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Abstract: In many problems of risk analysis, failure is equivalent to the event of

a random risk factor exceeding a given threshold. Failure probabilities can be con-

trolled if a decision maker is able to set the threshold at an appropriate level. This

abstract situation applies for example to environmental risks with infrastructure

controls; to supply chain risks with inventory controls; and to insurance solvency

risks with capital controls. However, uncertainty around the distribution of the risk

factor implies that parameter error will be present and the measures taken to con-

trol failure probabilities may not be effective. We show that parameter uncertainty

increases the probability (understood as expected frequency) of failures. For a large

class of loss distributions, arising from increasing transformations of location-scale

families (including the Log-Normal, Weibull and Pareto distributions), the paper

shows that failure probabilities can be exactly calculated, as they are independent

of the true (but unknown) parameters. Hence it is possible to obtain an explicit

measure of the effect of parameter uncertainty on failure probability. Failure proba-

bility can be controlled in two different ways: (a) by reducing the nominal required

failure probability, depending on the size of the available data set and (b) by mod-

ifying of the distribution itself that is used to calculate the risk control. Approach

(a) corresponds to a frequentist/regulatory view of probability, while approach (b)

is consistent with a Bayesian/personalistic view. We furthermore show that the

two approaches are consistent in achieving the required failure probability. Finally,

we briefly discuss the effects of data pooling and its systemic risk implications.
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1 INTRODUCTION

1.1 Problem statement

We consider the following generic situation emerging in probabilistic risk

analysis:

• A system is subject to a state corresponding to ‘failure’. Failure oc-

curs when a risk factor, modelled as a random variable, exceeds a

predetermined threshold value.

• A risk management objective is to limit the probability of failure to a

small value. In order to do this, it is possible to take control measures,

whose effect is to vary (e.g. increase) the threshold. (This is equivalent

to a shift in the risk factor distribution.) Therefore, for a fixed level

of acceptable failure probability, the desired threshold can be viewed

as a percentile of the risk factor distribution.

• The distribution of the risk factor, in particular the tail probabilities

needed to design control measures, is unknown and must be estimated

from data. This introduces parameter error and therefore one cannot

be fully confident that the target failure probability is achieved.

Below we give three classes of examples, where the above setting may

be seen as a reasonable model of failure and control. The third of these ex-

amples, focusing around insurance solvency, is the leading example around

which arguments in this paper are constructed. The mathematical back-

ground developed is relevant for all examples.

Example 1 (Environmental risks and infrastructure controls). In a sim-

plified model of flood risk, river or coastal flooding (‘failure’) ensues when

when water levels exceed ( overtop) the height of man-made flood defenses.

The acceptable probability for such failure is quite low; for example in the

Netherlands, exceedance probabilities between 1/4000 and 1/10000 have been

specified for coastal areas [1]. This safety requirement, combined with the

relative infrequency of great floods, implies that extrapolations to the tail

probabilities of water levels are needed [2].

More broadly, investment in infrastructure and appropriate regulation

can reduce the vulnerability to natural hazards. For example building codes

can reduce the vulnerability to seismic risk, thus reducing the probability of
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damage to a building subjected to a ‘design earthquake’ with given return

period [3].

Example 2 (Supply chain risks and inventory controls). In inventory prob-

lems, sufficient quantities of some good need to be stocked in order to be able

to satisfy demand over a predetermined time period. Unknown demand is

now the risk factor and the level of stock held is the control. As failure, we

consider the scenario where demand exceeds stocked goods. Very different

situations, besides classic supply chain problems, can be framed as inventory

risks.

An example in health risk management relates to the possible shortage of

antiviral drugs in the case of an influenza epidemic. Health providers such

as the National Health Service in Britain stock antiviral drugs [4] and the

maintenance of an insufficient stock would be considered as a precautionary

failure[5]. Hence the probability of antiviral drugs running out in the event

of an outbreak should be very low. However the relative rarity of major

epidemics and the complexity of their dynamics, imply that there may be

substantial uncertainty around the potential demand on antiviral drugs.

Moving to a different context, the US government holds a Stategic Petroleum

Reserve, currently (July 2010) of 727m barrels of crude oil corresponding to

approximately 75 days of import protection, to be used in case of an energy

supply crisis [6]. Emergency drawdowns are rare, the last two having taken

place in the aftermath of the 2005 Hurricane Katrina disaster and during

the 1990/91 Desert Shield/Storm operation. Setting the size of the reserve

to a level that will be able to handle an major crisis in international energy

supply is a matter of substantial strategic importance for the US government.

Example 3 (Insolvency risk and capital controls). Financial firms such as

insurance companies are exposed to random future liabilities, such as insur-

ance claims, drops in asset values, and operational losses. In order that the

firms are able to pay their liabilities under adverse scenarios, they hold risk

capital. Risk capital is calculated according to a regulatory principle and/or

the firm’s own risk tolerance level. Most insurance and banking regulation

adopts the Value-at-Risk principle for risk capital calculation, requiring that

the probability of future losses exceeding capital is limited to a fixed low level

[7]). For example the impending Solvency II regulatory regime for European

insurers requires that the probability of insolvency (failure) for an insurance

company be at most 0.5% per annum [8]. Hence risk capital is typically
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determined as a percentile of a loss distribution.

The calculation of risk capital is subject to substantial parameter uncer-

tainty, since the calculation of an extreme percentile from a data set of lim-

ited size leads to potentially inaccurate capital estimates. In particular, for

many types of insurance risk such as catastrophe insurance, characterised by

low frequency / high severity events, relevant data are necessarily scarce and

capital may have to be estimated from just a few tens of loss observations.

1.2 Results

We henceforth use the language of the third example, focusing on the prob-

lem of insurance solvency. In this contribution we address the following

research questions:

1. Does parameter uncertainty increase the probability of insolvency of

insurance companies and by how much?

2. Can the regulatory capital setting regime be adjusted to reflect the

effect of parameter uncertainty?

3. What is the potential effect of firms’ loss data sharing arrangements,

both at the firm and the systemic risk level?

To answer the first question, we propose a conceptualisation of parame-

ter uncertainty via frequentist arguments. The key idea here is to represent

the calculated risk capital as a random variable, since it is a function of the

random sample from which capital has been calculated. Then, the proba-

bility of insolvency is calculated as the probability of a random loss variable

exceeding a random capital amount. We argue that this is essentially a regu-

latory view of parameter uncertainty, whereby the probability of insolvency

is understood as an expected frequency of insolvency across risk portfolios.

(It is noted that regulators are not the only agents having a stake in the sol-

vency of an insurance operation. Rating agencies often perform a role similar

to that of regulators, in awarding a rating that is, at least loosely, associ-

ated with a failure probability. Hence this ‘regulatory view,’ also applies

to rating agencies. Moreover reinsurers are often closely involved in actual

modelling of the risks that primary insurance companies cede to them. For a

reinsurer, the probability of an insurance claim exceeding a given threshold

is of interest, as this would trigger a payment to the insurer.)
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The probabilities of solvency and insolvency thus calculated generally

depend on the values of the true but unknown loss distribution parameters.

We show that for a wide range of loss distributions, derived by increasing

transforms of location-scale families and including well known distributions

such as Normal, Lognormal, Exponential, Pareto and Weibull, this depen-

dence on the true parameters vanishes. Hence, if only the family of loss

distributions considered is known, it is possible to calculate the effect of

parameter uncertainty on solvency probabilities. Typically, for capital cal-

culated according to a given required confidence level, the probability of

solvency will increase with the sample size of the historical data used to

calculate tail probabilities, so that a larger data set implies that the holder

of a risk portfolio is more secure.

It is also shown that, while the effect of parameter uncertainty on sol-

vency probabilities is affected by the family of loss distributions considered,

it is not affected in an obvious way by the distribution’s tail behaviour. It

is for example shown that the probability of solvency may be the same for a

light-tailed (e.g. exponential) and a heavy-tailed distribution (e.g. Pareto).

Addressing the second question, we propose two methods for adjusting

the risk capital calculation for financial firms, so that the problem of param-

eter uncertainty is addressed and the probability of insolvency constrained

at an acceptable level. In the first method, capital has to be calculated using

a different confidence level (estimated percentile of the loss distribution) for

each risk portfolio. The confidence level used for each portfolio depends on

the number of loss data points available, so that a portfolio with a long his-

tory (and hence low parameter uncertainty) receives more lenient treatment

than a portfolio for which few relevant loss observations exist.

While this method is consistent with controlling the probability of insol-

vency, as proposed in this paper, we argue that it is ill suited for practical

application, as it is at odds with principles-based regulatory practice. In-

stead, we propose setting capital requirements using a predictive distribu-

tion, obtained by standard Bayesian methods. So, rather than adjusting the

confidence level of the capital setting regime, the loss distribution used for

capital calculation is replaced by a more dispersed one. We then show that

for loss distributions in transformed location-scale families, the use of a pre-

dictive distribution serves its regulatory purpose, by producing a probability

of solvency, as viewed by a regulator, at the required level.
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Finally, we discuss the case of holders of risk portfolios with similar

exposures sharing their loss data, in order to reduce parameter uncertainty.

We argue that, while this reduces the insolvency probability for individual

portfolios, one has to make sure that systemic risk is not increased due to the

dependence between portfolios’ insolvency events induced by data sharing.

In the next section the relation of this research to the literature is dis-

cussed. The effect of parameter uncertainty on the solvency probability is

presented in Section 2 and the proposed adjustments to the capital setting

regime in Section 3. Data sharing is discussed in Section 4. Conclusions are

given in Section 5. In these sections the concepts are presented in a relatively

informal manner and illustrated by examples where explicit derivations are

possible. All results are formally stated and proved in the Appendix.

1.3 Relation to the literature

Parameter and model uncertainty have long been fundamental issues in

probabilistic risk analysis [9]. While consideration of such uncertainties in

a Bayesian framework is common [10], there has been a vigorous debate

among risk analysts regarding appropriate methods of quantifying such un-

certainties; in particular the argument that probability is appropriate only

for the modelling of process variability, rather than epistemic uncertainties

has been made (see [11] as well as the responses to that article).

In the context of actuarial, insurance and financial risk management, pa-

rameter uncertainty and data issues have been discussed [12],[13],[14],[15],[16],

though the implications of parameter uncertainty for solvency have been

rarely studied in detail [17]. The emergence of risk-sensitive regulation in

insurance markets, such as the European Solvency II regime, has produced

a renewed interest in parameter uncertainty, in particular among practition-

ers who are called to estimate extreme percentiles from incomplete samples

[18],[19],[20].

The approaches used in the literature for quantifying parameter uncer-

tainty in insurance are generally based on deriving predictive distributions

[12],[16]. Our approach is quite different, as it is based on a notion of param-

eter uncertainty, that draws from ideas of frequentist predictive inference

[21]. By viewing the capital required to assure a given solvency probability

as itself a random variable (through its dependence on the random sample),

we reflect the way that uncertainty permeates insurers’ decision processes,
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an issue not generally addressed in the literature.

While we reserve a frequentist setting to reflect the regulatory view of

uncertainty, we propose a Bayesian approach, better suited to the view of

insurance market participants, for the actual method of risk capital cal-

culation. We show that for the family of loss distributions considered in

this paper these two different views of uncertainty are in practice equiva-

lent, which follows from literature on probability matching priors and the

frequentist validity of Bayesian procedures [22].

The following limitations apply to the scope of our article:

• While we propose approaches based on complementary statistical method-

ologies and interpret these from the point of view of different stake-

holders, we do not aim at discussing the philosophical underpinnings

of parameter uncertainty quantification.

• We limit ourselves to the situation where the distribution family of

the modelled risks is known, with only the parameters needing to be

estimated. (The precise level of prior knowledge required about the

underlying loss distribution will be made clearer in Section 2.3.)

• We do not consider the possibility of structural changes in the data

generating process, which would call for a different conception of return

periods of extreme loss events [23].

• Asymptotic analysis of the problems we are discussing is possible

[21],[24], but is not considered in this study, since our focus is on situ-

ations where samples are very small.

2 SOLVENCY UNDER UNCERTAINTY

2.1 Probability of solvency

A portfolio of risks will produce a future loss over a fixed time horizon given

by random variable Y . We assume that Y follows a probability distribution

F (·; θ), where θ ∈ S ⊂ Rd is the unknown vector of parameters. The

distribution family F is known.

The parameter θ is estimated from a random sample X = (X1, . . . , Xn)

(representing for example the portfolio’s loss history or a benchmark data

set), where Xi ∼ Fi(·; θ), i = 1, . . . , n. Again the families Fi(·; θ) are known.
We do not require that each data point comes from the same distribution
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as the loss Y , but only that it is governed by the same parameter(s). We

assume throughout that the random variables X1, . . . , Xn, Y are mutually

independent and that the distributions F1, . . . , Fn, F are continuous, invert-

ible, with densities f1, . . . , fn, f . The unknown parameter θ is estimated

from the sample X by an estimator θ̂ = θ̂(X), typically using maximum

likelihood methods.

X1, . . . , Xn may represent the company’s observed losses from n time

periods (aggregates for each period). The difference in the distributions

F1, . . . , Fn may then represent necessary adjustments, e.g. for risk exposures

and business volumes changing over time. Alternatively, we could take i.i.d.

X1, . . . , Xn to stand for individual observed losses (e.g. insurance claims for

a specific year arising from the insurer’s risk portfolio). Then the future

loss is given by a compound model Y =
∑N

j=1X
′
j , where X ′

j has the same

distribution as X1 and N is the annual loss frequency with (known) distri-

bution. Then Y will again have a distribution with parameters θ. We note

the distinction between n, the size of the data-set used affecting parameter

error, and N , the size of the portfolio driving process error.

A regulator requires that the risk capital c(p; θ) held in respect of the

future loss Y be given by the relationship:

Pθ[Y ≤ c(p; θ)] = p =⇒ c(p; θ) = F−1(p; θ), (1)

where Pθ[A] is the probability of an event A, for parameter value θ, and

F−1(p; θ) is the 100pth percentile of the distribution F (·; θ). However, given

that the parameter vector θ is unknown, capital will in practice be set as

a percentile of the loss distribution, using the estimated parameter values.

Denote the capital thus calculated by:

c(p;X) = F−1(p; θ̂(X)) (2)

The risk capital c(p;X) is thus a function of the confidence level and the

data. From the point of view of the portfolio holder, given the particular

data observed, the capital c(p;X) is a fixed number, which may be smaller or

greater than the theoretically correct capital level F−1(p; θ). However from

the point of view of an experimental designer (or regulator), the capital

c(p;X) appears to be a random variable, due to the randomness of the

vector X. Following the latter interpretation, we can define the probability

of solvency as:

γ(p; θ) = Pθ[Y ≤ c(p;X)]. (3)
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This is the probability, calculated with respect to the true (but unknown)

parameters θ, of the future loss Y (a random variable) being lower than the

capital held (another random variable). We denote the associated insolvency

probability by γ(p; θ) = 1− γ(p; θ).

How are we then to interpret equation (3)? Assume that there is a large

number of independent risk portfolios, for all of which capital is calculated

according to the same method. Due to the randomness of the respective

samples, some of those portfolios will be allocated capital that is higher and

some capital that is lower than the theoretically correct value. Then γ(p; θ)

corresponds to the expected fraction of portfolios for which the future loss

will be lower than the capital held. So, from the perspective of a regulator

the quantity 1− γ(p; θ) can be seen as an expected default frequency across

portfolios, taking into account the potential parameter error in capital esti-

mates.

Alternatively, one could view (3) in the context of a Monte-Carlo ex-

periment. Assume that a large number m of ‘histories’
(
X(1), Y (1)

)
, . . . ,(

X(m), Y (m)
)
are simulated, under the true parameters θ. For each history,

the capital c(p,X(i)) is calculated according to (2). Then γ(p; θ) represents,

asymptotically for large m, the fraction of histories for which the capital

c(p,X(i)) is higher than the respective loss Y (i).

In this way, we characterise the probability of (in)solvency for a partic-

ular portfolio, allowing for parameter uncertainty. If parameter uncertainty

has a detrimental effect one would have γ(p; θ) ≤ p ⇔ γ(p; θ) ≥ 1− p. Note

however that the explicit calculation of γ(p; θ) is in reality problematic, as

it presupposes knowledge of the true parameter θ, which is unknown. For

example, calculation of the solvency probability via the Monte-Carlo scheme

outlined above is not possible if one does not know under which distribution

to simulate. Nonetheless, the following two examples show that this prob-

lem is not fatal, as dependence on the unknown parameter θ can often be

eliminated.

Example 4. Let X1, . . . , Xn, Y be i.i.d. exponentially distributed with mean

θ, i.e. F (x; θ) = 1−e−x/θ, x > 0. The maximum likelihood estimator of θ is

θ̂ = 1
n

∑n
j=1Xj ∼ Gam(n, θ/n), so that the moment generating function of θ̂

is Mθ̂(t) =
(
1− θ

n t
)−n

. The capital held is given by c(p;X) = −θ̂ log(1− p).
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Hence the probability of insolvency γ(p; θ) is calculated as:

γ(p; θ) = Eθ [Pθ (Y > c(p;X)|X)]

= E

[
exp

(
−−θ̂ log(1− p)

θ

)]

= Mθ̂

(
log(1− p)

θ

)
=

(
1− θ

n

log(1− p)

θ

)−n

=⇒ γ(p; θ) =

[
1 +

1

n
log

1

1− p

]−n

(4)

We can see that the probability of insolvency γ(p; θ) is in fact independent

of the true parameter θ and is a function only of the confidence level p and

the size of the sample n. In figure 1a), the insolvency probability γ(p; θ) is

plotted against the sample size n for confidence levels p = 0.99, 0.995, 0.999.

The following can be observed:

• The probability of insolvency is decreasing in the number of data points

n. This makes intuitive sense: the larger the sample, the higher the

accuracy of the capital assessment and thus the lower the probability

of insolvency.

• In particular as the sample size becomes very large, the insolvency

probability tends to its required value 1 − p, as can also be seen by

noting that limn→∞

[
1 + 1

n log 1
1−p

]n
= exp

(
log 1

1−p

)
= 1

1−p , so that

limn→∞ γ(p; θ) = 1− p.

• For small data sets, parameter error may cause the probability of in-

solvency to be substantially higher than the required value; in that

sense a high confidence level quoted may be rather misleading in the

presence of parameter uncertainty. For example if n = 10 and p =

0.99, 0.995, 0.999 the ratios of the true to the required probability of in-

solvency are γ(0.99;θ)
1−0.99 = 0.023

0.01 = 2.26, γ(0.995;θ)
1−0.995 = 0.014

0.005 = 2.85, γ(0.999;θ)
1−0.999 =

0.005
0.001 = 5.24.

Example 5. Suppose now that X1, . . ., Xn, Y are independent normal

N(µ, σ2) variables, so that θ = (µ, σ). The maximum likelihood estima-

tors are µ̂ =
∑n

j=1Xj and σ̂2 = n−1
∑

(Xi − X̄)2, with σ̂ independent of

µ̂. We may write µ̂ = µ + σU/
√
n, σ̂2 = σ2V/n, where U ∼ N(0, 1),
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Figure 1: Probability of insolvency γ(p; θ) for a) exponentially and b)

normally distributed losses, against sample size n, for confidence levels

p = 0.99, 0.995, 0.999

V ∼ χ2
n−1, and V is independent of U . The capital held is given by c(p,X) =

F−1(p; (µ̂, σ̂)) = µ̂+ σ̂Φ−1(p), where Φ is the N(0, 1) distribution function.

Now

Pθ[Y ≤ c(p,X)] = Pθ[Y − µ̂ ≤ σ̂Φ−1(p)],

Observe that Y − µ̂ ∼ N
(
0, n+1

n σ2
)
, independent of V , implying that√

n

n+ 1
· Y − µ̂√

σ2V/(n− 1)
∼ tn−1.

In consequence,

γ(p; θ) = Tn−1

(√
n− 1

n+ 1
Φ−1(p)

)
, (5)

where Tn−1(·) denotes the distribution of a tn−1 variable. In figure 1b) the

insolvency probability is again plotted as a function of n, giving a very similar

pattern to that observed for the exponential distribution. For n → ∞ we have

Tn−1 → Φ so that again limn→∞ γ(p; θ) = p.

2.2 Increasing transformations

Given that the confidence level p is generally chosen to be close to 1, the

solvency probability γ(p; θ) relates to the extreme tail of the loss distribution.

It may then be assumed that the overall shape and in particular the tail

properties of the loss distribution F (·; θ) have a substantial effect on the

solvency probability. For example, is the ratio γ(p;θ)
1−p higher for heavy- rather

than light-tailed distributions?
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Such a relationship is not straightforward. To show this consider another

portfolio, for which the sample and future loss considered satisfy

X∗
1

d
= h1(X1), . . . , X

∗
n

d
= hn(Xn), Y

∗ d
= h(Y ),

where
d
= denotes equality in distribution and h1, . . . , hn, h are strictly in-

creasing functions not depending on the parameter θ.

It can then be easily shown (Lemma 2 in the Appendix) that the solvency

probabilities for the two portfolios are actually going to be the same, that

is:

Pθ[Y ≤ F−1(p; θ̂(X))] = Pθ[Y
∗ ≤ F ∗−1(p; θ̂(X∗))] (6)

Note that for a non-linear function h, the probability distributions of the

losses Y and Y ∗ may have very different shapes, e.g. Y may be light-tailed

and/or symmetric, while Y ∗ is heavy-tailed and/or skewed. Remarkably,

the effect of parameter uncertainty on the solvency probability of those two

portfolios is the same. This is seen in the following example.

Example 6. Consider i.i.d. exponential losses X1, . . . , Xn, Y ∼ F (x; θ) =

1 − e−
x
θ , x > 0. Define now X∗

1 , . . . , X
∗
n, Y

∗ ∼ F ∗(x; θ) = 1 − x−
1
θ , x > 1

via the transformation h(t) = et. Therefore, X∗
1 , . . . , X

∗
n, Y

∗ follow a one-

parameter Pareto distribution. The tail-behaviour of the Pareto distribution

is very different to that of the exponential distribution; in fact it is known

from extreme value theory [25] that the exponential and Pareto distributions

form limiting cases of the tails of light- and heavy-tailed distributions respec-

tively. Lemma 2 implies that for both these distributions the probability of

solvency γ(p; θ) will be the same, given by formula (4). This implies that

for the Pareto distribution the solvency probability is again independent of

the unknown parameter θ.

Similarly, for normally distributed losses X1, . . . , Xn, Y ∼ N(µ, σ2), by

applying the transformation h(t) = et we get a Lognormally distributed loss

profile X∗
1 , . . . , X

∗
n, Y

∗. Again the Normal and Lognormal distributions are

very different; the former is symmetric, has unbounded support and is light-

tailed, while the latter is skewed, has positive support and is heavy tailed

(in the sense of sub-exponentiality [25]). The formula (5) will apply to both

distributions, so that the solvency probability for the Lognormal distribution

is again independent of the unknown parameters (µ, σ).

Hence the shape and heavy-tailedness of the loss distribution does not af-

fect the solvency probabilities in an obvious way. What may, however, affect
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these probabilities is the number of unknown parameters in the distribution.

In Table I the insolvency probabilities γ(p; θ) for the Exponential/Pareto,

Normal/Log-normal models, as well as a one-parameter Normal model with

known mean, are compared for p = 0.99, 0.995, 0.999. It can be seen that

in all cases the 2-parameter Normal/Log-normal model produces a higher

probability of insolvency than the Exponential/Pareto one. This may be at-

tributed to the fact that the Normal/Log-normal model has an additional lo-

cation parameter, which exacerbates the effect of parameter uncertainty. On

the other hand, a 1-parameter Normal model, with only the variance (scale

parameter) unknown, gives results very close to those of the exponential.

Table I: Comparison of insolvency probabilities γ(p; θ) for the Exponen-

tial/Pareto and Normal/Log-normal models (for p = 0.99, 0.995, 0.999).

p = 0.99 n = 10 n = 20 n = 50 n = 100 n = ∞
Exponential / Pareto 0.0226 0.0159 0.0122 0.0111 0.0100

Normal / Lognormal 0.0323 0.0197 0.0135 0.0117 0.0100

1-param. Normal (θ = σ) 0.0212 0.0153 0.0120 0.0110 0.0100

p = 0.995 n = 10 n = 20 n = 50 n = 100 n = ∞
Exponential / Pareto 0.0142 0.0091 0.0065 0.0057 0.0050

Normal / Lognormal 0.0224 0.0121 0.0080 0.0061 0.0050

1-param. Normal (θ = σ) 0.0138 0.0090 0.0065 0.0057 0.0050

p = 0.999 n = 10 n = 20 n = 50 n = 100 n = ∞
Exponential / Pareto 0.0052 0.0026 0.0015 0.0013 0.0010

Normal / Lognormal 0.0104 0.0042 0.0020 0.0014 0.0010

1-param. Normal (θ = σ) 0.0057 0.0029 0.0016 0.0013 0.0010

2.3 Independence of solvency probability from parameters

In the examples of Sections 2.1 and 2.2 it was seen that for particular distri-

butions it is possible to simply calculate the probability of solvency under

parameter uncertainty, since it does not depend on the unknown true pa-

rameters. In fact, this useful property holds not just for the special cases

considered, but for a wide class of probability distributions, including many

popular choices in risk modelling, that may be symmetric or asymmetric,

with bounded or unbounded support, light- or heavy-tailed.

The families of distributions we consider are 2-parameter transformed

location-scale families and 1-parameter transformed scale families. A ran-

dom variable follows a distribution belonging to a transformed (location-)
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scale family if an increasing function of that random variable belongs to a

(location-) scale family. For example, if Y is exponentially distributed (a

scale family) then the random variable Y ∗ = eY is Pareto distributed (a

transformed scale family). A formal definition of transformed (location-)

scale families is given the Appendix. (Transformed location families can be

similarly defined and results similar to the ones derived later on for scale

and location-scale families hold. However these distributions are less useful

for loss modelling purposes and we will not be concerned with them here.)

Examples of location-scale families are the normal distribution, the t-

distribution, the logistic distribution, and the Laplace distribution. Such

distributions are commonly used in modelling asset log-returns [7],[26]. By

letting h(t) = et, we can derive from the distributions above, the log-normal,

log-t, log-logistic (or Fisk) and log-Laplace distributions. Besides their pos-

sible use in asset return modelling these are popular models in modelling

heavy-tailed insurance or operational risk losses [27],[7]). It is simple to show

that other popular loss distributions such as the two-parameter Weibull [24]

can also be transformed to a (non-symmetric) location-scale family.

The simpler class of 1-parameter scale families includes the exponential

distribution, the Gamma and Weibull distributions (with shape parameter

fixed), or indeed any location-scale family with the location parameter fixed.

By transforming the exponential distribution via h(t) = et, we get the 1-

parameter Pareto distribution, with cdf 1−x−1/θ, x > 1. It is easy to see that

the usual Pareto distribution 1− ba(b+ x)−a also belongs to a transformed

scale family if we keep either of the two parameters fixed.

Some of these distributions and their uses in insurance loss modelling

are summarised in Table II.

We then have the following result, stated as Proposition 1 in the Ap-

pendix. If the probability distributions of the data F1(·; θ), . . . , Fn(·; θ) and
of the future loss F (·; θ) belong to a transformed (location-) scale family,

capital is calculated by an estimated loss percentile as in equation (2), and

the parameter(s) θ are estimated via maximum likelihood, the corresponding

probability of insolvency γ(p; θ) does not depend on the true parameter(s) θ.

Therefore, for a wide range of useful loss models it is possible to determine

explicitly the effect of parameter uncertainty on the probability of solvency.
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Table II: Distributions in transformed (location-)scale families that are com-

monly used in insurance loss modelling. Location and scale parameters are

denoted by µ, σ respectively; parameters otherwise denoted are considered

as known.

Name Density Use

Exponential 1
σ exp

(
−x

σ

)
, x > 0 Individual claims, but re-

stricted by its simplistic

shape.

Pareto (I) u1/σ

σ x−1/σ−1, x > u Large individual claims, of-

ten for natural catastrophe

risks and in reinsurance.

Pareto (II) b1/σ

σ (b+ x)−1/σ−1, x > 0 Large individual claims in

excess of a threshold.

Gamma xa−1 exp(−x/σ)
σaΓ(a) , x > 0 Aggregate loss in an insur-

ance portfolio, when coef-

ficient of variation 1/
√
a is

given.

Normal 1√
2πσ

exp
(
− (x−µ)2

2σ2

)
Aggregate loss in well di-

versified portfolios, e.g.

motor insurance.

Log-Normal
exp

(
− (log x−µ)2

2σ2

)
√
2πσx

, x > 0 Individual or portfolio loss,

allowing a moderate level

of extreme losses. Used

widely e.g. in marine, avi-

ation or liability insurance.

Weibull αxα−1

βα exp {−(x/β)α} , x > 0 Individual or portfolio loss,

β = eµ, α = 1/σ with flexibility of allowing

a low or moderate level of

extreme losses.

2.4 Numerical calculation of solvency probability

Exact calculation of the probability of solvency can be surmised from Propo-

sition 1 in the Appendix. However, such calculation requires integration

with respect to the density of the estimator, which is not generally known

in closed form. However, the solvency probability can always be calculated

numerically, e.g. via a Monte-Carlo scheme such as the one described in
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Section 2.1. The simulation of different loss histories can take place for any

choice of parameters, for example by setting the location and scale param-

eters to 0 and 1 respectively; Proposition 1 guarantees that the choice of

parameters will not affect the result. The following example illustrates the

process.

Example 7. Consider i.i.d. X1, . . . , Xn ∼ F (·; θ) where F (·; θ), θ = (µ, σ),

is a Weibull distribution such that

F (x; θ) = 1− exp
{
−
(
e−µx

)1/σ}
, x > 0.

The Weibull distribution is a popular choice for modelling insurance losses,

as it can represent a range of tail-behaviour, depending on the choice of

shape parameter σ (or α = 1/σ in a more usual parameterisation [27]) . The

increasing transformation X∗
i = logXi, Y

∗ = log Y yields random variables

following a negative Gumbel distribution

F ∗(x; θ) = 1− exp
{
e−

x−µ
σ

}
.

The Gumbel distribution is a location-scale family, hence Proposition 1 ap-

plies and the probability of solvency γ(p; θ) does not depend on the true

parameters θ = (µ, σ).

There is no explicit formula for Maximum Likelihood Estimator (MLE)

θ̂ = (µ̂, σ̂) of θ, which is given as the solution to the system of equations

nσ̂ +
∑n

j=1 log
(
e−µ̂Xj

)
−
∑n

j=1

(
e−µ̂Xj

)1/σ̂
log
(
e−µ̂Xj

)
= 0(

1
n

∑n
j=1X

1/σ̂
j

)σ̂
− eµ̂ = 0

(7)

It has been shown that in estimating parameters for the Gumbel distribution

using small samples, the MLE is outperformed (in the Mean-Squared-Error

sense) by estimators based on Probability Weighted Moments (PWM)[28],[29].

PWM estimators are also computationally simpler to evaluate, giving for-

mulas

σ̃ =

 2

n

n∑
j=1

j − 1

n− 1
Xj:n − X̄

 / log 2, µ̃ = X̄ + γσ̃, (8)

where X̄ is the sample mean, X1:n ≤ X2:n ≤ · · · ≤ Xn:n are the order

statistics and γ ≃ 0.57721 is the Euler constant. The estimators (8), simi-

larly to MLE, satisfy an equivariance property (in the sense of Lemma 3 in

the Appendix), which means that Proposition 1 still holds and the solvency

probability does not depend on the unknown parameters.
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The required capital is then calculated as

c(p;X) = e−m (− log(1− p))s , (9)

by setting either (m, s) = (µ̂, σ̂) or (m, s) = (µ̃, σ̃).

Hence the following algorithm can be used to calculate γ(p; θ) using a

Monte-Carlo sample of size r:

• Loop from i = 1 to i = r

– Generate i.i.d. observations (xi,1, . . . , xi,n, yi) from F (·; (0, 1)).

– Estimate µ, σ by (7) or (8).

– Calculate capital c(p;xi) by (9).

– Record a ‘success’ if c(p;xi) ≥ yi.

• Estimate γ(p; θ) as the number of successes divided by r.

The algorithm was used in order to calculate the insolvency probabil-

ity γ̄(p; θ) for confidence levels p = 0.99, 0.995, 0.999 and sample sizes n =

10, 20, 50, 100. The calculation was carried out using a Monte-Carlo sample

of size r = 107 and parameters were estimated with both the MLE and PWM

methods. Results are summarised in Table III. Under PWM estimation, the

insolvency probabilities for the Weibull distribution are very close to those

of the 2-parameter (Log)normal distribution in Table I. However, for small

samples, the probability of insolvency is substantially higher when MLE is

used. This is explained by the worse performance of MLE compared to PWM

for the Gumbel/Weibull distribution, that has been observed [28],[29]. In-

tuitively, less accurate parameter estimates are more likely to give rise to

inappropriate capital estimates and hence exacerbate the effect of parame-

ter uncertainty. The example indicates that weaknesses in the estimation

method itself may substantially increase the probability of insolvency.
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Table III: Insolvency probabilities γ(p; θ) for the Weibull distribution, us-

ing Maximum Likelihood Estimation (MLE) and Probability Weighted Mo-

ments (PWM). Calculated with Monte-Carlo sample of size r = 107.

p = 0.990 n = 10 n = 20 n = 50 n = 100 n = ∞
MLE 0.0531 0.0237 0.0146 0.0124 0.0100

PWM 0.0306 0.0199 0.0139 0.0120 0.0100

p = 0.995 n = 10 n = 20 n = 50 n = 100 n = ∞
MLE 0.0439 0.0159 0.0084 0.0066 0.0050

PWM 0.0227 0.0132 0.0081 0.0065 0.0050

p = 0.999 n = 10 n = 20 n = 50 n = 100 n = ∞
MLE 0.0324 0.0075 0.0027 0.0017 0.0010

PWM 0.0129 0.0058 0.0026 0.0017 0.0010

3 ADJUSTING THE CAPITAL REQUIREMENT

It was argued in Section 2 that, when capital is held equal to an estimated

percentile of the loss distribution, the solvency probability for the loss port-

folio is generally lower than the specified confidence level, due to the effect

of parameter uncertainty. Formally,

γ(p; θ) = Pθ[Y ≤ F−1(p; θ̂)] ≤ Pθ[Y ≤ F−1(p; θ)] = p.

Such a situation is of course unsatisfactory, since the true probability of a

portfolio being solvent can be substantially lower than the one required by,

for example, a regulator or the holder’s own risk management.

In this section we explore two methods for adjusting the capital require-

ment, in order to reflect the effect of parameter uncertainty on solvency and

thus increase the solvency probability to its required level. In both methods

the capital requirement becomes higher. The first one relies on raising the

confidence level of the solvency capital calculation, while the second one,

based on Bayesian arguments, adjusts the probability distribution used for

capital setting.

3.1 Raising the confidence level

One could address the problem of the solvency probability being lower than

its specified level, by setting the capital at a higher confidence level, that is,

require that capital is set by:

c(p∗;X) = F−1(p∗; θ̂), p∗ > p
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The adjusted confidence level p∗ could then be selected by requiring that

γ(p∗;X) = Pθ[Y ≤ c(p∗;X)] = p (10)

If the loss distribution F (·; θ) belongs to a transformed (location-) scale fam-

ily, the probability of solvency does not depend on the unknown parameter

θ. Hence we can explicitly solve equation (10) and specify the adjusted

confidence level p∗. The process is illustrated in the following example.

Example 8. Let as before X1, . . . , Xn, Y distributed according to an expo-

nential or one-parameter Pareto distribution. Then it was shown in Example

4 that the solvency probability is given by:

γ(p; θ) = 1−
[
1 +

1

n
log

1

1− p

]−n

We require

γ(p∗; θ) = p =⇒ p∗ = 1− exp
{
−n
[
(1− p)−1/n − 1

]}
Therefore the confidence level according to which the capital has to be calcu-

lated becomes a function of the size n of the dataset. This is demonstrated

in figure 2, where the value of p∗ is plotted against n for different values of

the required solvency level p = 0.99, 0.995, 0.999. It can be seen that p∗ de-

creases as the sample size n gets larger, so that p∗ → p as n → ∞. Hence the

holder of a portfolio with a long history of relevant data will have to calculate

its capital according to a confidence level close to the required solvency prob-

ability p. In contrast, the holder of a portfolio for which very few observed

data exist will have to set capital according to a confidence level that is much

higher than p. For example, for n = 10 we have p = 0.99 ⇒ p∗ = 0.9971,

p = 0.995 ⇒ p∗ = 0.9991, p = 0.999 ⇒ p∗ = 0.99995.

Following the approach suggested here, each loss portfolio will have to

be assigned a different confidence level p∗, on which the capital requirement

is based, where p∗ depends on the loss distribution and the sample size

for the portfolio. On the face of it this makes sense: long experience and

diligent data collection are rewarded with a lower capital requirement; lack of

experience and incomplete data are penalised. It is noted that this argument

refers to relevant experience. It may be that a company has a long history

but changes in the risk profile, e.g. due to changes in portfolio mix or perils

driven by climate change, render much of that data set irrelevant. We do
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Figure 2: Adjusted confidence level p∗ used for capital setting in the expo-

nential/Pareto model, as a function of sample size n, for required solvency

probabilities p = 0.99, 0.995, 0.999

not deal with the case of detecting distributional changes over time, and

assume throughout that the data used are i.i.d.; discarding irrelevant data

of course reduces the sample size and increases the capital requirement.

There are other problems with adopting such an approach in practice

too. Consider that the capital requirement is being set by a regulator. This

means that the regulator would have to set a different confidence level p∗

for each regulated risk portfolio. Therefore the regulator would have to be

equipped with the knowledge of each portfolio’s aggregate loss distribution

(assuming this belongs to a transformed location-scale family), so that p∗ can

be calculated. Gathering such information may be logistically challenging

and assumes that regulators would be much closer to insurance company’s

modelling than they really are. Moreover, such an approach may appear

excessively prescriptive and thus at odds with principles-based regulatory

regimes such as ICAS and Solvency II.

Furthermore, such capital setting would likely be challenged by the port-

folio holders. The adoption of different confidence levels across portfolios

would give the impression of inequity and may be politically difficult to sup-

port. Implementation of the regime would not be helped by the potential

difficulty of explaining it to portfolio holders. The adjustment to the con-

fidence level relies on the rather abstract notion of a random capital level,

as in equations (2), (3). As discussed in Section 2.1, this may be best ex-

plained as an expected frequency of solvency across portfolios. While such

a quantity is certainly meaningful from a regulatory perspective, it is not
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necessarily relevant to individual portfolio holders such as insurance firms.

After all, the idea of a random capital level may strike portfolio holders, who

have already observed past losses and set their capital at a fixed amount,

as rather odd. Of course, no regulator would communicate in such abstract

terms, but instead state that a higher requirement is due whenever there

is insufficient information about the loss distribution. While this may help

communication, it would not resolve the underlying epistemic problem.

The next section proposes an adjusted capital requirement that addresses

these issues.

3.2 Adjusting the loss distribution

If holders of risk portfolios find the frequentist interpretation of parameter

uncertainty used to justify the adjustment in Section 3.1 meaningless, a dif-

ferent conceptualisation of uncertainty is necessary. This can be achieved

using standard Bayesian arguments. Unknown parameters can be consid-

ered as random quantities and the additional risk to solvency induced by

parameter uncertainty can be reflected by constructing a more dispersed

predictive distribution.

A prior density π(θ) is defined over the parameter space θ ∈ S. The prior
π is potentially improper and can be chosen to be uninformative, so that

subjective judgement does not enter the calculation. Given the observed

data X = x, the parameters’ posterior density is given by:

π(θ|x) = I(x)−1π(θ)

n∏
j=1

fj(xj ; θ), (11)

where I(x) =
∫
η∈S π(η)

∏n
j=1 fj(xj ; η)dη. The predictive density and distri-

bution of Y are respectively defined as:

f̂(y|x) =
∫
η∈S

f(y; η)π(η|x)dη, F̂ (y|x) =
∫
η∈S

F (y; η)π(η|x)dη. (12)

Probabilities calculated using the predictive density are denoted by P̂ (·|x).
An alternative way of raising the capital requirement is then, rather than

increase the confidence level, to adjust the loss distribution used for capital

setting by using the predictive distribution. This reflects parameter uncer-

tainty by being typically more dispersed than the loss distribution F (·; θ̂(x)).
Thus capital can be set as a percentile of the predictive distribution:

ĉ(p|x) = F̂−1(p|x). (13)
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Such an approach presents substantial practical advantages compared to

the adjustment of the confidence level discussed in Section 3.1. A regulatory

regime whereby capital is set as a percentile of the predictive distribution is

consistent with principle-based regimes; the regulator has only to specify a

confidence level, the same for all companies, and all calculations are carried

out by companies themselves. The regulator does not need to have access

to loss data or to know the family of loss distributions best describing the

portfolio’s loss profile. In effect, the change from current regulatory practices

would be marginal; rather than the regulator saying ‘calculate your capital

requirement as the 99.5th percentile of your estimated loss distribution,”

he would say ‘calculate your capital requirement as the 99.5th percentile

of your predictive loss distribution.” Furthermore, from the perspective of

portfolio holders, reflecting parameter uncertainty by defining a distribution

over the parameters may be easier to interpret than viewing the capital held

as a random number.

It is, however, not clear whether setting capital by the predictive dis-

tribution has the desired effect, that is, whether it raises the probability of

solvency, with respect to the true parameters, to an acceptable level. That

is, we would like to know the value of the probability:

δ(p; θ) = Pθ[Y ≤ ĉ(p|X)], (14)

where the capital level ĉ(p|X) is now viewed as a random variable. Essen-

tially (14) states the expected probability of solvency from the perspective

of a regulator, when the capital is set according to (13). Ideally it would

be δ(p; θ) = p, as it would mean that the adjustment to the capital setting

regime raised the probability of solvency to its required level. An example

where such consistency holds is given next.

Example 9. Let i.i.d. X1, . . . , Xn, Y follow F (x; θ) = 1 − e−
x
θ , x ≥ 0.

Standard arguments show that for prior π(θ) = θ−ν , ν ≥ 0 and observed

sample X = x, the predictive distribution obtained is

f̂(y|x) = (n+ ν − 1)
(
∑

j xj)
n+ν−1

(y +
∑

j xj)
n+ν

⇒ P̂ [Y > y|x] =

( ∑
j xj

y +
∑

j xj

)n+ν−1

,

which is a Pareto distribution; hence the allowance for parameter uncertainty

has turned the distribution used for capital assessment from a light- to a

heavy tailed one. Capital can then be set as:

ĉ(p|x) = F̂−1(p|x) =
∑
j

xj

[
(1− p)−1/(n+ν−1) − 1

]
.
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The expected frequency of insolvencies under this capital setting method is

given by

δ(p; θ) = Pθ [Y > ĉ(p|X)]

= Pθ

Y >
∑
j

Xj

(
(1− p)−1/(n+ν−1) − 1

)
= Pθ

[ ∑
j Xj∑

j Xj + Y
< (1− p)1/(n+ν−1)

]
.

The quantity
∑

j Xj∑
j Xj+Y follows a Beta(n, 1) distribution with cumulative dis-

tribution B(x;n, 1) = xn, x ∈ [0, 1]. Therefore

δ(p; θ) = (1− p)n/(n+ν−1) (15)

Note that if we let ν = 1, that is, if we use an uninformative prior of the

form π(θ) = θ−1 appropriate for scale families [30], we get

δ(p; θ) = 1− p ⇔ δ(p; θ) = p,

as required.

The example demonstrated the potential effectiveness of using a pre-

dictive distribution for capital setting, in satisfying the regulatory solvency

probability requirement. Such consistency between Bayesian and frequentist

methods [24],[22] is more generally true for the transformed (location-) scale

families discussed in this paper. In particular, as shown in Proposition 2 in

the Appendix, for such distributions, when the prior π(µ, σ) = σ−1 is used,

it is always the case that δ(p; θ) = p. More broadly, for priors of the form

π(µ, σ) = σ−ν , we find that the resulting solvency probability again does not

depend on the real parameters, so that the probability can be potentially

calculated by a regulator.

4 DATA POOLING

In Section 3 it was argued that the effect of parameter uncertainty on sol-

vency can be addressed by a stricter regulatory regime, adopting a higher

confidence level or more dispersed loss distribution. These are actions that

a regulator may take. Portfolio holders on the other hand can increase their

probability of solvency by addressing the key issue discussed in this paper:

lack of sufficient data.
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We assume that the losses from the portfolios of a number of different

companies, follow distributions with the same parameters, after appropriate

adjustments. (This simplifying assumption is of course quite strong. We

are not concerned here with credibility theory, the optimal combined use of

a company’s own and benchmark data for pricing purposes [27], which has

also been proposed in the context of operational risk capital setting [31]).

Then the portfolio holders may decide to pool their data in order that each

of them is able to estimate their required capital from a larger data set. As

a consequence the solvency probability of each should increase.

We note that the setting here is somewhat contrived, as it is required

that companies have independent risk exposures following similar probability

distributions, which are estimated using the same benchmark data set. This

is a situation not easily envisaged in insurance risk management. However in

operational risk management, pooling of loss data between different financial

institutions does occur [32], while it is not unreasonable to assume that

operational risk losses are independent across institutions.

A side-effect of pooling data is that, even if the losses from different port-

folios are independent, the portfolio (in)solvency events become dependent.

This is because the capital of each portfolio is calculated on the basis of the

same random sample. Hence there is a chance that the capital is collectively

over- or under-stated for all portfolios. One has to then examine the effect

of data sharing on systemic stability, for example via the joint probability

of insolvency. Such an examination is given below, for the simple example

of two portfolios with exponentially distributed losses. The process can be

carried out for losses in any (location-) scale family, as the joint insolvency

probability will again be independent of the true parameter θ.

Example 10. Consider the simple case where only two portfolios exist, and

all losses, within and across portfolios, are i.i.d. Hence we have

X1 = (X1,1, . . . , X1,n1), Y1

X2 = (X2,1, . . . , X2,n2), Y2

}
∼ F (·; θ),

where F is an exponential or Pareto distribution. Let X = (X1,X2) and

n = n1 + n2. First consider the case that data are not pooled. Then the

probability of insolvency for each portfolio is

Pθ[Yi > c(pi;Xi)] =

[
1 +

1

ni
log

1

1− pi

]−ni

, i = 1, 2
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and the joint probability of insolvency is given by:

Pθ[Y1 > c(p1;X1), Y2 > c(p2;X2)] =

[
1 +

1

n1
log

1

1− p1

]−n1
[
1 +

1

n2
log

1

1− p2

]−n2

.

(16)

Let now the two portfolios merge their data sets. Then the probability of

insolvency for each portfolio is

Pθ[Yi > c(p;X)] =

[
1 +

1

n
log

1

1− pi

]−n

, i = 1, 2,

which is lower than Pθ[Yi > c(pi;Xi)], demonstrating the beneficial effect of

data sharing. Calculation yields the joint probability of insolvency as

Pθ[Y1 > c(p1;X), Y2 > c(p2;X)] =

[
1 +

1

n
log

(
1

(1− p1)(1− p2)

)]−n

.

(17)

So which of the two situations (pooled or un-pooled data) produces a lower

joint probability of insolvency? Observe that

Pθ[Y1 > c(p1;X), Y2 > c(p2;X)]−1/n = 1 +
1

n
log

(
1

(1− p1)(1− p2)

)
=

1

n

[
n1

(
1 +

1

n1
log

1

1− p1

)
+ n2

(
1 +

1

n2
log

1

1− p2

)]
≥
[(

1 +
1

n1
log

1

1− p1

)n1
(
1 +

1

n2
log

1

1− p2

)n2
]1/n

= Pθ[Y1 > c(p1;X1), Y2 > c(p2;X2)]
−1/n,

(where the inequality follows from the fact that the arithmetic mean is greater

than the geometric one) implying

Pθ[Y1 > c(p1;X), Y2 > c(p2;X)] ≤ Pθ[Y1 > c(p1;X1), Y2 > c(p2;X2)]

Note that an equality is obtained only for n1 log(1 − p1) = n2 log(1 − p2);

in particular when p1 = p2 we have equality for n1 = n2. In this simple

example, pooling of data is beneficial at the individual portfolio, as well as

the systemic level.

For a numerical example we fix p1 = p2 = 0.995 and let n1 = 10, 20, 50.

In figure 3a) we plot against n2 the correlation of the indicator functions

of insolvency events {Y1 > c(p1;X)}, {Y2 > c(p2;X)}. This ‘insolvency

event correlation’ is similar to the default correlation encountered in credit

risk analysis [7]. It can be seen that the correlation is positive, indicating

the positive dependence that the pooling of data induces. The correlation
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Figure 3: The effect of pooling on joint insolvency, for exponential/Pareto

losses, n1 = 10, , 20, 50 and p1 = p2 = 0.995: a) insolvency event corre-

lation; b) ratio of the joint insolvency probabilities Pθ[Y1 > c(p1;X), Y2 >

c(p2;X)]/Pθ[Y1 > c(p1;X1), Y2 > c(p2;X2)].

is reduced when the number of available data n1, n2 increases. In figure

3b), the ratio of the joint insolvency probabilities Pθ[Y1 > c(p1;X), Y2 >

c(p2;X)]/Pθ[Y1 > c(p1;X1), Y2 > c(p2;X2)] is plotted. It is seen that the

ratio is always < 1, such that data pooling, while introducing insolvency

correlation, does not increase systemic risk. The lowest values of the ratio

are obtained when n1 and n2 are very different. This implies that the greatest

benefit of pooling data is obtained when, of the two data-sets pooled, the one

is small and the other large.

5 CONCLUSION AND DISCUSSION

In the article it is argued that a frequentist interpretation of parameter un-

certainty is appropriate for quantifying its effect on the solvency probability

of loss portfolios, when seen through the eyes of a regulator. It is shown that

for a rich class of loss distributions, solvency probabilities can be explicitly

calculated (even though the real parameters remain unknown) and depend

strongly on the size of the data set used for the estimation of risk capital. In

particular we show that for small datasets the true probability of insolvency

for a portfolio can be much higher than the notional one. When taking

the viewpoint of a financial firm, a Bayesian interpretation of uncertainty

is more appropriate. Hence we propose an improvement on current capital

setting regimes, based on percentiles of predictive distributions, and use a
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result from the theory of predictive inference [22] in order to reconcile the

two viewpoints.

We also argue that data sharing arrangements should be examined from

the point of view of systemic risk, due to the dependence of insolvency events

induced by portfolio holders using the same dataset.

The key results for our article are Propositions 1 and 2. These only hold

for loss distributions that can be transformed to (location-) scale ones. The

assumption is of course rather restrictive; it is however the price we have to

pay for deriving explicit formulas for small samples. More general results

could be derived by asymptotic arguments[21],[24] that we do not pursue

here; such an approach may be of interest, but the case of large samples is

possibly less relevant for the study of parameter uncertainty.

Throughout the article we have assumed that the data are independent of

each other and of future losses. This assumption is not necessarily realistic;

dependency of loss variables, in particular at the tails of distributions, is

a recurring theme in financial risk management [7]. Propositions 1 and 2

can easily be extended for data following an arbitrary joint distribution with

transformed (location-) scale marginals, as long as the dependence structure

is known. The case when the dependence structure itself is unknown and

must be estimated from the data is harder and is the subject of future work.

An issue that we have not addressed at all is model uncertainty, since we

assumed that the family of distributions that each random variable follows is

known. Insofar, our results for insolvency probability may form a best-case

scenario, as the inclusion of model uncertainty may paint an even bleaker

picture of financial firms’ solvency probabilities. Extension of our reasoning

to a framework addressing model uncertainty is possible. Bayesian reasoning

in the context of model unertainty is well-established [10],[12]. A frequentist

view of model uncertainty is also possible, if one formalises model selection

according to a prescribed criterion as a data-driven random process. Such

an analysis can form the basis of a future investigation.
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APPENDIX: FORMAL STATEMENTS AND PROOFS

For the statements of results and derivations in the appendix, all distribu-

tions considered are continuous, invertible and have a corresponding density.

All random variables are independent. Many of the results stated below are

rather simple and can be found in mathematical statistics textbooks; they

are restated here for reasons of clarity and completeneess.

A Increasing transformations

For a sample X = (X1, . . . , Xn), such that Xi ∼ Fi(·; θ), i = 1, . . . , n,

consider an estimator of the parameter θ, given by θ̂(X;F1, · · · , Fn). Given

functions hi : R → R, i = 1, . . . , n, use the notation h◦X = (h1(X1), . . . , hn(Xn)).

Consider then a transformed sample X∗ = (X∗
1 , . . . , X

∗
n) such that X∗

i ∼
F ∗
i (·; θ), i = 1, . . . , n, so that the estimator of θ from the transformed sam-

ple is θ̂(X∗;F ∗
1 , · · · , F ∗

n).

Consider now that a Bayesian approach. A prior π(·) is defined over θ,

such that the posterior is given by π(θ|X) ∝ π(θ)
∏n=1

j fj(Xj ; θ). Assuming

that the same prior π is used, denote by π∗(θ|X∗) ∝ π(θ)
∏n=1

j f∗
j (X

∗
j ; θ)

the posterior of θ from the transformed sample.

Lemma 1. Consider X and X∗ as above with h1, . . . , hn be strictly increas-

ing functions. Then:

i) The maximum likelihood estimator θ̂ is invariant to the transforma-

tions h1, . . . , hn, in the sense that

θ̂(X;F1, · · · , Fn) = θ̂(X∗;F ∗
1 , · · · , F ∗

n).

ii) The posterior of θ is invariant to h1, . . . , hn, in the sense that

π(θ;X) = π∗(θ;X∗).

Proof. Let vi(s) = hi(s). The likelihood of the transformed sample X is

n∏
j=1

f∗
j (X

∗
j ; θ) =

n∏
j=1

v′(X∗
j )fj(v(X

∗
j ); θ) =

n∏
j=1

v′(h(Xj))

n∏
j=1

fj(Xj ; θ),

Hence the likelihood of the transformed sample X∗ is the same as that of

the sample X, multiplied by a term that does not contain θ. From this both

i) and ii) immediately follow.
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Lemma 2. Let Xi ∼ Fi(·; θ), i = 1, . . . , n, Y ∼ F (·; θ) and transformed

variables X∗
i = hi(Xi) ∼ F ∗

i (·; θ), i = 1, . . . , n, Y ∗ = h(Y ) ∼ F ∗(·; θ) where

the functions h1, . . . , n, h are strictly increasing.

i) Let θ̂(X;F1, . . . , Fn) be the maximum likelihood estimator. Then

Pθ[Y ≤ F−1(p; θ̂(X;F1, . . . , Fn))] = Pθ[Y
∗ ≤ F ∗−1(p; θ̂(X∗;F ∗

1 , . . . , F
∗
n))]

ii) Denote the predictive distributions derived from the original and trans-

formed samples by F̂ (y|X) =
∫
F (y; η)π(η|X)dη,

F̂ ∗(y|X∗) =
∫
F ∗(y; η)π∗(η|X∗)dη respectively. Then

Pθ[Y ≤ F̂−1(p|X)] = Pθ[Y
∗ ≤ F̂ ∗−1(p|X∗)].

Proof. Part i): By Lemma 1i) and the strict increasingness of h,

Pθ[Y
∗ ≤ F ∗−1(p; θ̂(X∗;F ∗

1 , . . . , F
∗
n))] = Pθ[h(Y ) ≤ h◦F−1(p; θ̂(X;F1, . . . , Fn))],

which yields the required result.

Part ii): From Lemma 1ii) it follows that F̂ ∗(y|X∗) = F̂ (h−1(y)|X) ⇒
F̂ ∗−1(p|X∗) = h ◦ F̂−1(p|X). Therefore Pθ[Y

∗ ≤ F̂ ∗−1(p|X∗)] = Pθ[h(Y ) ≤
h ◦ F̂−1(p|X)], which yields the required result.

B Transformed location-scale families

All definitions and results are given for 2-parameter location-scale families,

since results and proofs for location or scale families are very similar.

A set ALS of univariate probability distributions is called a location-

scale family if for every X1 ∼ F1 ∈ ALS , X2 ∼ F2 ∈ ALS we can write X2
d
=

aX1+b for some a > 0, b ∈ R. We can choose an particular element F ∈ ALS

and call this the standard distribution of the family ALS . Let Z ∼ F . Then

for every X with a distribution in ALS , we can write X
d
= µ+σZ, σ > 0 and

use the notation X ∼ F (·;µ, σ), where F (x;µ;σ) = F
(x−µ

σ

)
. It obviously

is Z ∼ F (·; 0, 1).
Let ALS be a location-scale family. A set Ah

LS of univariate probability

distributions is called a transformed location-scale family, if there is strictly

increasing function h such that for any X ∈ Ah
LS it is h−1(X) ∈ ALS . Then

we can write X ∼ F (·;µ, σ;h), where F (x;µ, σ;h) = F
(
h−1(x)−µ

σ

)
, with F

the standard distribution of ALS .
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Lemma 3. Consider Xi ∼ Fi (·;µ, σ) , i = i, . . . , n, belonging to location-

scale families. Then the maximum likelihood estimator θ̂(X;F1, . . . , Fn) =

(µ̂(X;F1, . . . , Fn), σ̂(X;F1, . . . , Fn)) is location-scale equivariant in the sense

that

θ̂(aX+ b;F1, . . . , Fn) = (aµ̂(X;F1, . . . , Fn) + b, aσ̂(X;F1, . . . , Fn)),

for all a > 0, b ∈ R.

Proof. Let θ̂ = (µ̂, σ̂) maximise the likelihood

n∏
j=1

fj(Xj ;µ, σ) =

n∏
j=1

1

σ
fj

(
Xj − µ

σ

)
,

where fi(·) is the standardised density ofXi. For a > 0 consider transformed

sample X∗
i = aXi + b, i = 1, . . . , n. Its likelihood is:

n∏
j=1

fj(X
∗
j ;µ, σ) =

n∏
j=1

1

σ
fj

(
aXj + b− µ

σ

)

= a−n
n∏

j=1

1

σ/a
fj

(
Xj − (µ− b)/a

σ/a

)
So if θ̂∗ = (µ̂∗, σ̂∗) maximises the likelihood of the transformed sample,

it follows that (µ̂∗ − b)/a = µ̂, σ̂∗/a = σ̂ from which the required result

follows.

Consequently, the maximum likelihood estimator (µ̂, σ̂) has joint distri-

bution G(·, ·;µ, θ) and (assuming it is well defined) density g(·, ·;µ, θ), that
can be written as

G(m, s;µ, σ) = G

(
m− µ

σ
,
s

σ

)
, g(m, s;µ, σ) =

1

σ2
g

(
m− µ

σ
,
s

σ

)
,

(18)

where G(m, s) ≡ G(m, s; 0, 1) and g(m, s) = ∂2

∂m∂sG(m, s) do not depend on

µ, σ.

Lemma 4. Consider Xi ∼ Fi (·;µ, σ) , i = i, . . . , n, belonging to location-

scale families. Then, assuming a prior of the form π(µ, σ) = σ−ν , ν ≥ 0,

the posterior density is location-scale equivariant in the sense that

π(µ, σ|aX+ b) =
1

a2
π

(
µ− b

a
,
σ

a
|X
)

for all a > 0, b ∈ R.
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Proof. Let X∗
i = aXi + b, i = 1, . . . , n, and denote by π∗(m, s;X∗) the

posterior density of the parameters under transformed sample, so that:

π∗(m, s|X∗) = I(X∗)−1s−ν
n∏

j=1

fj(X
∗
j ;m, s),

where I(X∗) is the normalising constant. It is:

s−ν
n∏

j=1

fj(X
∗
j ;m, s) = s−ν

n∏
j=1

1

s
fj

(
aXj + b−m

s

)

= a−n−ν
(s
a

)−ν
n∏

j=1

1

s/a
fj

(
Xj ;

m− b

a
,
s

a

)
On the other hand:

I(X∗) =

∫
m∈R

∫
s∈R++

s−νa−n
n∏

j=1

1

s/a
fj

(
Xj ;

m− b

a
,
s

a

)
dsdm

Making the substitutions ζ = m−b
a , η = s

a , we get

I(X∗) =

∫
ζ∈R

∫
η∈R++

η−νa−n−ν
n∏

j=1

1

η
fj (Xj ; ζ, η) a

2dηdζ = a2−ν−nI(X),

from which the result follows.

C Main results

Proposition 1. Consider Xi ∼ Fi (·;µ, σ;hi) , i = i, . . . , n, Y ∼ F (·;µ, σ;h),
belonging to transformed location-scale families. Let (µ̂(X), σ̂(X)) be the

maximum likelihood estimator. Then the probability γ(p;µ, σ) = Pµ,σ[Y ≤
F−1(p; µ̂, σ̂;h)] is given by

γ(p;µ, σ) =

∫
ζ∈R

∫
η∈R++

F
(
ζ + ηF−1(p)

)
g (ζ, η) dηdζ, (19)

where F is the distribution of h−1(Y )−µ
σ , and g(·, ·) is a bivariate density

function as in eq. (18). Therefore γ(p;µ, σ) does not depend on the param-

eters (µ, σ).

Proof. We prove the result only for the case of location-scale families. The

extension to transformed location scale families is achieved by Lemma 2i).

Applying Lemma 3, we have

γ(p;µ, σ) = Eµ,σPµ,σ[Y ≤ F−1(p; µ̂, σ̂;h)|(µ̂, σ̂)]
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=

∫
m∈R

∫
s∈R++

F
(
F−1(p;m, s);µ, σ

)
g(m, s;µ, σ)dsdm

=

∫
m∈R

∫
s∈R++

F

(
m− µ

σ
+

s

σ
F−1(p)

)
1

σ2
g

(
m− µ

σ
,
s

σ

)
dsdm

Carrying out the change of variables m−µ
σ = ζ, s

σ = η yields the stated

result.

Proposition 2. Consider Xi ∼ Fi (·;µ, σ;hi) , i = i, . . . , n, Y ∼ F (·;µ, σ;h),
belonging to transformed location-scale families. Let F̂ (y;h|X) be the pre-

dictive distribution of Y given the data X, obtained using prior π(µ, σ) =

σ−ν , ν ≥ 0. Then the probability δ(p;µ, σ) = Pµ,σ[Y ≤ F̂−1(p;h|X)] is

given by

δ(p;µ, σ) = Eµ,σ

[
F
(
F̂−1(p;h|Z)

)]
, (20)

where F is the distribution of h−1(Y )−µ
σ and Zi =

h−1
i (Xi)−µ

σ , i = 1, . . . , n,

so that δ(p;µ, σ) does not depend on the parameters (µ, σ). In particular,

for ν = 1 it is:

δ(p;µ, σ) = p. (21)

Proof. We prove the result only for the case of location-scale families. The

extension to transformed location scale families is achieved by Lemma 2ii).

Let X∗
i = aXi + b, a > 0, i = 1, . . . , n. By Lemma 4 we have

F̂ (y|X∗) =

∫
m∈R

∫
s∈R++

F (y;m, s)π(m, s|X∗)dsdm

=

∫
m∈R

∫
s∈R++

F

(
y −m

s

)
1

a2
π

(
m− b

a
,
s

a
|X
)
dsdm

Making the substitutions ζ = m−b
a , η = s

a it follows that

F̂ (y|X∗) = F̂

(
y − b

a
|X
)

⇒ F̂−1(p|X∗) = aF̂−1 (p|X) + b

Thus F̂−1(p|X) = σF̂−1 (p|Z) + µ, where Zi =
Xi−µ

σ , i = 1, . . . , n. Conse-

quently

δ(p;µ, σ) = Eµ,σ

[
F
(
F̂−1(p|X);µ, σ

)]
,

from which equation 20 directly follows. Equation 21 is obtained as a

direct application of Proposition 1 and Example 1 in [22]. A necessary

condition of the Proposition is the ‘invariance of the predictive region,’

which in our notation means the requirement that Y ≤ F̂−1(p|X) ⇔ aY +

b ≤ F̂−1(p|aX + b), a > 0. This follows directly from the statement

F̂−1(p|aX+ b) = aF̂−1 (p|X) + b which has been shown earlier in the proof.
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