞

0
v(X > t)dt, (2)
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where v is submodular (v(A∪B)+v(A∩B) ≤ v(A)+v(B) for all A,B ∈ F)

and monotone with respect to set inclusion (A ⊂ B ⇒ v(A) < v(B)). Cho-

quet (1953) integrals are defined with respect to (non-additive) monotone

set functions instead of measures; a textbook on the subject is Denneberg

(1994a).

Let P0 be the real-world (actuarial) probability measure. If g : [0, 1] 7→
[0, 1] is a continuous, increasing and concave function, with g(0) = 0 and

g(1) = 1, then v(A) = g(P0(A)) is a submodular set function (Denneberg,

1994a). Thus, the following integral is a comonotonic additive coherent risk

measure:

ρ(X) =
∫ 0

−∞
(g(P0(X > t))− 1)dt +

∫ ∞

0
g(P0(X > t))dt, (3)

We will call g a distortion function, g(P0) a distorted probability and the risk

measure (3) a distortion risk measure. It can be shown that, subject to a

technical condition, any submodular set function can be represented by a

distorted probability (Wang et al., 1997).

Distortion risk measures have been axiomatically defined in the context

of insurance pricing by Denneberg (1990) and Wang et al. (1997). Choquet

integrals have also found application as non-linear pricing functionals in

financial markets with frictions (Chateauneuf et al., 1996).

Finally, note that since distortion risk measures are coherent, they will

allow a representation through ‘generalised scenarios’. Specifically, the set

P of probability measures in the representation (1) corresponds to the core

of the set function v = g(P0) (Denneberg, 1994a):

P = {P : P(A) ≤ g(P0(A)) ∀A ∈ F} (4)
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3 Dependence between risks and correlation order

The concept of comonotonicity, briefly discussed in section 2, is an interest-

ing point of convergence between statistics and economics, as it represents

both a form of extreme (positive) dependence between risks and a lack of

portfolio diversification. In the sequel we will need notions of dependence

weaker than comonotonicity, as well as the means of comparing the depen-

dence structures between risks. For this purpose, we provide in this section a

brief exposition of the concept of correlation orderings between pairs of risks,

our main references here being Dhaene and Goovaerts (1996) and Wang and

Dhaene (1998).

Consider cumulative probability distribution functions, F1, F2 and let

R(F1, F2) be the class of all pairs of random variables (X1, X2) with marginal

distribution functions F1(x1) = P(X1 ≤ x1) and F2(x2) = P(X2 ≤ x2)

respectively. Thus elements of R(F1, F2) are random 2-vectors with fixed

marginal behaviour but undetermined joint distribution FX1,X2(x1, x2) =

P(X1 ≤ x1 ∩X2 ≤ x2). Note that we can also write:

FX1,X2(x1, x2) = CX1,X2(F1(x1), F2(x2)), (5)

where CX1,X2 : [0, 1]2 7→ [0, 1]2 is the copula function of (X1, X2), summaris-

ing their dependence structure (Embrechts et al., 2002).

The following result on the joint distribution of any (X1, X2) ∈ R(F1, F2),

gives the well-known Frechet-Hoeffding bounds on FX1,X2(x1, x2) (Dhaene

and Goovaerts, 1996):

Proposition 1. For any (X1, X2) ∈ R(F1, F2) the following inequality

holds:

max{F1(x1) + F2(x2)− 1, 0} ≤ FX1,X2(x1, x2) ≤ min{F1(x1), F2(x2)} (6)
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The upper and lower bounds are themselves bivariate distributions with marginals

F1, F2.

The upper bound actually corresponds to the joint distribution function

of X1, X2, when they are comonotonic (Wang and Dhaene, 1998):

Proposition 2. Consider (X1, X2) ∈ R(F1, F2). The following three state-

ments are equivalent:

a) X1 and X2 are comonotonic.

b) There exist increasing functions h1, h2 and a random variable U such

that X1 = h1(U), X2 = h2(U).

c) The joint distribution function of X1 and X2 is min{F1(x1), F2(x2)}

Note that comonotonicity is the most dangerous dependence structure

between risks, in terms of the stop-loss ordering of their sums (Dhaene and

Goovaerts, 1996). Correspondingly, pairs of risks whose joint distribution

function is the lower bound in (6) are called countermonotonic, and are

characterised by the safest possible dependence structure.

Weaker notions of positive and negative dependence are Positive and

Negative Quadrant Dependence, respectively (Wang and Dhaene (1998)):

Definition 2. The random variables X1 and X2 are called Positive Quad-

rant Dependent (PQD), if:

FX1,X2(x1, x2) ≥ F1(x1)F2(x2) (7)

X1 and X2 are called Negative Quadrant Dependent (NQD), if:

FX1,X2(x1, x2) ≤ F1(x1)F2(x2) (8)
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It is desirable to compare elements of R(F1, F2) in terms of their depen-

dence. The correlation ordering discussed in Dhaene and Goovaerts (1996)

provides a way of carrying out this comparison:

Definition 3. Let (X1, X2) and (Y1, Y2) be elements of R(F1, F2). We then

say that (X1, X2) are less correlated than (Y1, Y2), and write (X1, X2) ≤corr

(Y1, Y2), if:

Cov(h1(X1), h2(X2)) ≤ Cov(h1(Y1), h2(Y2)) (9)

for all non-decreasing functions h1, h2 for which the covariances exist.

The following result is proved in Dhaene and Goovaerts (1996):

Proposition 3. Let (X1, X2) and (Y1, Y2) be elements of R(F1, F2). The

following two statements are equivalent:

a) (X1, X2) ≤corr (Y1, Y2)

b) FX1,X2(x1, x2) ≤ FY1,Y2(x1, x2)

From the above proposition the following two lemmas are easily obtained:

Lemma 1. Let (Y1, Y2) ∈ R(F1, F2) be comonotonic (countermonotonic).

Then:

(Y1, Y2) ≥corr (≤corr) (X1, X2) ∀(X1, X2) ∈ R(F1, F2) (10)

Lemma 2. Let (Y1, Y2) ∈ R(F1, F2) be independent and (X1, X2) ∈ R(F1, F2)

be PQD (NQD). Then:

(Y1, Y2) ≤corr (≥corr) (X1, X2) (11)

For all non-decreasing functions h1, h2 for which the covariances exist:

Cov(h1(X1), h1(X2)) ≥ (≤) 0 (12)
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Remark: Dhaene and Goovaerts (1996) and Wang and Dhaene (1998)

were concerned with pure insurance liabilities and thus only considered non-

negative random variables. However, the results obtained in those papers

are more general and hold with no assumptions on positivity of random

variables.

4 Capital allocation with distortion risk measures

Denault (2001) proposed applying concepts from non-atomic (fuzzy) cooper-

ative game theory to the problem of allocating the risk capital corresponding

to portfolio to its constituents. The Aumann-Shapley (1974) value, which

for positively homogenous and subadditive cost functions, such as coherent

measures of risk, belongs to the fuzzy core (Aubin, 1981) of the game was

shown to yield an appropriate risk capital allocation mechanism. Explicit

formulae were obtained by Tasche (2000a), in the case that the risk measure

is Expected Shortfall, and by Tsanakas and Barnett (2002), when distortion

risk measures are used.

In the latter paper, results were obtained under the assumption of con-

tinuous conditional probability density functions. However, this assumption

appears to be quite restrictive in practice, where discontinuous distribution

functions are often encountered. Another restriction has been the considera-

tion only of linear (sub)portfolios, in the definition of the fuzzy core. In this

section we review the concept of the fuzzy core in the context of risk capital

allocation. Using elements of non-additive integration theory (Denneberg,

1994) and correlation orderings (Dhaene and Goovaerts, 1996), we show the

result of Tsanakas and Barnett (2002) holds in the more general case of dis-

11



continuous distributions and non-linear portfolios. The effect of dependence

on the capital allocated to individual portfolios is also discussed. Finally

we comment on the consistency of the resulting allocation functional with

market prices.

4.1 The fuzzy core for distortion risk measures

Let X1, X2, ..., Xn ∈ X be random variables on a probability space (Ω,F ,P0),

representing insurance liabilities. Specifically we let F be the σ−algebra

generated by X1, X2, ..., Xn. Let Z be the aggregate portfolio, consisting of

the pooled liabilities Xi:

Z =
n∑

j=1

Xj (13)

The holder of the portfolio, Z, will have to hold risk capital, ρ(Z), in

order to satisfy a regulator. We assume that ρ is a distortion risk measure,

such as the ones discussed in section 2. The risk capital allocation problem

then consists of determining a vector d ∈ Rn, such that:

n∑

j=1

dj = ρ(Z), (14)

where di is the capital allocated to liability Xi.

We need to impose additional conditions, in order to obtain a capital

allocation that satisfies some desirable properties. Cooperative game theory

provides a suitable framework for such problems. We consider the (holders

of the) risks X1, X2, ..., Xn as players in a cooperative game. Cooperation

is understood as the pooling of their liabilities, which (due to the subad-

ditivity of the risk measure) produces aggregate savings in risk capital. It

is reasonable to require that the aggregate risk capital be allocated in such

a way that no incentive is produced for a player to withdraw the whole or
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part of its investment from the pool, since this would reduce the aggregate

savings. This requirement is formalised via the concept of the fuzzy core

(Aubin, 1981).

Define a subportfolio Zu of Z as:

Zu =
n∑

j=1

ujXj , u ∈ [0, 1]n (15)

The fuzzy core, C, will consist of all allocations, dC , that satisfy (14) and do

not allocate to any portfolio more capital than its individual risk assessment,

were it not part of the pool:

C = {d ∈ Rn|
n∑

j=1

dj = ρ(Z) and ρ(Zu) ≥
n∑

j=1

ujdj ∀u ∈ [0, 1]n} (16)

Thus, allocations in the fuzzy core do not produce an incentive for any

subportfolio to leave the pool.

If the cost functional ρ(Zu) is subadditive and positively homogenous in

u, i.e.:

ρ(Zφ+ψ) ≤ ρ(Zφ) + ρ(Zψ) ∀φ, ψ ∈ [0, 1]n (17)

and

ρ(Zλu) = λρ(Zu) ∀λ ≥ 0, (18)

then the fuzzy core is convex, compact and non empty (Aubin, 1981). Fur-

thermore, if ρ(Zu) is differentiable at the n-vector of ones, u = 1, then the

fuzzy core consists only of the gradient vector of ρ(Zu) at u = 1 (Aubin,

1981):

dCi =
∂ρ(Zu)

∂ui
|uj=1∀j (19)

In the case of distortion risk measures (3), conditions (17) and (18) are

clearly satisfied. Assuming that conditional densities are continuous, then
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applying quantile derivatives (Tasche, 2000b) and using the quantile repre-

sentation of the Choquet integral (Denneberg, 1994), Tsanakas and Barnett

(2002) showed that ρ(Zu) is differentiable in u and, by direct calculation,

obtained the following formula for the unique allocation in the fuzzy core:

dCi = E[Xig
′(SZ(Z))] (20)

Thus, the resulting allocation mechanism can be represented by an expec-

tation under a change of probability measure:

dCi = EQ[Xi],
dQ
dP0

= g′(SZ(Z)) (21)

4.2 Non-linear portfolios

Note that the definition (16) of the fuzzy core is quite restrictive, as it only

prevents linear subportfolios from leaving the pool. However, the forma-

tion of portfolios corresponding to nonlinear functions of X1, X2, ..., Xn is

conceivable in an insurance/financial market. The presence of non-linear

insurance treaties (e.g. stop-loss) and financial derivatives (e.g. call op-

tions) is testimony to this. Thus, we would be interested in allocations that

produce no incentive to leave the pool to any portfolio X, which is a, pos-

sibly non-linear, function of X1, X2, ..., Xn, i.e. any random variable that is

measurable with respect to the σ-algebra, F , generated by X1, X2, ..., Xn.

Let X ⊆ L1(g(P0)) be a class of integrable (for a rigorous definition of

the linear space L1(g(P0)), see Denneberg (1994a)), F-measurable random

variables. An allocation mechanism will then correspond to a linear func-

tional on X . Let Γ be the class of real-valued linear functionals defined on
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X . We define the non-atomic core as:

NA = {d ∈ Rn|∃γ ∈ Γ for which γ(Xi) = di ∀i, γ(Z) = ρ(Z)

and ρ(X) ≥ γ(X) ∀X ∈ X}
(22)

It is obvious that NA ⊆ C, as the number of portfolios that could po-

tentially have an incentive leave the pool increases. In the case that the risk

measure is given by a distortion risk measure (with concave distortion func-

tion, g) the non-atomic core will be non-empty, by the following result from

non-additive integration theory (Proposition 10.1 in Denneberg (1994a)):

Proposition 4. Let v be monotone and submodular on 2Ω. For any class

A ⊂ L1(v) of comonotonic functions, there is an additive set function Q on

2Ω, such that:

Q ≤ v,

∫
Xdv =

∫
XdQ,∀X ∈ A

Let v = g(P0). From the definition of the Choquet integral it immedi-

ately follows that:

Q ≤ v ⇒ EQ[X] =
∫

XdQ ≤
∫

Xdv = ρ(X), ∀X ∈ X (23)

Hence, the linear functional, EQ[·] ∈ Γ on X , produces a risk capital alloca-

tion in the non-atomic core. Note that no assumption on the continuity of

probability distributions was made. On the other hand, allocations in the

non-atomic core are not necessarily unique. However, whenever conditional

densities are continuous in the sense of Tasche (2000b), the non-atomic core

coincides with the fuzzy core and contains only one allocation.

4.3 Capital allocation and correlation order

In section 4.2 it was shown that there exists a capital allocation mechanism

in the non-atomic core, which takes into account the presence of non-linear
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portfolios and its existence does not rely on the continuity of probability

distributions. This capital allocation will not in general be unique. Here,

using the concept of correlation order discussed in section 3, we show that

the capital allocation given by equation (20) does actually belong to the

non-atomic core. We furthermore comment on the relationship between

correlation order, capital allocation and pricing.

As before, we denote by R(F1, F2) the class of pairs of random variables

(X1, X2) with marginal cumulative distributions F1 and F2, respectively.

The following two lemmas will be used in the sequel:

Lemma 3. Let (X1, X2) and (Y1, Y2) be elements of R(F1, F2). Then:

(X1, X2) ≤corr (Y1, Y2) ⇒ E[h1(X1)h2(X2)] ≤ E[h(Y1)h2(Y2)], (24)

for any non-decreasing functions h1, h2, such that the covariances

Cov(h1(X1), h2(X2)) and Cov(h1(Y1), h2(Y2)) exist.

Proof: For any pair of random variables h1(X1), h2(X2), with finite covari-

ance, it is:

E[h1(X1)h2(X2)] = E[h1(X1)]E[h2(X2)] + Cov(h1(X1), h(X2)).

Since (X1, X2) ≤corr (Y1, Y2), it will be:

Cov(h1(X1), h2(X2)) ≤ Cov(h1(Y1), h2(Y2)).

Additionally, E[h1(X1)] = E[h1(Y1)] and E[h2(X2)] = E[h2(Y2)], because

both (X1, X2) and (Y1, Y2) are elements of R(F1, F2). Hence:

E[h1(X1)h2(X2)] = E[h1(X1)]E[h2(X2)] + Cov(h1(X1), h2(X2)) ≤
E[h1(Y1)]E[h2(Y2)] + Cov(h1(Y1), h2(Y2)) = E[h1(Y1), h2(Y2)].

The next result follows directly from Lemmas 1 and 3:
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Lemma 4. Let (Y1, Y2) ∈ R(F1, F2)) be comonotonic. Then:

E[h1(Y1)h2(Y2)] ≥ E[h1(X1)h2(X2)], ∀(X1, X2) ∈ R(F1, F2),

for any non-decreasing functions h1, h2, such that the covariances

Cov(h1(X1), h2(X2)) and Cov(h1(Y1), h2(Y2)) exist.

Let us return to the capital allocation problem. Consider the linear

functional:

γ(X) = E[Xg′(SZ(Z))], X ∈ X

Now consider the risk measure (3). Integration by parts yields:

ρ(X) = E[Xg′(SX(X))], X ∈ X

Note that X and g′(SX(X)) are comonotonic, since g is concave and SX

is decreasing. Also note that both SX(X) and SZ(Z) are uniformly dis-

tributed. Thus, Lemma 4 yields:

γ(X) = E[Xg′(SZ(Z))] ≤ E[Xg′(SX(X))] = ρ(X), X ∈ X (25)

Summarising, we have just shown that:

Proposition 5. The capital allocation mechanism:

di = E[Xig
′(SZ(Z))] (26)

belongs to the non-atomic core.

In Tsanakas and Barnett (2002), it was argued that the amount of capital

allocated to a liability Xi increases when Xi and Z are highly correlated.

Using the correlation ordering on pairs of random variables, we can simply
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show why this is the case. Assume that Xi and Xj have the same marginal

probability distribution. Lemma 3, yields:

(Xi, Z) ≤corr (Xj , Z) ⇒ di ≤ dj (27)

The interpretation of this result is that high correlation of a risk to the

aggregate portfolio induces a higher amount of allocated capital, since the

risk contributes less to the diversification taking place by pooling.

Note that the capital allocation problem can also be viewed as a pricing

exercise, where a reinsurer passes on to the cedents the savings from pooling

liabilities arising from different contracts (Tsanakas and Barnett, 2002).

Then, the term g′(SZ(Z)) corresponds to a price density (or state-price

deflator, Duffie (1988)) and the price π(X) of X ∈ X is given by:

π(X) = E[Xg′(SZ(Z))] = E[X] + Cov(X, g′(SZ(Z))) (28)

Thus, dependence between a traded risk and the price density can give us

a clue as to the risk loading (or indeed discount), π(X) − E[X], that will

apply. Specifically, Lemma 2, yields the following result:

Proposition 6. If (X, Z) are PQD, the risk loading, π(X)−E[X], is pos-

itive. If they are NQD, it is negative.

4.4 Consistency with market prices

The capital allocation functional (26) discussed here essentially produces a

system of prices. Its game theoretical origins ensure that these prices are

internally consistent, in the sense that they do not produce an incentive for

pooled portfolio to split. If we assume that the portfolios of liabilities subject

to capital requirements are traded in a risk (e.g. insurance) market it would
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be desirable that the allocation mechanism is also externally consistent, in

the sense that it is consistent with market prices.

Consider the case where n holders of random liabilities participate in an

exchange, where their risky positions, X1, X2, . . . , Xn, can be traded. We

assume that the market is regulated and that the holder of liability X has

to hold capital ρ(X), where ρ is a distortion risk measure. Market prices

are represented by a linear functional π, such that:

π(X) = E[ζX], (29)

where E[ζ] = 1.

Let the liability holders take investment decisions by minimising the risk

that they are exposed to. Thus, the ith player determines the liability Yi

that it will hold after the exchange by solving:

min
Yi∈X

ρ(Yi), such that π(Xi) ≥ π(Yi) (30)

The budget constraint in (30) is equivalent to saying that the ith agent can

afford the reinsurance, Yi −Xi, that it buys.

Equilibrium is reached when each of the liability holders solves its min-

imisation problem and the market clears:

n∑

j=1

Yj =
n∑

j=1

Xj = Z (31)

Risk exchange models with preference functionals and risk measures based

on distorted probabilities are studied in Tsanakas and Christofides (2003).

In that paper it is shown that equilibrium prices for risk exchange (30), (31)

are given by:

π(X) = E[Xg′(SZ(Z))] X ∈ X (32)
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The price functional (32) is of course identical to the capital allocation

mechanism discussed in the previous sections. Note though that the ran-

dom variable Z here represents the aggregate risk in the market and not the

liability held by a market agent (insurance company), which is represented

by Yi. However, it can be shown that at equilibrium Z and Yi are comono-

tonic (Tsanakas and Christofides, 2003) and thus g′(SZ(Z)) = g′(SYi(Yi))∀i.
Hence, the prices used by liability holders in order to allocate capital to their

portfolios are the same as those with which the risks are traded in the mar-

ket. Subsequently, at equilibrium no reinsurance for a liability can be bought

at a price lower than the capital allocated to it. If that was not the case, cap-

ital allocation would produce incentives for sub-optimal investment. On the

other hand, the fact that (32) produces prices in the non-atomic core, has

the implication that every player benefits from participating in the exchange

and there are no incentives for any portfolio to leave the market.

5 Extension to the dynamic setting

Here we introduce a dynamic generalisation of the capital allocation method-

ology presented in the paper. This relies on a generalisation of the risk

measures we use to a dynamic setting, which in turn goes through defining

an updating rule for the distortion risk measure. In what way the updating

should be carried out, depends on whether we view the distorted probability

as a transformation of an objective probability measure (Yaari, 1987) rep-

resenting preferences or as a submodular set function directly reflecting a

subjective probability assessment (Schmeidler, 1989). In the former case a

reasonable strategy would be to update the probability measure according
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to Bayes’ rule and distort it thereafter, whereas in the latter case an updat-

ing mechanism for non-additive set functions is called for, such as the ones

discussed in Denneberg (1994b) (see also the discussion in Wang and Young

(1998) and Young (1998)). In this paper we adopt the latter approach, as it

is consistent with the ‘worst-case-scenario’ interpretation the risk measure.

We then comment on classes of distortion functions that emerge as a result

of updating distorted probabilities and finally extend the capital allocation

methodology discussed in previous sections to the dynamic setting.

5.1 Updating submodular set functions and Choquet inte-

grals

The distortion risk measure (3) can be viewed as an expectation with re-

spect to the submodular set function g(P0). In order to use the risk mea-

sure in a dynamic setting, we need to be able to condition the set function

v = g(P0), as well as the corresponding Choquet integral, on information

becoming available. Recall the representation of the risk measure via a set

of probability measures:

ρ(X) = sup
P∈P

EP[X], P = {P : P(A) ≤ v(A) ∀A ∈ F} (33)

If each of the probability measures P is interpreted as a scenario, we can

define the updated risk measure by conditioning each of those scenarios.

Thus, the risk measure of an F-measurable random variable, conditional

upon an event B ∈ F , will be defined by:

ρ|B(X) = sup
P∈P

EP[X|B], ∀B ∈ F (34)

For a construction of conditional expectation on a discrete probability

space and a list of properties (many of them inherited from the conditional
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expectations with respect to the additive probability measures in P) see

Denneberg (2000). Related approaches can be found in Walley (1991), who

studied the problem in the context of quasi-Bayesian statistics and decision

theory, and Lehrer (1996), who proposed a geometrical construction.

Owing to the good properties of submodular set functions we can actu-

ally move towards a concrete analytical formulation for the expression (34).

This goes through defining an updating rule for the set function v, as a gen-

eralisation of Bayes’ rule. A choice argued for in Denneberg (1994b), Walley

(1991) is:

v|B(A) =
v(A ∩B)

v(A ∩B) + v(Ac ∩B)
A,B ∈ F (35)

where v is the conjugate set function of v, v(A) = 1 − v(Ac) (note that if

v = g(P0), then v = h(P0), where h(t) = 1− g(1− t)).

The set function v|B satisfies two properties that are crucial for our

application. Firstly, if v is a submodular set function, so is v|B (Walley

(1991), Denneberg (1994b)). Thus, if a Choquet integral with respect to

v|B is defined, it will be a comonotonic-additive coherent risk measure as

discussed in section 2. v|B can then be expressed as the upper envelope of

all probability measures P such that P ≤ v|B. Furthermore it is shown by

Denneberg (1994b) that v|B can also be expressed as the upper envelope of

all probability measures P such that P ≤ v, conditioned on the set B:

v|B(A) = sup
P≤v|B

P(A) = sup
P≤v

P(A|B) (36)

It follows that for B ∈ F we can write:

ρ|B(X) = sup
P≤v

EP[X|B] = sup
P≤v|B

EP[X] =
∫

Xdv|B (37)

And of course we can calculate the Choquet integral (37) explicitly in terms
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of the real-world probability measure, P0, as:

∫
Xdv|B =

∫ 0

−∞
(v|B(X > x)− 1)dx +

∫ ∞

0
v|B(X > x)dx, (38)

where

v|B(X > x) =
g(P0(X > x ∩B))

g(P0(X > x ∩B)) + h(P0(X ≤ x ∩B))
(39)

5.2 Updated distortion functions

Note that we can write (39) as:

v|B(X > x) =
g(SX|B(x)P0(B))

g(SX|B(x)P0(B)) + h((1− SX|B(x))P0(B))
, (40)

where SX|B(x) = P0(X > x|B). Thus we can represent v|B(X > x) by:

v|B(X > x) = gu(SX|B(x);P0(B)) (41)

where gu(s; p) : [0, 1] 7→ [0, 1], p ∈ (0, 1], is the updated distortion function,

defined by:

gu(s; p) =
g(sp)

g(sp) + h((1− s)p)
(42)

Thus, the updated distortion function gu(s; p), can be interpreted as a dis-

tortion function which is applied to the conditional survival function of X

and parameterised by the probability of the conditioning event B.

The following result summarises some properties of gu(s; p).

Proposition 7. Let g(s) : [0, 1] 7→ [0, 1] be a continuous, twice differentiable,

increasing and concave (distortion) function, with g(0) = 0 and g(1) = 1.

Then, the updated distortion function gu(s; p) : [0, 1] 7→ [0, 1], with p ∈ (0, 1],

defined by equation (42), satisfies the following properties:

a) gu(s; p) is increasing and concave in s with gu(0; p) = 0, gu(1; p) = 1

for all s ∈ [0, 1], p ∈ (0, 1].
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b) g′u(0; p) ≥ g′(0), g′u(1; p) ≤ g′(1) for all p ∈ (0, 1].

c) gu(s; p) ≥ g(s) for all s ∈ [0, 1], p ∈ (0, 1].

d) gu(s; 1) = g(s) for all s ∈ [0, 1].

Proof:

a) The first derivative of gu(s; p) with respect to p is:

∂

∂s
gu(s; p) = p

g′(sp)h((1− s)p) + g(sp)h′((1− s)p)
(g(sp) + h((1− s)p))2

≤ 0, (43)

since g(t) and h(t) = 1 − g(1 − t) are both positive and increasing.

Hence gu(s; p) is increasing s. To show that it is concave, it is suf-

ficient to show that the numerator of ∂
∂sgu(s; p) is decreasing and its

denominator increasing in s. We have:

∂
∂s(g

′(sp)h((1− s)p) + g(sp)h′((1− s)p)) =

= pg′′(sp)h((1− s)p)− pg(sp)h′′((1− s)p) ≤ 0,
(44)

because g is concave and h convex, and

∂
∂s(g(sp) + h((1− s)p)) = pg′(sp)− ph′((1− s)p) =

= pg′(sp)− pg′(sp + 1− p) ≥ 0,
(45)

because g′ is decreasing and p ≤ 1. Hence gu(s; p) is concave. gu(0; p) =

0 and gu(1; p) = 1 are obvious.

b) It is:

g′u(0; p) = g′(0)
p

h(p)
≥ g′(0) (46)

and

g′u(1; p) = h′(0)
p

g(p)
= g′(1)

p

g(p)
≤ g′(1) (47)

c) Follows from a) and b).
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d) Obvious.

Proposition 7a) reflects the fact that distorting a probability measure

with gu as in (41) yields a submodular set function. Thus a risk measure

constructed using this distortion function will be coherent and comonotonic-

additive.

The second and third parts of the proposition have the interpretation

that the updated distortion function is stricter than the original one, in the

sense that it would yield a higher risk assessment in comparison to an ap-

proach where the real-world probability is first updated and then distorted:

v|B(X > x) = gu

(
SX|B(x);P0(B)

) ≥ g(SX|B(x)) ⇒

ρ|B(X) =
∫

Xdv|B ≥
∫

Xd(g(P0|B)) (48)

Insofar, the general conditioning rule for set functions produces a more ‘pru-

dent’ updated risk measure than the application of the distortion function

to the updated probability (see also the discussion in Denneberg (1994b)

where the general conditioning rule is shown to be more prudent than the

Bayes and Dempster-Shafer conditioning rules).

Proposition 7d) has the interpretation that when conditioning on an

event with probability one the updated distortion function reduces to the

original one. This means that the risk measure is not going to be updated

until some new, unknown until then information, becomes available.

We conclude this section with a note on the updating of distortion risk

measures, when the event on which we seek to condition has measure zero.

Such a situation frequently arises, for example in the case that the con-

ditioning events are observations of a random variable Y with continuous

probability distribution, i.e. B = {ω : Y (ω) = y}. This can cause problems
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in updating the risk measure. Consider (40). If P0(B) = 0 it is obvious that

the expression for the updated set function v|B(X > x) is indeterminate.

Correspondingly, equation (42) does not yield a value for p = 0.

A way to address this problem is to approximate B with sets of mea-

sure greater than zero, as proposed by Walley (1991) and Wang and Young

(1998). For δ > 0 define the event Bδ = {ω : Y (ω) ∈ [y, δ)}. Updated

distorted probabilities can then be calculated by taking the limit:

lim
δ↓0

v|Bδ(X > x) = lim
δ↓0

gu

(
P0(X > x|Bδ);P0(Bδ)

)
(49)

It is easy to calculate the above limit, provided that the conditional proba-

bilities P0(X > x|Y = y) are well defined. It will be:

lim
δ↓0

v|Bδ(X > x) =
g′(0)P0(X > x|Bδ)

g′(0)P0(X > x|Bδ) + g′(1)P0(X ≤ x|Bδ)
(50)

Thus, using the notation SX|B(x) = P0(X > x|B), we can write:

lim
δ↓0

v|Bδ(X > x) = gu

(
SX|B(x); 0

)
, (51)

where the updated distortion function gu for p = 0 is given by:

gu(s; 0) = lim
p↓0

gu(s; p) =
s

s + g′(1)
g′(0)(1− s)

(52)

Equation (52) defines a new class of distortion functions, characterised

by the parameter g′(1)/g′(0) ≤ 1. It is remarkable that when conditioning

a distorted probability on a zero-probability event, for any type of differ-

entiable distortion function the updated distortion function will belong to

the same class. Furthermore, the updated distortion function only depends

on the values of the first derivative of the original distortion function at 0

and 1. We summarise the properties of the distortion functions (52) in the

following proposition:
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Proposition 8. Let g(s) : [0, 1] 7→ [0, 1] be a continuous, twice differentiable,

increasing and concave (distortion) function, with g(0) = 0 and g(1) = 1.

Then, the updated distortion function gu(s; 0) : [0, 1] 7→ [0, 1], defined by

equation (52), satisfies the following properties:

a) gu(s; 0) is increasing and concave in s with gu(0; 0) = 0, gu(1; 0) = 1

for all s ∈ [0, 1].

b) g′u(0; 0) ≥ g′(0), g′u(1; 0) ≤ g′(1).

c) gu(s; 0) ≥ g(s) for all s ∈ [0, 1].

Proof : Essentially same as proposition 7.

5.3 Dynamic risk measurement and capital allocation

We consider now the problem of risk measurement in a dynamic setting. Let

the time of the initial risk assessment be 0 and the time horizon with respect

to which capital is set be T . A random liability will now be a stochastic

process, Xt∈[0,T ] on a filtered probability space (Ω, {Ft},P). Then we can

condition the risk measure of the terminal value XT on any Ft-measurable

event Bt, using (38), (39).

As the updated risk measure will again be a Choquet integral with re-

spect to a submodular set function, is will be a comonotonic-additive co-

herent risk measure. We can then proceed with the problem of dynamic

risk capital allocation in a way similar to the method developed in section

4. Let X1
t , X2

t , . . . , Xn
t be Ft-adapted stochastic processes corresponding to

the different liabilities that are being pooled and the aggregate risk process

be Zt =
∑

j Xj
t . For simplicity assume that X1

t , X2
t , . . . , Xn

t , as well as Zt,
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are Markov processes. The aggregate required capital at time t will now be

represented by the stochastic process:

ρ|Bt
(ZT ) = sup

P≤v=g(P0)
EP[ZT |Bt], (53)

where the event Bt ∈ Ft is defined as:

Bt = {ω : X1
t (ω) = y1, X

2
t (ω) = y2, . . . , X

n
t (ω) = yn} (54)

As discussed in section 5.1, (53) can then be calculated by:

ρ|Bt
(ZT ) =

∫ 0

−∞
(v|Bt

(ZT > z)− 1)dz +
∫ ∞

0
v|Bt

(ZT > z)dz, (55)

where

v|Bt
(ZT > z) =

g(P0(ZT > z ∩Bt))
g(P0(ZT > z ∩Bt)) + h(P0(ZT ≤ z ∩Bt))

(56)

As discussed in section 5.2 we can express (56) through an updated distortion

function:

v|Bt
(ZT > z) = gu

(
SZT |Bt

(z);P0(Bt)
)

and rewrite the updated risk measure (55) as:

ρ|Bt
(ZT ) =

=
∫ 0

−∞

(
gu

(
SZT |Bt

(z);P0(Bt)
)− 1

)
dz+

∫ ∞

0
gu

(
SZT |Bt

(z);P0(Bt)
)
dz (57)

We can now proceed with determining the stochastic processes, di
t, that

represent the amount of risk capital allocated to the portfolios, Xi
t . We

assume that the allocation of capital to the portfolios is performed at each

time t ∈ [0, T ]. At each time t the allocation should belong to the non-atomic

core of the game. Denote by Xt the set of random variables measurable with

respect to the σ−algebra Ft, generated by X1
t , X2

t , . . . , Xn
t . Let Γ be the
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class of real-valued linear functionals on XT . We require that the stochastic

processes di
t are such that for all t ∈ [0, T ] there exists a linear functional

γt ∈ Γ such that:

γt(Xi
T ) = di

t ∀i, γt(ZT ) = ρ|Bt
(ZT ) and ρ|Bt

(Y ) ≥ γt(Y ) ∀Y ∈ XT (58)

As the set function v|Bt
is submodular, all arguments on the existence

of solutions in the fuzzy core made in section 4 apply to this case as well.

Thus there will always exist a linear functional γt ∈ Γ such that (58) is true.

Furthermore, one such functional is:

γt(XT ) = E[XT g′u
(
SZT |Bt

(ZT );P0(Bt)
) |Bt] (59)

Thus, the capital, di
t, allocated to the ith liability will follow the stochastic

process:

di
t = E[Xi

T g′u
(
SZT |Bt

(ZT );P0(Bt)
) |Bt] (60)

6 Application with correlated Brownian motions

As an illustrative example, we apply the dynamic capital allocation method-

ology studied in the previous section to the case that the pooled instruments

correspond to correlated Brownian motions with drift. By simulating paths

of the liability processes, as well as of the processes representing allocated

risk capital, the relationship between correlation order and capital alloca-

tion is demonstrated. Brownian motion and stochastic processes based on

it are prominent in the financial mathematics literature. Furthermore, the

fact that Brownian motion’s increments are multi-normally distributed al-

lows for an explicit calculation of the aggregate liability process, while the

(Pearson) correlations give an accurate reflection of correlation order.
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6.1 Liability processes

Let Wt ∈ Rn be an n-dimensional Brownian motion, starting at 0. Define the

vector Xt ∈ Rm of individual liability processes via the stochastic differential

equation:

dXt = αdt + βdWt, (61)

where α ∈ Rm is a vector of drifts and β ∈ Rm×n is a matrix of volatilities.

It is then apparent that the individual liabilities Xi
t , as well as the aggregate

liability Zt, are themselves drifted Brownian motions. Specifically:

dXi
t = αidt +

n∑

j=1

βijdW j
t = αidt + β̄idW̄ i

t , Xi
0 = 0, (62)

where β̄i =
√∑n

j=1 β2
ij and W̄ i

t is a Brownian motion such that
∑n

j=1 βijW
j
t =

β̄iW̄
i
t . Also:

dZt =
m∑

k=1

dXk
t = ᾱdt + β̄dW̄t, Z0 = 0, (63)

where ᾱ =
∑m

k=1 αk, β̄ =
√∑n

j=1(
∑m

k=1 βkj)2 and W̄t is a Brownian motion

such that
∑m

k=1

∑n
j=1 βkjW

j
t = β̄W̄t

Define Bt as being the event Bt = {ω ∈ Ω : X1
t (ω) = x1

t , ..., X
m
t (ω) =

xm
t }. In order to apply the dynamic allocation methodology of the previ-

ous section, we have to determine the conditional probability distribution

FXi
T ,ZT |Bt

(xT , zT ) = P0(Xi
T ≤ xT ∩ ZT ≤ zT |Bt).

From the textbook properties of Brownian motion (e.g. Karatzas and

Shreve, 1989), we know that the processes Xi
t have independent and nor-

mally distributed increments. Specifically we have that, given Bt, XT is a
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normally distributed vector:



X1
T

X2
T

. . .

Xm
T




=




x1
t + α1(T − t)

x2
t + α2(T − t)

. . .

xm
t + αm(T − t)




+
√

T − t




β11 β12 . . . β1n

β21 β22 . . . β2n

. . . . . . . . . . . .

βm1 βm2 . . . βmn







N1

N2

. . .

Nn




,

(64)

where N ∈ Rn is a vector of independently distributed normal random

variables.

In order to obtain the distribution of the random vector, (Xi
T ZT )′ (we

denote by A′ the transpose of a matrix A), we apply to XT the transforma-

tion: 


Xi
T

ZT


 = DiXT , (65)

where Di ∈ R2×m, such that Di
1i = 1, Di

1j = 0, j 6= i and Di
2j = 1, ∀j.

From the properties of multivariate normal distributions (e.g. Embrechts

et al., 2002), we know that the random vector (Xi
T ZT )′ will be normally

distributed, with mean DiE[XT ] and covariance matrix (T − t)(Diβ)(Diβ)′.

Calculations yield that (Xi
T ZT )′ will be normal with mean:




xi
t + αi(T − t)

zt +
∑m

k=1 αk(T − t)


 (66)

and covariance matrix:

(T − t)




∑n
j=1 βij2

∑n
j=1

∑m
k=1 βijβkj

∑n
j=1

∑m
k=1 βijβkj

∑n
j=1 (

∑m
k=1 βkj)

2


 (67)

Thus, for any t ∈ [0, 1], the correlation ri between Xi
T and ZT given Bt is:

ri =

∑n
j=1

∑m
k=1 βijβkj

(∑n
j=1 βij2

∑n
j=1 (

∑m
k=1 βkj)

2
)1/2

(68)
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6.2 The distortion function

We use the exponential distortion function:

g(s) =
1− exp(−hs)
1− exp(−h)

, h > 0 (69)

This function has first derivative:

g′(s) =
h exp(−hs)
1− exp(−h)

(70)

Since the events on which the liability processes are conditioned have zero

probability, the updated distortion function (52) becomes:

gu(s; 0) =
s

s + exp(−h)(1− s)
(71)

The functions g and gu are shown in figure 1 for h = 1. It can be seen

that the updated distortion function takes higher values than the original

one.

6.3 Numerical example

We consider the 3-vector of liabilities Xt = [X1
t X2

t X3
t ]′:

Xt = αdt + βWt, (72)

where Wt = [W 1
t W 2

t W 3
t ]T is a 3-dimensional Brownian motion and

α =




0.2

0.2

0.2




, β =
1
3




√
1.5 −√1.5 0

0
√

1.5
√

1.5

1 1 1




(73)

Note that each of the individual liability processes Xi
t is a Brownian

motion with volatility
√

3
3 and drift 0.2. According to equation (68), given
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Bt, the correlations between each individual liability and the aggregate at

T are:

r1 = 0.26

r2 = 0.69

r3 = 0.95

(74)

Thus, while the individual liability processes have identical dynamics,

they differ in their correlation to the aggregate liability, i.e. (X1
T , ZT ), (X2

T , ZT )

and (X3
T , ZT ) are all members of the same class R(F1, F2). In fact, for bi-

variate normal distributions, correlation order can be completely determined

through Pearson’s correlation coefficient. Consider two random variables

Y1, Y2 distributed according to the bivariate normal distribution, with cor-

relation r and, for simplicity, unit means and standard deviations:

FY1,Y2(y1, y2) =
∫ y1

−∞

∫ y2

−∞

1
2π(1− r2)1/2

exp
{
−s2 − 2rst + t2

2(1− r2)

}
dsdt (75)

It is apparent that FY1,Y2 is increasing in r. Thus, given Bt, it is:

(X1
T , ZT ) ≤corr (X2

T , ZT ) ≤corr (X3
T , ZT ) (76)

Using an exponential distortion function with h = 1, we can determine

the capital allocated to each liability Xi
t . It thus is:

di
t = E[Xi

T g′u
(
SZT |Bt

(ZT ); 0
) |Bt], (77)

where joint distribution function of (Xi
T , ZT )′, conditional upon Bt, is nor-

mal with mean vector and covariance matrix as determined by equations

(66) and (67) respectively.

Paths of the liability processes, as well as of the processes representing

dynamic risk measures and allocated capital, are simulated with time hori-

zon T = 5. In figure 2 paths of the individual liability processes X1
t , X2

t , X3
t
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are shown. In figure 3 the risk measure of the aggregate liability, ρ|Bt
(Zt)

is compared to the sum of the risks of the individual liabilities,
∑

ρ|Bt
(Xj

t ).

The difference between the two lines represents aggregate savings from pool-

ing the liabilities. Finally, in figures 4, 5 and 6, the risk measure of each

liability, ρ|Bt
(Xi

t), is compared to the capital, d2
t , allocated to it. The differ-

ence between the lines represents the savings from pooling that the holder

of Xi
t makes. It can be seen that the highest savings are made by the first

player, lower savings made by the second, while the third one almost makes

no savings at all. This is consistent with the correlation ordering (76) of the

pairs of random variables, (X1
T , ZT ), (X2

T , ZT ) and (X3
T , ZT ).

7 Conclusions

The problem of allocating capital to pooled portfolios of risky positions was

studied for the case of risk measures based on distorted probabilities and

previously obtained results were extended. The non-atomic core was defined

as a generalisation of the fuzzy core in order to account for the potential

formation of non-linear portfolios. Using the correlation order discussed in

Dhaene and Goovaerts (1996) it was then shown that the capital allocation

methodology derived by Tsanakas and Barnett (2002) is consistent with the

non-atomic core property defined in this paper. Furthermore, correlation

order gave us the means to formulate explicitly the effect of dependence on

the capital allocated to a portfolio. Specifically, for two portfolios whose

payoffs are equal in distribution, more capital is allocated to the one which

is more correlated to the aggregate risk that its holder is exposed to.

The requirement for consistency between market prices and prices orig-
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inating in capital allocation was discussed, drawing from an equilibrium

model by Tsanakas and Christofides (2003). If market prices are determined

in a risk exchange by agents’ minimising their (distortion) risk measure, then

market prices are consistent with the capital allocation methodology pro-

posed in this paper.

Next, the need to extend the capital allocation methodology to a dy-

namic setting was addressed. Such an extension goes through defining a

dynamic version of the distortion risk measures used in the paper. The

general conditioning rule for set functions (Denneberg, 1994b) provided a

suitable mechanism for updating distortion risk measures. It turns out that

the updated risk measure is again a distortion risk measure with respect

to a modified distortion function. This function, which we call an updated

distortion, dominates the original distortion function and thus yields more

prudent risk assessments. Finally, a numerical example of dynamic risk

measurement and capital allocation was presented, with correlated Brown-

ian motions standing for liability processes. The example demonstrated the

effect of correlation on the capital allocation.
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Figure 1: Exponential and updated exponential distortion functions (h=1).
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Figure 2: Simulated path of individual liabilities, X1
t , X2

t , X3
t .
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Figure 3: Risk measure of aggregate liability, ρ|Bt
(Zt), versus sum of risks

of individual liabilities,
∑

ρ|Bt
(Xj

t ).
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Figure 4: Risk measure, ρ|Bt
(X1

t ), and capital, d1
t , allocated to the first

liability, X1
t .
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Figure 5: Risk measure, ρ|Bt
(X2

t ), and capital, d2
t , allocated to the second

liability, X2
t .
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Figure 6: Risk measure, ρ|Bt
(X3

t ), and capital, d3
t , allocated to the third

liability, X3
t .
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