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Abstract.

Optimal risk transfers are derived within an insurance group consisting of two sep-

arate legal entities, operating under potentially different regulatory capital require-

ments and capital costs. Consistent with regulatory practice, capital requirements

for each entity are computed by either a Value-at-Risk or an Expected Shortfall risk

measure. The optimality criterion consists of minimising the risk-adjusted value of

the total group liabilities, with valuation carried out using a cost-of-capital approach.

The optimisation problems are analytically solved and it is seen that optimal risk

transfers often involve the transfer of tail risk (unlimited reinsurance layers) to the

more weakly regulated entity. We show that, in the absence of a capital require-

ment for the credit risk that specifically arises from the risk transfer, optimal risk

transfers achieve capital efficiency at the cost of increasing policyholder deficit. How-

ever, when credit risk is properly reflected in the capital requirement, incentives for

tail-risk transfers vanish and policyholder welfare is restored.

Keywords and phrases: Cost of Capital, Expected Shortfall, Insurance Groups, Op-

timal Reinsurance, Value-at-Risk.

1. Introduction

Insurance groups often comprise a number of distinct legal entities, operating in different territo-

ries. Diversification across an insurance group is no trivial matter and the way it operates depends

on the group’s legal structure. On the one hand, the risk exposures of different entities will in general

not be perfectly correlated, and thus some group level diversification (Keller, 2007) is observed (e.g.

by a parent company). On the other hand, risks and assets in the group portfolio are not pooled

across entities, hence there are limits to the cross-subsidy, as well as the capital fungibility, within

the group. Nonetheless, the risk and capital requirements of individual entities can be reduced,

through a web of capital and risk transfer arrangements across entities. The capital efficiency thus

produced can be seen as a result of down-streaming of diversification (Keller, 2007).

The complexity of group legal structures and intra-group risk transfers, with entities being po-

tentially subject to different regulatory regimes, poses a major challenge for regulators; it is not

surprising that a substantial part of the European Solvency II Directive (European Commission,
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2009) is dedicated to group supervision. Studying such complexity has motivated a lively academic

literature. Filipović and Kupper (2008) discuss optimal risk transfers, in a framework where a finite

set of risk transfer instruments is available and the capital requirements of individual entities are

calculated using convex risk measures. Gatzert and Schmeiser (2011) study the impact of group

diversification on shareholder value, considering a variety of group structures and capital and risk

transfer instruments, while also offering a thorough literature review of diversification in financial

conglomerates. Schlütter and Gründl (2011) assess the impact of group building on policyholder

welfare. In their analysis, it is assumed that a particular type of rational risk transfer arrangement

is enforced, while the group sets premium and equity targets in order to maximise shareholder value,

allowing for the impact of entities’ default risk on insurance demand.

The above literature generally analyzes the impact of risk transfers of pre-specified type. In

contrast, the focus here is on deriving optimal functional forms of risk transfers. For this purpose, we

use a formal setting with two legal entities, subject to potentially discrepant regulatory requirements.

Hence our work is also related to the literature on optimal reinsurance contract design. The first

attempts are attributed to Borch (1960) and Arrow (1963) where maximising the expected utility

defines the optimality criterion. Further extensions have been developed for various decision criteria

that depend on the risk measure choice (for example, see Heerwaarden et al., 1989; Young, 1999;

Kaluska, 2001 and 2005, Verlaak and Beirlant, 2003; Kaluszka and Okolewski, 2008; Ludkovski and

Young, 2009; Bernard and Tian, 2010). Decisions based on two particular risk measures, Value-at-

risk (VaR) and Expected Shortfall (ES), are considered by Cai et al. (2008), Cheung (2010) and Chi

and Tan (2011). All of the afore mentioned papers deal with the one-period model. The classical

risk model setting has been successfully studied in the literature by Centeno and Guerra (2010) and

Guerra and Centeno (2008 and 2010), via maximisation of the adjustment coefficient. Alternatively,

there is a rich literature on dynamic risk allocation, where the objective is the ruin probability (see

for example, Schmidli, 2001 and 2002, Hipp and Vogt, 2003). An excellent review paper regarding

the latter approach, and not only, is given by Albrecher and Thonhauser (2009).

In this paper, optimal risk transfers are chosen such that the risk adjusted value of the group

liabilities is minimised, when valuation takes place under a cost-of-capital methodology, similar

in principle to the ones discussed in Wüthrich et al. (2010) and lying at the heart of regulatory

valuation approaches (e.g. under the Swiss Solvency Test and Solvency II (Federal Office of Private

Insurance, 2006, and European Commission, 2009).

Analytical solutions are provided for the corresponding optimisation problems, when the capital

requirement for each entity is given either by VaR, the risk measure used under Solvency II, or ES,

used in the Swiss Solvency Test. In addition, each entity is subject to a different cost of capital,

due to potential differences in taxation or other operating costs. The results bear out the properties

of the risk measures used, specifically the VaR measure’s insensitivity to tail risk beyond the given

confidence level. In particular, when one entity is subject to a lighter (VaR-based) regulatory

requirement than the other, it ends up being allocated most of the group’s extreme risk exposure,

in the form of high (usually infinite) layers.

Such incentives ought to trouble regulators, since, beyond direct implications for policyholder

welfare, transferring tail risk is arguably also associated with the transfer of operational and model
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risks. To further investigate these incentives, we focus on the case where the first entity is subject

to an ES-based capital requirement, while the second entity, acting as subsidiary solely set up

to reinsure the first, holds capital according to VaR. We then show that, in the absence of an

allowance for credit risk in capital requirements, the transfer of tail risk to the VaR-regulated

entity is detrimental to policyholder welfare as it increases the expected policyholder deficit. This

is equivalent to saying that the value of the insurer’s default option (calculated under a physical

measure) increases (Phillips et al., 1998, and Myers and Read, 2001).

Motivated by these findings, we then consider a situation where the counter-party credit risk

arising from the risk transfer is reflected in the ES-based capital requirement of the first entity.

A corresponding optimisation problem is formulated and its solution shows that incentives for

transferring tail risk to the second entity vanish. Moreover, policyholder welfare is restored to

pre-transfer levels.

We conclude from our analysis that discrepant regulatory regimes can produce risk transfers

that trade off group capital efficiency against policyholder welfare. However, the group incentives

for such action vanish as long as credit risk is fully allowed for, both in terms of quantifying the

dependence between entities’ exposures and assuming a reduced recovery given default. While our

results are produced in a rather formal and simplified setting, we believe that they are informative in

relation to the potentially damaging direction of incentives, which inconsistent capital requirements

can produce.

In Section 2, some background on the risk measures used is offered. Then the optimisation

problem is formally introduced and solutions are given for different combinations of risk measures.

Section 3 deals with the impact of credit risk on policyholder deficit. Revised optimal risk transfers

are obtained when the credit risk is reflected in the capital requirement, and the impact of the

change is demonstrated by a numerical example. Finally, in the light of the results obtained, some

of the key assumptions of our setting are discussed. Brief conclusions are stated in Section 4. Proofs

tend to be technical, and therefore they are collected in the Appendix.

2. Optimal risk transfers

2.1. Value-at-Risk and Expected Shortfall. We start this section by briefly discussing the risk

measures that will be extensively used throughout the paper. Motivated by standard regulatory

requirements developed in the insurance industry, the risk measures considered are VaR and ES.

The V aR of a generic loss variable Z at confidence level α, V aRα(Z), represents the minimum

amount of capital that will not be exceeded by the loss Z with probability α. Mathematically,

V aRα(Z) := inf{z ∈ < : Pr(Z ≤ z) ≥ α},

where inf ∅ = ∞.

VaR has been criticized for its incomplete allowance for the risk of extreme events beyond the

confidence level α (Dowd and Blake, 2006), which also leads to a violation of the commonly required

subadditivity property (Artzner et al., 1999). To correct such shortcomings, ES has been proposed

(Artzner et al., 1999) as an alternative risk measure. While V aR focuses on a particular point of

the loss distribution, the ES at confidence level α, ESα(Z), evaluates the expected loss amount

incurred under the worst 100× (1−α)% loss scenarios of Z. The ESα has multiple formulations in



4

the literature (Acerbi and Tasche, 2002, and Hürlimann, 2003). In the present paper, we only refer

to the following two representations:

ESα(Z) :=
1

1 − α

∫ 1

α

V aRs(Z) ds = V aRα(Z) +
1

1 − α
E
(

Z − V aRα(Z)
)

+
, (2.1)

where the notation (z)+ = max{z, 0} is used.

While it is clearly the case that V aRα(Z) ≤ ESα(Z), it is sometimes desirable to derive a

calibration of ES such that the two risk measures are comparable. One possibility is to set β =

1−2(1−α). Then, loosely speaking, ESβ(Z) is the conditional expected value of Z given Z > V aRβ ,

while V aRα(Z) is the median of the corresponding conditional distribution. Examples of such risk

measures considered broadly consistent, are the V aR0.995 used under Solvency II and the ES0.99

used in the Swiss Solvency Test (EIOPA, 2011). Empirical evidence shows skewness of tails of loss

distributions, and suggests that ESβ(Z) > V aRα(Z) is expected to hold for such confidence level

choices.

2.2. General form of the optimisation problem. Here, the formal setting is given for the

optimisation problems solved throughout Section 2. We denote by X ≥ 0 the total insurance

liabilities that an insurance group consisting of two separate legal entities is exposed to. The

distribution function of X is given by F and the survival function is F̄ = 1 − F . The right end-

point xF := inf{z ∈ < : F (z) = 1} of the loss distribution can be either finite or infinite.

The insurance group allocates the total risk X between its two entities, using appropriate risk

transfer agreements. In particular, after risk transfers take place, the liabilities of the two entities

are I1[X] and I2[X] respectively, such that I1[X] + I2[X] = X.

Each of the two entities is assumed to be subject to potentially different regulatory requirements,

in each case quantified by a risk measure. We denote the risk measure used to regulate the first

entity by ϕ1, where ϕ1 ≡ V aRα1
or ϕ1 ≡ ESα1

and the risk measure used by the second entity by

ϕ2, where ϕ2 ≡ V aRα2
or ϕ2 ≡ ESα2

. The total capital requirements of the first and second entity

are thus ϕ1

(

I1[X]
)

and ϕ2

(

I2[X]
)

, respectively. In addition, for each of the entities, one can define

the risk adjusted value of its liabilities, by

RAV (Ik[X]; ϕk, λk) := E
(

Ik[X]
)

+ λk

(

ϕk

(

Ik[X]
)

− E
(

Ik[X]
)

)

, k ∈ {1, 2}, (2.2)

where λk ∈ (0, 1) is the cost of capital as a percentage of the pure risk capital ϕk

(

Ik[X]
)

−E
(

Ik[X]
)

.

Such a valuation principle is used commonly in practice and is embedded in regulatory requirements

under the Swiss Solvency Test and Solvency II. The idea behind it is that the taker of a liability

in an arm’s length transaction must be compensated by receiving a) the expected value of future

claims and b) funds equal to the cost of raising the necessary regulatory capital to support the

liability. Typically, the cost of capital in excess of the expected loss is considered, as assets equal

to the expected loss are matched to liabilities and are thus not considered as shareholder equity. A

detailed analysis of the cost-of-capital approach to actuarial valuation is given in Wüthrich et al.

(2010).

Our purpose is now to derive risk transfers that minimise the risk adjusted value of liabilities

across the group, reflecting the potentially different risk measures and capital costs pertaining to
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each of the two entities. Hence, we seek to minimise the quantity:

RAV (I1[X]; ϕ1, λ1) + RAV (I2[X]; ϕ2, λ2) (2.3)

= E
(

X
)

+ λ1

(

ϕ1

(

I1[X]
)

− E
(

I1[X]
)

)

+ λ2

(

ϕ2

(

I2[X]
)

− E
(

I2[X]
)

)

,

among the feasible set of risk allocations

{

I1[x] + I2[x] = x : I1[x] and I2[x]are non-decreasing functions with I1[0] = I2[0] = 0
}

.

Since I1[X] and I2[X] are co-monotone and the risk measures considered are additive for such

random variables (for details, see Denuit et al., 2005, sections 2.3.2.5 and 2.4.3.4), it follows that

ϕ1

(

I1[X]
)

= ϕ1

(

X
)

−ϕ1

(

I2[X]
)

. Thus, minimising the risk adjusted value of (2.3) is equivalent to:

min
I2∈F

(

λ1 − λ2

)

E
(

I2[X]
)

+ λ2ϕ2

(

I2[X]
)

− λ1ϕ1

(

I2[X]
)

, (2.4)

where F is the set of all non-decreasing Lipschitz continuous functions that goes through the origin.

The rationale by which we solve (2.4) rests on a number of key assumptions, including:

a) Insurance liabilities are the only risk that the group is exposed to; in particular, the regula-

tory capital held is invested with no risk.

b) The optimisation problem (2.4) remains meaningful even when capital held by the group is

higher than the regulatory minimum.

c) The capital requirements do not explicitly allow for counter-party credit risk arising from

the risk transfers considered.

d) The optimal risk allocations I1[X], I2[X] are co-monotone.

e) The risk transfers have no impact on the market value of insurance policies sold by the group

and, hence, the group’s profitability.

Assumption a) is not particularly realistic, but is one made for reasons of formal clarity; in

principle, some non-insurance risks could be absorbed into the total risk X.

Assumption b) can be justified as follows. While assets in excess of regulatory capital may be

available to the group, regulatory minima retain their significance since they relate to assets that

are not fungible across entities in different territories. Furthermore, if the risk adjusted value (2.2)

represents the necessary payment to a third party for it to accept the risk, there is no reason why

such a price should be dependent on the total assets of the bearer of the original risk.

The other three assumptions are potentially contentious and deserve further explanations, which

are best provided when the ideas of the present section are further developed. Section 3 deals at

length with c), while assumptions d) and e) are discussed in Section 3.5.

The remaining part of this section is devoted to solving the four optimisation problems arising

from different risk measure combinations.

2.3. VaR / VaR setting. In the scenario where both entities are subject to VaR-based capital

requirements, i.e. ϕ1 ≡ V aRα1
, ϕ2 ≡ V aRα2

, the optimisation problem at hand is:

min
I2∈F

(

λ1 − λ2

)

E
(

I2[X]
)

+ λ2V aRα2

(

I2[X]
)

− λ1V aRα1

(

I2[X]
)

. (2.5)

Theorem 2.1 states the optimal risk transfer arrangement under this setting.
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Theorem 2.1. The optimal solution of (2.5) is:

i) If λ1 6= λ2,

I∗
2 [X] =

{

min
{

X, V aRα1
(X)

}

, λ1 > λ2,
(

X − V aRα2
(X)

)

+
, λ1 < λ2.

ii) If λ1 = λ2 and V aRα1
(X) ≤ V aRα2

(X),

I∗
2 [X] =

{

f2(X), X > V aRα2
(X),

min
{

f1(X), t1
}

, otherwise,

where f1(·) and f2(·) are non-decreasing Lipschitz continuous functions with unit constants such

that f1(0) = 0, f1

(

V aRα1
(X)

)

= f2

(

V aRα2
(X)

)

= t1, t1 ∈ [0, V aRα1
(X)].

VaR  (X)a
1

X

I*[X]
2

VaR  (X)a
1

(a) λ2 < λ1

X

I*[X]
2

VaR  (X)a
2

(b) λ1 < λ2

XVaR  (X)a
2

I*[X]2

t
1

VaR  (X)a
1

(c) λ1 = λ2, V aRα1
(X) < V aRα2

(X)

XVaR  (X)a
1

I*[X]2

t
2

VaR  (X)a
2

(d) λ1 = λ2, V aRα2
(X) < V aRα1

(X)

Figure 2.1. Risk allocations arising from Theorem 2.1.

The optimal risk allocations I∗
2 [x] arising from Theorem 2.1 are presented in Figure 2.1, noting

that I∗
1 [x] = X−I∗

2 [x]. To interpret the result, it is assumed, without loss of generality, that λ1 > λ2,

meaning that it is more expensive for the first entity to hold capital. The optimal allocation of the

risk X is then I∗
1 [X] =

(

X−V aRα1
(X)

)

+
, I∗

2 [X] = min{X, V aRα1
(X)}, implying that extreme risk

is retained by the first entity, while less extreme risk is transferred to the second. The effectiveness
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of such action follows from

V aRα1
(I∗

1 [X]) = V aRα1

(

(

X − V aRα1
(X)

)

+

)

= 0

V aRα2
(I∗

2 [X]) = V aRα2

(

min
{

X, V aRα1
(X)

}

)

= V aRmin{α1,α2}(X).

Thus, the blindness of the VaR measure to extreme risk nullifies the capital requirement of the

first entity, while capital held by the second entity at a lower cost, is lower or equal to the capital

arising from holding all risk X in either of the two entities. The way that the risk allocation

affects individual risk profiles is further illustrated in Figure 2.2, where the percentiles (VaRs) of

the random variables X, I∗
1 [X], I∗

2 [X] are plotted against the confidence level β. It can be seen

that the percentiles of I∗
1 [X] remain at zero until β > α1, while the percentiles of I∗

2 [X] increase

with those of X up to confidence level α1 and remain constant thereafter.

a
1 1 b

VaR  (X)a
1

VaR  (X)b

VaR  (I*[X])b 2

VaR  (I*[X])b 1

Figure 2.2. VaR allocations of I∗
1 [X] and I∗

2 [X] for various confidence levels β (The-

orem 2.1 for λ1 > λ2).

The case λ1 = λ2 is somewhat different, as the equality of the cost-of-capital parameters makes

solutions non-unique, making in turn the notation more complex. If V aRα1
(X) ≤ V aRα2

(X), then

Theorem 2.1 essentially states that the function I∗
2 [·] should be constant on [V aRα1

(X), V aRα2
(X)]

and non-decreasing outside this interval, as seen in Figure 2.1. This means that the first entity

retains a layer of the total risk between V aRα1
(X) and V aRα2

(X), which is “undetected” by the

V aRα1
measure used to calculate the first entity’s capital, while losses smaller than V aRα1

(X)

or greater than V aRα2
(X) are arbitrarily split between the entities. Finally, the mirror case

V aRα1
(X) ≥ V aRα2

(X) follows by symmetry, and it is depicted in Figure 2.1, but not explic-

itly stated in Theorem 2.1.

2.4. VaR / ES setting. We now turn our attention to the optimal risk transfer for the insurance

group, assuming that ϕ1 ≡ V aRα1
, ϕ2 ≡ ESα2

. This is perhaps the most interesting of the

optimisation problems we consider, as it addresses inconsistencies between not only confidence

levels and capital costs, but also the risk measures themselves.

In view of (2.4), the optimisation problem becomes

min
I2∈F

(

λ1 − λ2

)

E
(

I2[X]
)

+ λ2ESα2

(

I2[X]
)

− λ1V aRα1

(

I2[X]
)

, (2.6)
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and its solution is stated in Theorem 2.2 below.

Theorem 2.2. The optimal solution of (2.6) is:

i) If V aRα1
(X) ≤ V aRα2

(X) then

I∗
2 [X] =

{

min
{

X, V aRα1
(X)

}

, λ1 > λ2,

0, λ1 < λ2,

ii) If V aRα1
(X) > V aRα2

(X) then

I∗
2 [X] =

{

min
{

X, V aRα1
(X)

}

, λ1 > λ2,

min
{

(

X − V aRα∗∗

2
(X)

)

+
, V aRα1

(X) − V aRα∗∗

2
(X)

}

, λ1 < λ2,

where α∗∗
2 = min

{

α1, α
∗
2

}

and α∗
2 = λ2α2

λ1(1−α2)+λ2α2

.

iii) If λ1 = λ2 and V aRα1
(X) ≤ V aRα2

(X) then I∗
2 [X] = min

{

f1(X), t1
}

, while if λ1 = λ2 and

V aRα1
(X) > V aRα2

(X) it is

I∗
2 [X] =

{

min
{

X, V aRα1
(X)

}

− V aRα2
(X) + t2, X > V aRα2

(X),

f2(X), otherwise,

where f1(·) and f2(·) are non-decreasing Lipschitz continuous functions with unit constants

such that f1(0) = f2(0) = 0, f1

(

V aRα1
(X)

)

= t1, f2

(

V aRα2
(X)

)

= t2, with parameters

t1 ∈ [0, V aRα1
(X)] and t2 ∈ [0, V aRα2

(X)].

Naturally, a mirror image of Theorem 2.2 is obtained when we reverse the situation to ϕ1 ≡

ESα1
, ϕ2 ≡ V aRα2

. In view of (2.4) we now aim to solve

min
I2∈F

(

λ1 − λ2

)

E
(

I2[X]
)

+ λ2V aRα2

(

I2[X]
)

− λ1ESα1

(

I2[X]
)

. (2.7)

The full solution to problem (2.7) follows, by symmetry, directly from Theorem 2.2. Hence, we only

state in Corollary 2.1 the solution for the scenario that is of most interest to us, where V aRα1
(X) <

V aRα2
(X). In that case, α1, α2 may be chosen such that ESα1

and V aRα2
are in a sense comparable,

as in the case of regulatory requirements under the Swiss Solvency Test (ES0.99) and Solvency II

(V aR0.995) (EIOPA, 2011). Moreover, we focus our discussion of the result around Corollary 2.1.

Corollary 2.1. Let V aRα1
(X) ≤ V aRα2

(X). Then the optimal solution of (2.7) is:

I∗
2 [X] =











(

X − V aRα2
(X)

)

+
+ min

{

X, V aRα∗∗

1
(X)

}

, λ1 > λ2,
(

X − V aRα2
(X)

)

+
+ min

{

f1(X), t1
}

, λ1 = λ2,
(

X − V aRα2
(X)

)

+
, λ1 < λ2

where α∗∗
1 = min

{

α∗
1, α2

}

, α∗
1 = λ1α1

λ1α1+λ2(1−α1)
, and f1(·) is a non-decreasing Lipschitz continuous

function with unit constant such that f1(0) = 0 and f1

(

V aRα1
(X)

)

= t1 with t1 ∈ [0, V aRα1
(X)].

The risk allocations arising from Corollary 2.1 are depicted in Figure 2.3.
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XVaR  (X)a
2

I*[X]
2

VaR    (X)a
1
**

VaR    (X)a
1
**

(a) λ2 < λ1

XVaR  (X)a
2

I*[X]2

t
1

VaR  (X)a
1

(b) λ1 = λ2

X

I*[X]
2

VaR  (X)a
2

(c) λ1 < λ2

Figure 2.3. Risk allocations arising from Corollary 2.1.

We first consider the case that λ1 > λ2, implying α1 < α∗
1. Further, if α∗

1 < α2, then

I∗
1 [X] = min

{

(X − V aRα∗

1
(X))+, V aRα2

(X) − V aRα∗

1
(X)

}

,

I∗
2 [X] =

(

X − V aRα2
(X)

)

+
+ min

{

X, V aRα∗

1
(X)

}

,

The risk sharing arrangement is then such that a thin layer of V aRα2
(X)− V aRα∗

1
(X) in excess of

V aRα∗

1
(X) is retained by the first entity, while the rest of the risk is transferred to the second. The

fact that most of the risk is optimally held by the second entity, is justified by its lower cost of capital.

By the definition of α∗
1 in Corollary 2.1, the more different λ1 and λ2 are, the further α1 and α∗

1 are

from each other, hence the thinner the layer retained is. Moreover, the fact that the layer retained

by the first entity is limited, essentially takes the “bite” out of the tail-sensitive risk measure, i.e.

ESα1
. At the same time, we note that V aRα2

(

I∗
2 [X]

)

= V aRα∗

1
(X) ≤ V aRα2

(X). Thus, capital

efficiency for the second entity arises again from the “blindness” property of the V aRα2
measure to

the tail component
(

X − V aRα2
(X)

)

+
of I∗

2 [X], in the sense that V aRα2

(

X − V aRα2
(X)

)

+
= 0.

This is further illustrated by Figure 2.4, where the percentiles of the random variables X, I∗
1 [X]

and I∗
2 [X] are plotted. By the co-monotonicity of I∗

1 [X] and I∗
2 [X], the percentile of X equals the

sum of the corresponding percentiles of I∗
1 [X] and I∗

2 [X], which holds at any given level. On the

one hand, it is seen that the percentiles of I∗
1 [X] are equal to zero for confidence levels smaller than
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α∗
1, increase in line with V aRβ(X) for β ∈ [α∗

1, α2] and then remain constant for confidence levels

higher than α2. The fact that the high percentiles of I∗
1 [X] are bounded by V aRα2

(X)−V aRα∗

1
(X)

explains the reduction of ESα1

(

I∗
1 [X]

)

. On the other hand, constancy of the percentiles of I∗
2 [X] for

β ∈ [α∗
1, α2] produces capital efficiency for the second entity, by forcing V aRα2

(

I∗
2 [X]

)

= V aRα∗

1
(X).

a*
1 1 b

VaR   (X)a*
1

VaR  (X)b

VaR  (I*[X])b 2

VaR  (I*[X])b 1

a
2

VaR   (X)a
2

VaR   (X)a*
1

VaR   (X) -a
2

Figure 2.4. VaR allocations of I∗
1 [X] and I∗

2 [X] for various confidence levels β

(Corollary 2.1 for λ1 > λ2).

The boundary solution, λ1 = λ2, is no longer unique. The same tail risk
(

X − V aRα2
(X)

)

+

is transferred to the second entity and a layer between V aRα1
(X) and V aRα2

(X) is retained by

the first. However, the allocation of losses lower than V aRα1
(X) between the two entities is now

arbitrary.

Finally, if λ1 < λ2, then more risk is retained by the first entity, which has a lower cost of capital,

while the only risk transferred to the second entity is the extreme tail risk
(

X − V aRα2
(X)

)

+
. In

addition, recall that V aRα2
measure fails to reflect the tail risk, as argued earlier.

2.5. ES / ES setting. The last setting of the section assumes that both entities operate in markets

subject to ES based capital requirements. Thus, the mathematical formulation of our problem

becomes:

min
I2∈F

(

λ1 − λ2

)

E
(

I2[X]
)

+ λ2ESα2

(

I2[X]
)

− λ1ESα1

(

I2[X]
)

. (2.8)

The solution to this problem is provided below.

Theorem 2.3. Let C be a constant given by:

C = λ2
α2

1 − α2

− λ1
α1

1 − α1

.

Then, the optimal solution (2.8) is:
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i) If V aRα1
(X) = V aRα2

(X) then

I∗
2 [X] =







































X, λ1 > λ2, C < 0

0, λ1 < λ2, C > 0,

min
{

X, V aRα1
(X)

}

, λ1 > λ2, C > 0,
(

X − V aRα1
(X)

)

+
, λ1 < λ2, C < 0,

(

X − V aRα1
(X)

)

+
+ min

{

f1(X), t1
}

, λ1 = λ2, C < 0,

min
{

f2(X), t2
}

, λ1 = λ2, C > 0,

where f1(·) and f2(·) are non-decreasing Lipschitz continuous functions with unit constants

such that f1(0) = f2(0) = 0, f1

(

V aRα1
(X)

)

= t1, f2

(

V aRα1
(X)

)

= t2, with parameters

t1, t2 ∈ [0, V aRα1
(X)].

ii) If V aRα1
(X) > V aRα2

(X) then

I∗
2 [X] =



















X, λ1 > λ2,
(

X − V aRα∗

2
(X)

)

+
, λ1 < λ2, C < 0,

0, λ1 < λ2, C > 0,
(

X − V aRα2
(X)

)

+
+ min

{

f3(X), t3
}

, λ1 = λ2,

where α∗
2 = λ2α2

λ1(1−α2)+λ2α2

and f3(·) is a non-decreasing Lipschitz continuous function with

unit constant such that f3(0) = 0, f3

(

V aRα2
(X)

)

= t3 ∈
[

0, V aRα2
(X)

]

.

We shall not discuss all of the numerous cases from Theorem 2.3. Indicatively, let us first consider

the case that α1 = α2. Since, C < 0 and C > 0 respectively hold if and only if λ1 > λ2 and λ1 < λ2,

then only the first two cases of Theorem 2.3 i) are of interest. If C < 0, the optimal risk share of

the second entity is I∗
2 [X] = X. Unsurprisingly, when the risk measures for the two entities are the

same, all the risk is transferred to the one with the lowest cost of capital. A similar situation arises

when V aRα1
(X) > V aRα2

(X) and λ1 > λ2, i.e. the capital for the first entity is both more costly

and subject to a stronger capital requirement.

More interesting risk transfers arise when V aRα1
(X) > V aRα2

(X) and λ1 < λ2, where the entity

with stronger capital requirement has a lower capital cost rate. Here, the constant C reflects the

trade-off between capital costs and conservativeness of the risk measure. So, when C < 0, the effect

of the more conservative risk measure of the first entity dominates the effect of its lower cost of

capital. Thus, an unlimited layer in excess of V aRα∗

2
(X) is transferred to the second entity. On the

other hand, when C > 0, the effect of capital costs is more important. Therefore, the entire risk is

retained by the first entity, which has access to less expensive capital.

3. The impact of credit risk on policyholder welfare

3.1. Expected policyholder deficit. The analysis of Section 2 does not consider the impact of

potential default on policyholder welfare. Given that the optimal risk transfers proposed so far

typically involve the transfer of some extreme tail risk from one entity to another, it is necessary to

consider whether the resulting saving in capital costs is achieved at the detriment of policyholder

safety. This is of course related to the potential discrepancy of risk measures used to regulate

different entities. In particular, as seen in Corollary 2.1, when tail risk is transferred from an ES-

regulated entity to another regulated by V aR, capital savings occur due to V aR’s “blindness” to
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the magnitude of extreme losses, even though it is exactly these sort of losses that policyholders are

exposed to in the case of insurer default.

In this section, we quantify the impact of risk transfer on policyholder welfare by studying the

resulting expected policyholder deficit, and comparing it to the case where all risk is retained by

the first entity. The policyholder deficit is equal to the difference between nominal liabilities to

policyholders and liabilities that will actually be paid, thus reflecting the reduction in the payoff

received due to potential default. The policyholder deficit can also be seen as an asset transferred

from policyholders to shareholders, reflecting the option of the latter to default on their obligations

(Phillips et al., 1998, and Myers and Read, 2001). Formally, the expected policyholder deficit for a

random liability Z and available assets c (a fixed number in the current setting where asset risk is

not considered) is defined by

EPD(Z; c) = E (Z − c)+ =

∫ xF

c

P (Z > z) dz.

For the purposes of the present section we focus on the case where capital requirements for the

first entity are given by ESα1
and for the second are given by V aRα2

, with V aRα1
(X) < V aRα2

(X).

Moreover, let us also assume that all risk X is initially held by the first entity (which thus acts as a

primary insurer) and the second entity is a subsidiary whose sole business is to reinsure the first by

providing a contingent payment X2. Consequently, X1 is the risk retained by the first entity and

X = X1 + X2. Before the risk transfer, the expected policyholder deficit is given by

EPD
(

X; ESα1
(X)

)

= E
(

X − ESα1
(X)

)

+
. (3.1)

There are several ways to examine the impact of risk transfer on policyholder deficit. First, one

may consider the two entities as separately regulated, the deficit arising from each being the concern

of a different regulator. In this case, the expected policyholder deficit is equal to the sum of those

arising from the different entities:

EPD
(

X1; ESα1
(X1)

)

+ EPD
(

X2; V aRα2
(X2)

)

(3.2)

= E
(

X1 − ESα1
(X1)

)

+
+ E

(

X2 − V aRα2
(X2)

)

+
.

However, equation (3.2) does not properly reflect the impact of credit risk arising from the risk

transfer, since it does not reflect the direction of the risk transfer. If we assume, as we do in this

section, that all risk is transferred from the first entity to the second, a default of the second entity

does not necessarily have a direct impact on the policyholders, who have bought their policies from

the first. The default of the second entity only matters to policyholders to the extent that it is related

to the scenario of the first entity (primary insurer) defaulting. Following these considerations, the

risk exposure of the first entity, allowing for the possible default of its subsidiary (and assuming no

recoveries given default), is given by X̃1 = X1 +
(

X2 − V aRα2
(X2)

)

+
.

There are now two possibilities. The first is that the capital requirement applied to the first

entity does not actually reflect the credit risk arising from the risk transfer. In that case the capital

held by the first entity is still ESα1
(X1), and the corresponding expected policyholder deficit is:

EPD
(

X̃1; ESα1
(X1)

)

= E
(

X̃1 − ESα1
(X1)

)

+
. (3.3)
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However, such an approach would not be consistent with the spirit of current regulatory require-

ments, where “risk concentrations” within groups need to be closely monitored (EIOPA, 2009). A

second and more appropriate approach is to include all credit risk in the capital requirement, which

will thus become ESα1
(X̃1). The resulting expected policyholder deficit is

EPD
(

X̃1; ESα1
(X̃1)

)

= E
(

X̃1 − ESα1
(X̃1)

)

+
. (3.4)

Finally, we remark that while in this paper we deal with the case of two entities, policyholder deficit

in the case of a group with more entities could be dealt with in a similar way. For example, consider

that the risk X originally held by the first entity is reinsured by a second and a third entity, such

that the allocated risks are (X1, X2, X3), with X = X1 + X2 + X3. Let the risk measures for the

three entities be ϕ1, ϕ2, ϕ3. Then we can define X̃1 = X1 +
(

X2 − ϕ2(X2)
)

+
+
(

X3 − ϕ3(X3)
)

+
,

such that the allocated risks, accounting for credit risk, are (X̃1, X2, X3). The resulting expected

policyholder deficit would again be given by EPD
(

X̃1; ϕ1(X̃1)
)

= E
(

X̃1 − ϕ1(X̃1)
)

+
.

3.2. Policyholder deficit arising from optimal risk transfers. We now compare the expected

policyholder deficit amounts, as calculated by equations (3.1), (3.2), (3.3), and (3.4). For those

calculations it is assumed that the risk allocation (X1, X2) is given respectively by the optimal

solutions I∗
1 [X], I∗

2 [X] of Corollary 2.1 for λ1 6= λ2. If λ1 > λ2, then the optimal risk allocations

are given by:

X1 = min
{(

X − V aRα∗

1
(X)

)

+
, V aRα2

(X) − V aRα∗

1
(X)

}

,

X2 = min
{

X, V aRα∗

1
(X)

}

+
(

X − V aRα2
(X)

)

+
,

(3.5)

where α∗
1 = λ1α1

λ1α1+λ2(1−α1)
and λ1, λ2 are such that α∗

1 < α2. The next lemma provides the expected

policyholder deficits corresponding to this setting.

Lemma 3.1. For X1, X2 as defined in (3.5), the following hold:

i) EPD
(

X1; ESα1
(X1)

)

+EPD
(

X2; V aRα2
(X2)

)

=

∫ xF

min
{

V aRα2
(X),V aRα∗

1

(X)+ESα1
(X1)
}

F̄ (x) dx,

ii) EPD
(

X̃1; ESα1
(X1)

)

=

∫ xF

V aRα∗

1

(X)+ESα1
(X1)

F̄ (x) dx,

iii) EPD
(

X̃1; ESα1
(X̃1)

)

=

∫ xF

V aR
α∗

1

(X)+ESα1
(X̃1)

F̄ (x) dx, where

ESα1
(X1) =

1

1 − α1

∫ V aRα2
(X)

V aR
α
∗

1

(X)

F̄ (x) dx and ESα1
(X̃1) =

1

1 − α1

∫ xF

V aR
α
∗

1

(X)

F̄ (x) dx.

In particular,

EPD
(

X̃1; ESα1
(X1)

)

≥ EPD
(

X; V aRα2
(X)

)

and EPD
(

X̃1; ESα1
(X̃1)

)

≤ EPD
(

X; ESα1
(X)

)

.

Besides giving formulas for expected policyholder deficits, Lemma 3.1 provides information via

the two stated inequalities. To interpret the first inequality, note again that for the confidence levels

used in the regulatory practice of insurance (for example, α1 = 0.99 and α2 = 0.995), the condition

V aRα2
(X) ≤ ESα1

(X) is typically satisfied, which in turn implies that

EPD
(

X; ESα1
(X)

)

≤ EPD
(

X; V aRα2
(X)

)

≤ EPD
(

X̃1; ESα1
(X1)

)

.
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Therefore, the expected policyholder deficit increases with the risk transfer, if credit risk is not

properly accounted for in capital setting (case ii)). The second inequality shows that allowing for

credit risk in the capital requirement of the first entity (case iii)) increases its capital sufficiently,

so that the expected policyholder deficit is actually reduced in relation to the situation before the

risk transfer. Of course, the risk transfer is no longer optimal in relation to this stronger regulatory

requirement, which is an issue that will be picked up in the next section.

Whenever λ1 < λ2, the optimal risk allocations are given by:

X1 = min
{

X, V aRα2
(X)

}

, X2 =
(

X − V aRα2
(X)

)

+
. (3.6)

We can now find the expected policyholder deficits corresponding to this setting, which are given

in Lemma 3.2.

Lemma 3.2. For X1, X2 defined as in (3.6), the following hold:

i) EPD
(

X1; ESα1
(X1)

)

+ EPD
(

X2; V aRα2
(X2)

)

=

∫ xF

min
{

V aRα2
(X),ESα1

(X1)
}

F̄ (x)dx.

ii) EPD
(

X̃1; ESα1
(X1)

)

=

∫ xF

ESα1
(X1)

F̄ (x)dx.

iii) EPD
(

X̃1; ESα1
(X̃1)

)

=

∫ xF

ESα1
(X)

F̄ (x)dx.

where ESα1
(X1) = V aRα1

(X) +
1

1 − α1

∫ V aRα2
(X)

V aRα1
(X)

F̄ (x)dx. In particular,

EPD
(

X̃1; ESα1
(X1)

)

≥ EPD
(

X̃1; ESα1
(X̃1)

)

= EPD
(

X; ESα1
(X)

)

.

Once more, the inequality shows that the expected policyholder deficit increases with the risk

transfer, if credit risk is not properly accounted for in the capital setting (case ii)). On the contrary,

when allowing for credit risk in the capital requirement of the first entity (case iii)), the expected

policyholder deficit remains unchanged in relation to the situation before the risk transfer.

3.3. Optimal risk transfer when credit risk is reflected in the capital requirement. It

was seen in the previous section that reflecting credit risk in the capital requirement of the first

entity leads to an expected policyholder deficit that is not higher than the one before the risk

transfer. However, changing the capital setting criterion means that the risk transfers (3.5) and

(3.6) discussed above will no longer be optimal and therefore, it would not necessarily be the choice

of the group.

To address this issue, we derive optimal risk transfers, when the first entity incorporates the

counter-party (reinsurance) default risk in its capital requirement. Slightly generalizing the argu-

ments of the previous section, let us denote the recovery rate by 1 − γ, which is the percentage

of the exposure to the second entity that will be recovered by the first in the case of the second

entity’s default. Given that the only business of the second entity is to reinsure the first, and that

in our setting the assets available to pay for reinsurance claims will mainly consist of regulatory

requirements on the second entity, it is reasonable to assume that γ is close to 1.
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The mathematical formulation of the related problem is as follows. The risk to the first entity,

including credit risk, becomes

g[X; γ] := I1[X] + γ
(

I2[X] − I2

(

V aRα2
(X)

)

)

+
,

and the corresponding optimisation problem can be written as

min
I2∈F

E
(

g[X; γ]+I2[X]
)

+λ1

(

ESα1

(

g[X; γ]
)

−E
(

g[X; γ]
)

)

+λ2

(

V aRα2

(

I2[X]
)

−E
(

I2[X]
)

)

. (3.7)

The solution to this problem is now given below.

Theorem 3.1. Denote

γ1 =
λ2 + λ1α1/(1 − α1)

1 + λ1α1/(1 − α1)
,

and let V aRα1
(X) ≤ V aRα2

(X). The optimal solution of (3.7) is then given by:

i) If λ1 > λ2, then

I∗
2 [X] =

{

(

X − V aRα2
(X)

)

+
+ min

{

X, V aRα∗

1
(X)

}

, 0 ≤ γ < γ1,

min
{

X, V aRα∗

1
(X)

}

, γ1 < γ ≤ 1,

where α∗∗
1 is as in Corollary 2.1.

ii) If λ1 < λ2, then

I∗
2 [X] =

{

(

X − V aRα2
(X)

)

+
, 0 ≤ γ < γ1,

0, γ1 < γ ≤ 1.

In each case it is I∗
1 [X] = X − I∗

2 [X].

It can be seen that the value of γ is crucial for the incentives produced. For a small value

γ < γ1, the optimal risk transfers are the same as in Corollary 2.1. On the other hand, for γ > γ1,

reflecting a lower recovery given default, the optimal risk transfer changes substantially, in that

tail risk is no more transferred from the first (ESα1
-regulated) to the second (V aRα2

-regulated)

entity. We would argue that the case γ > γ1 is actually the more realistic one. For example, when

λ1 = 0.10, λ2 = 0.15, α1 = 0.99, it follows that γ1 = 0.922, while γ should be very close to 1.

This disincentive for transferring tail risk also ensures that the optimal risk transfer will not

lead to increases in policyholder deficit, as will be shown in the numerical example that follows.

However, the importance of producing disincentives for tail risk transfer to an entity subject to

a weaker (eg V aR-based) regulatory requirement goes substantially beyond the consideration of

formal welfare measures such as policyholder deficit. In particular, given the uncertainties and

sensitivities involved in quantifying extreme risk, it may be argued that tail risk transfers are also

associated with transfers of operational and model risks, which are now avoided.

3.4. Numerical example. We consider the two cases λ1 > λ2 and λ1 < λ2 separately. It is

assumed that α1 = 0.99, α2 = 0.995 and γ = 1, as well as that the total risk X is Log-Normal

distributed with mean of 1000 and standard deviation of 200. We consider four scenarios:

No Transfer: No risk is transferred, such that all risk is retained by the first entity.

Transfer 1 (no CR): A risk transfer as in Corollary 2.1 takes place, and the capital require-

ments do not account for credit risk (as in case ii) of Lemmas 3.1 and 3.2).
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Transfer 2: A risk transfer as in Corollary 2.1 takes place, and the capital requirements do

account for credit risk (as in case iii) of Lemmas 3.1 and 3.2).

Transfer 3: A risk transfer as in Theorem 3.1 takes place, such that capital requirements do

account for credit risk.

For each scenario, the following quantities are calculated:

Total Capital: The total capital held by the group.

RAV-E(X): The risk adjusted value of the liabilities, in excess of the expected loss E(X).

In scenarios “No Transfer” and “Transfer 1” this is just the cost of capital; in scenarios

“Transfer 2” and “Transfer 3”, the “bad-debt reserve” g[X; 1] − I1[X] is added to the cost

of capital.

EPD: The expected policyholder deficit.

Case 1: 0.14 = λ1 > λ2 = 0.1. The results for this case are summarized in Table 3.1 below. The

Table 3.1. Total capital, risk-adjusted value minus mean, and expected policyholder

deficit for different risk transfer scenarios (0.14 = λ1 > λ2 = 0.1).

Scenario Total Capital RAV-E(X) EPD

No Transfer 1666 93.2 0.402

Transfer 1 1617 62.7 0.629

Transfer 2 1671 70.7 0.381

Transfer 3 1671 70.2 0.381

example shows that when moving optimally from the “No Transfer” to the “Transfer 1” scenario,

a substantial saving in capital and its cost is observed. However, the price of this is a big increase

in expected policyholder deficit, arising from the transfer of tail risk to the more weakly regulated

second entity. This anomaly is rectified once the capital requirement of the first entity is adjusted

for credit risk (scenario “Transfer 2”), with the expected policyholder deficit returning to a value

below its original level. In relation to the situation before the risk transfer, the total capital slightly

increases (from 1666 to 1671); however there is still a notable reduction in the risk adjusted value

(from 93.2 to 70.7) exploiting the lower cost of capital that the second entity is subject to. Finally,

the scenario “Transfer 3”, where risk is transferred optimally given that credit risk is included in

the capital calculation, produces no further change apart from a very marginal reduction of risk

adjusted value.

Case 2: 0.1 = λ1 < λ2 = 0.14. The results for this case are summarized in Table 3.2 below.

As before, the example shows that when moving from the “No Transfer” to the “Transfer 1”

scenario, a substantial saving in capital and its cost is observed. Again, this is at the expense of

an increase in expected policyholder deficit, arising from the transfer of the tail risk to the second

entity. This anomaly is rectified once the capital requirement of the first entity is adjusted for credit

risk (scenario “Transfer 2”), with the expected policyholder deficit and total capital returning to

its original level (1666) and only a marginal increase in the risk adjusted value (from 66.6 to 67).

Finally, under scenario “Transfer 3”, we return exactly to the situation before the risk transfer. This
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Table 3.2. Total capital, risk adjusted value minus mean, and expected policyholder

deficit for different risk transfer scenarios (0.1 = λ1 < λ2 = 0.14).

Scenario Total Capital RAV-E(X) EPD

No Transfer 1666 66.6 0.402

Transfer 1 1611 61.1 0.663

Transfer 2 1666 67.0 0.402

Transfer 3 1666 66.6 0.402

arises directly upon observing from Theorem 3.1 that I2[X] = 0, that is, it is optimal to transfer no

risk at all to the second entity.

3.5. Revisiting two assumptions. Two key assumptions in this paper, co-monotonicity of risk

allocations and non-impact of risk transfer on insurance prices, are now discussed.

3.5.1. Co-monotone risk allocations. In the optimisation problems solved in previous sections, it

has always been assumed that the allocations of total risk to entities I1[X] and I2[X] are co-

monotonic, i.e. non-decreasing functions of the total risk X. In the framework of Section 3, where

the second entity acts as a subsidiary with sole business to reinsure the first, this assumption is

fairly unproblematic, given the typical non-decreasing behaviour of reinsurance contracts.

Recall that each entity has a non-negative risk exposure before the risk transfer and all risk is

first pooled and then shared by the two entities. However, it may not be immediately clear why

the risk transfer should be structured such that the resulting risk allocations are co-monotone. To

justify such an assumption, first note that a standard result in economics is that Pareto efficient

risk allocations are co-monotone (see for example, Landsberger and Meilijson, 1994, and Ludkovski

and Young, 2009). Therefore, it is reasonable to assume that the group will allocate risk to the two

entities such that, at least approximately, the allocations are co-monotonic.

The second reason for making the co-monotonicity assumption is quite practical. We derive

in this paper the optimal functional forms of risk transfers, rather than postulating a particular

reasonable form for the contracts and then optimising other quantities (see Schlütter and Gründl,

2011). Consequently, certain limitations on admissible risk transfers need to be placed in order to

avoid situations where moral hazard/regulatory arbitrage appear in blatant form. While plain cash

transfers between group entities may be acceptable to a regulator (eg in the context of a parent

bailing out a subsidiary), risk transfer contracts between distinct legal entities need to comply with

the usual principles of insurance. Regulators do not allow risk-exchanges between group members

that create problems of moral hazard, as this would undermine risk management by producing

perverse incentives for the management of individual entities. This can be demonstrated through

the following example, where the risk measures are ESα1
, V aRα2

. A particular form of admissible

risk transfer (arising for example in Corollary 2.1 when λ1 < λ2) is one resulting into risk allocations

X1 = min
{

X, V aRα2
(X)

}

, X2 =
(

X − V aRα2
(X)

)

+
. In that case, the transfer of tail risk to the

second (V aRα2
-regulated) entity ensures that V aRα2

(X2) = 0, which generates capital efficiency at

the expense of policyholder welfare as seen in Lemma 3.2, as long as credit risk is not incorporated.
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An alternative risk transfer is further considered:

X̂1 = X1{X≤V aRα2
(X)} =

{

X, if X ≤ V aRα2
(X)

0, otherwise,

X̂2 = X1{X>V aRα2
(X)} =

{

X, if X > V aRα2
(X)

0, otherwise,

where 1A is the indicator function of event A. Clearly, X̂1 and X̂2 are not co-monotone, as X̂1 may

decrease in X. Compared to the previous risk allocation, one can write

X̂1 = X1 − V aRα2
(X)1{X>V aRα2

(X)} and X̂2 = X2 + V aRα2
(X)1{X>V aRα2

(X)},

such that the liability V aRα2
(X)1{X>V aRα2

(X)} is shifted from the first entity to the second. Con-

sequently, ESα1
(X̂1) ≤ ESα1

(X1) and V aRα2
(X̂2) = V aRα2

(X2) = 0. Hence, in the absence of

a capital requirement in respect to credit risk, the capital available is now substantially reduced,

leading to a further increase in policyholder deficit.

The implications for risk management of allowing such risk transfers are more wide-ranging. The

non-increasing nature of the risk transfer (X̂1,X̂2) creates moral hazard problems in the sense that

the management of the first entity may have an incentive to preside over a high group loss {X >

V aRα2
(X)}, leading to payment of {X̂1 = 0}, rather than a lower group loss {X ≤ V aRα2

(X)},

leading to payment of {X̂1 = X}.

3.5.2. Impact of policyholder deficit on insurance prices. Throughout this paper, a key idea has

been that the insurance group seeks to perform risk transfers in order to minimise the risk adjusted

value of its liabilities. This is sensible, as long as we assume that such risk transfers have no negative

impact on the group’s profitability. This is a potentially contentious assumption and we would like

to justify it at this stage.

If a risk transfer takes place that damages policyholder welfare, then economic arguments suggest

that the market consistent value of the insurance policies sold will reduce by the market consistent

value of the resulting increase in policyholder deficit. If this reduction in the value of the pay-off is

reflected in market insurance premiums (a strong assumption for some markets like personal lines

insurance), the result is a reduction in profitability, which may outweigh the benefits of capital

savings arising from the risk transfer.

While this is a plausible scenario, we do not consider it of great relevance to our setting, particu-

larly in view of the numerical example presented above. First, we note that changes in the expected

policyholder deficit (reflecting the reduction in policyholders’ expected pay-offs) are an order of

magnitude smaller than changes in the cost of capital. The changes in the value of the policyholder

deficit would be increased if valued under a risk neutral measure (as in Myers and Read, 2001, and

Schlütter and Gründl, 2011), however the upwards adjustment to the expected policyholder deficit

would have to be very substantial in order for this to make any difference.

Furthermore, it can be seen that once credit risk is properly accounted for, optimal risk transfers

do not actually lead to increases in policyholder deficit. Hence, there is no reason that a correspond-

ing reduction in profit should be observed. In conclusion, and in light of the incentives produced by
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Theorem 3.1, it seems that the most powerful mechanism to discourage risk transfers that damage

policyholder welfare is regulatory action, rather than market forces.

4. Conclusion

This paper contributes to the literature on insurance groups, by discussing the implications of

intra-group risk transfers for capital efficiency and policyholder welfare, and to the literature on

insurance contract design, by deriving optimal risk transfers under preferences driven by regulatory

risk measures. We find that optimal risk transfers under a cost-of-capital valuation criterion involve

the transfer of extreme loss layers to the entity subject to a weaker regulatory regime. In particular,

the discrepancy between the VaR and ES measures may be exploited, with tail risk transferred to

a VaR-regulated entity.

Regulators should be wary of such incentives emerging. We show that, if the credit risk arising

from risk transfers is not fully reflected in capital requirements, group capital efficiency is achieved

at the cost of compromising policyholder security. If credit risk is fully reflected in the capital

requirements, this problem does not emerge. Hence, it is crucial that regulators address the issue

of intra-group credit risk when specifying quantitative capital requirements. Specifically, when an

insurer transfers extreme risk to a subsidiary belonging to the same group, the high dependence

between the insurer’s gross loss and the subsidiary’s default event, as well as the low recovery rate,

need to be taken into account in the calculation of capital requirements.

Appendix A. Proofs

It is useful to note here that I1 and I2 are Lipschitz continuous functions with unit constants, i.e.

|Ik[y]− Ik[x]| ≤ |y − x| holds for all x, y ≥ 0 and k ∈ {1, 2}, due to the fact that I1 and I2 are non-

decreasing functions (see also Carlier and Dana, 2003). In addition, V aRαk

(

Ik[X]
)

= Ik

(

V aRαk
(X)

)

is true for all k ∈ {1, 2} (see for example, Denuit et al., 2005, p.19, and Embrechts and Hofert,

2010).

The following notations,

A1 =
{

(ξ1, ξ2) : 0 ≤ ξ1 ≤ V aRα1
(X), 0 ≤ ξ2 − ξ1 ≤ V aRα2

(X) − V aRα1
(X)

}

A2 =
{

(ξ1, ξ2) : 0 ≤ ξ2 ≤ V aRα2
(X), 0 ≤ ξ1 − ξ2 ≤ V aRα1

(X) − V aRα2
(X)

}

are useful for explaining all the proofs. In addition, Pr(Z ≤ z) < α is equivalent to z < V aRα(X).

A.1. proof of Theorem 2.1. The first part is now investigated assuming that λ1 > λ2. The mirror

case, λ1 < λ2, results by the symmetry property of the objective function from equation (2.5). Now,
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for any arbitrary risk transfer I2, we have
(

λ1 − λ2

)

E
(

I2[X]
)

+ λ2I2

(

V aRα2
(X)

)

− λ1I2

(

V aRα1
(X)

)

=
(

λ1 − λ2

)

E
(

I2[X] − I2

(

V aRα1
(X)

)

)

+ λ2

(

I2

(

V aRα2
(X)

)

− I2

(

V aRα1
(X)

)

)

≥
(

λ1 − λ2

)

E

(

I2

[

min
{

X, V aRα1
(X)

}

]

− I2

(

V aRα1
(X)

)

)

+λ2

(

I2

(

V aRmin{α1,α2}(X)
)

− I2

(

V aRα1
(X)

)

)

(A.1)

≥
(

λ1 − λ2

)

E
(

min
{

X, V aRα1
(X)

}

− V aRα1
(X)

)

+ λ2

(

V aRmin{α1,α2}(X) − V aRα1
(X)

)

=
(

λ1 − λ2

)

E
(

I∗
2 [X]

)

+ λ2I
∗
2

(

V aRα2
(X)

)

− λ1I
∗
2

(

V aRα1
(X)

)

,

where the second last step is due to the Lipschitz property of function I2(·). Note that the optimal

solution stated in Theorem 2.1i) was I∗
2 [X] = min{X, V aRα1

(X)}, which concludes this case.

Finally, the λ1 = λ2 case is discussed, which is reduced to minimising

I2

(

V aRα2
(X)

)

− I2

(

V aRα1
(X)

)

. (A.2)

Recall that the Lipschitz property implies

|I2

(

V aRα2
(X)

)

− I2

(

V aRα1
(X)

)

| ≤ |V aRα2
(X) − V aRα1

(X)|.

Thus, the solutions of (A.2) only require I2(·) to be flat on
[

V aRα1
(X), V aRα2

(X)
]

whenever

V aRα1
(X) < V aRα2

(X), and have a slope of 1 on
[

V aRα2
(X), V aRα1

(X)
]

otherwise. The latter

and Lipschitz property help in recovering the λ1 = λ2 case. The proof is now complete.

A.2. proof of Theorem 2.2. The proofs are developed in a similar manner as in Theorem 2.1,

and therefore we only outline the main steps. The case in which λ1 > λ2 can be proved in the same

manner as shown in equation (A.1). Specifically,
(

λ1 − λ2

)

E
(

I2[X]
)

+ λ2ESα2

(

I2[X]
)

− λ1I2

(

V aRα1
(X)

)

≥
(

λ1 − λ2

)

E

(

I2

[

min
{

X, V aRα1
(X)

}

]

)

+ λ2ESα2

(

I2

[

min
{

X, V aRα1
(X)

}

]

)

−λ1I2

(

V aRα1
(X)

)

=
(

λ1 − λ2

)

E

(

I2

[

min
{

X, V aRα1
(X)

}

]

− I2

(

V aRα1
(X)

)

)

)

+λ2ESα2

(

I2

[

min
{

X, V aRα1
(X)

}

]

− I2

(

V aRα1
(X)

)

)

≥
(

λ1−λ2

)

E
(

min
{

X, V aRα1
(X)

}

−V aRα1
(X)

)

+λ2ESα2

(

min
{

X, V aRα1
(X)

}

−V aRα1
(X)

)

=
(

λ1−λ2

)

E
(

I∗
2 [X]

)

+ λ2ESα2

(

I∗
2 [X]

)

− λ1I
∗
2

(

V aRα1
(X)

)

,

which implies that the optimisation problem from (2.6) is attained at I∗
2 [X] = min{X, V aRα1

(X)}.

Similarly, the V aRα1
(X) ≤ V aRα2

(X) case such that λ1 < λ2 is examined. Clearly,
(

λ1−λ2

)

E
(

I2[X]
)

+λ2ESα2

(

I2[X]
)

−λ1I2

(

V aRα1
(X)

)

≥
(

λ2−λ1

)

(

ESα2

(

I2[X]
)

−E
(

I2[X]
)

)

≥0.
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The lower bound is attained whenever I∗
2 [X] = 0, which fully concludes part i).

The remaining of part ii), V aRα1
(X) > V aRα2

(X) with λ1 < λ2, needs to be elaborated in greater

detail than the previous one. The optimisation problem (2.6) is solved via a two stage optimisation

procedure. The mathematical formulation of the first stage optimisation problem becomes
{

min
I2∈F

(

λ1 − λ2

)

E
(

I2[X]
)

+ λ2ESα2

(

I2[X]
)

subject to

I2

(

V aRα1
(X)

)

= ξ1, I2

(

V aRα2
(X)

)

= ξ2,

where (ξ1, ξ2) ∈ A2 are some constants. Keeping in mind that λ1−λ2 < 0 and relation (2.1), the func-

tion I2(·) should increase as fast as possible on [0, V aRα1
(X)], and remain flat on [V aRα1

(X), xF ].

The optimal solution is then pictured in Figure A.1.

XVaR  (X)a
2

I*[X;   ]2a
x

1
,x

2

x
2

x
1

VaR  (X)a
1

VaR  (X) +x-xa
1 2 1

x
1

Figure A.1. The construction of I∗
2a[X; ξ1, ξ2] in Theorem 2.2.

One may mathematically formulate the latter risk transfer as

I∗
2a[X; ξ1, ξ2] =

{

min
{

X − V aRα1
(X) + ξ1, ξ1

}

, X > V aRα1
(X) + ξ2 − ξ1,

min
{

X, ξ2

}

, otherwise.

Thus, the solution of our second stage optimisation problem

min
(ξ1,ξ2)∈A2

H(ξ1, ξ2) = (λ1 − λ2)

(

∫ ξ2

0

F̄ (x) dx +

∫ V aRα1
(X)

V aRα1
(X)+ξ2−ξ1

F̄ (x) dx

)

+

λ2

(

ξ2 +
1

1 − α2

∫ V aRα1
(X)

V aRα1
(X)+ξ2−ξ1

F̄ (x) dx

)

− λ1ξ1

replicates the global minimiser of (2.6). The derivative of the above-mentioned function with respect

to ξ1 becomes
dH

dξ1
=

(

λ1 + λ2
α2

1 − α2

)

F̄
(

V aRα1
(X) + ξ2 − ξ1

)

− λ1, (A.3)

which is non-positive if and only if V aRα1
(X)+ ξ2 − ξ1 ≥ V aRα∗

2
(X). Due to the fact that λ1 < λ2,

it is not difficult to find that α∗
2 > α2. Note that V aRα2

(X) ≤ V aRα1
(X) + ξ2 − ξ1 ≤ V aRα1

(X)

holds. Having all of these in mind, we may conclude

H(ξ1, ξ2) ≥ H(ξ2, ξ2), if α∗
2 ≥ α1
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and

H(ξ1, ξ2) ≥ H
(

ξ2 + V aRα1
(X) − V aRα∗

2
(X), ξ2

)

, if α∗
2 < α1.

Finding the minimum values of the above-right hand side functions over the domain of ξ2, namely
[

0, V aRα2
(X)

]

, the global solution of (2.6) is attained at (0, 0) and
(

V aRα1
(X)− V aRα∗

2
(X), 0

)

, if

α∗
2 ≥ α1 and α∗

2 < α1, respectively. Thus, part ii) is concluded.

Finally, the λ1 = λ2 case is under investigation. Our optimisation problem becomes

min
I2∈F

ESα2

(

I2[X]
)

− V aRα1
I2[X].

Thus, the first stage optimisation problem is equivalent to minimising ESα2

(

I2[X]
)

.

The V aRα1
(X) ≤ V aRα2

(X) subcase makes I2(·) to be flat for losses higher than V aRα2
(X).

Thus, the second stage problem is to minimise ξ2 − ξ1 on A1, and keeping in mind the Lipschitz

property, one may recover our claim.

The last subcase, V aRα1
(X) > V aRα2

(X), is developed in greater detail. The first part of

A.2 only requires for the function I2(·) to not increase on
[

V aRα2
(X), V aRα1

(X) −
(

ξ1 − ξ2

)

],

then to increase with a slope of 1 until it reaches the ξ1 level at V aRα1
(X), and remain flat on

[

V aRα1
(X), xF

]

. Thus, the second stage problem of A.2 becomes

min
A2

ξ2 +
1

1 − α2

∫ V aRα1
(X)

V aRα1
(X)−(ξ1−ξ2)

F̄ (x) dx − ξ1.

Therefore, the objective function of the above is non-increasing in ξ1 for any fixed ξ2, and straight-

forward calculations show that the set of optimal solutions is given by
{

(

x + V aRα1
(X) − V aRα2

(X), x
)

: x ∈
[

0, V aRα2
(X)

]

}

,

which justifies in full the V aRα1
(X) > V aRα2

(X) subcase. This ends the proof.

A.3. proof of Theorem 2.3. i) If V aRα1
(X) = V aRα2

(X), the first stage optimisation problem

is given by

min
I2∈F

(

λ1 − λ2

)

E
(

I2[X]
)

+ λ2ESα2

(

I2[X]
)

− λ1ESα1

(

I2[X]
)

subject to I2

(

V aRα1
(X)

)

= ξ, (A.4)

where ξ ∈
[

0, V aRα1
(X)

]

represents an arbitrarily chosen constant.

Let λ1 > λ2. It is not difficult to justify via some geometric argumentation that (A.4) has

solutions given by
(

X −V aRα1
(X)+ ξ

)

+
and min

{(

X −V aRα1
(X)+ ξ

)

+
, ξ
}

whenever C < 0 and

C > 0, respectively.

Next, it is assumed that C < 0, and plugging the solution of (A.4) in its objective function, the

second stage optimisation problem is reduced to minimising

(

λ1 − λ2

)

∫ xF

V aRα1
(X)−ξ

F̄ (x) dx + λ2

(

ξ + ESα2
(X) − V aRα1

(X)
)

− λ1

(

ξ + ESα1
(X) − V aRα1

(X)
)

,

over all possible values of ξ. The latter function is decreasing on
[

0, V aRα1
(X)

]

, which leads to full

transfer of the risk to the second insurance company.

For positive values of C > 0, the second stage optimisation problem is retrieved by minimising

(

λ1 − λ2

)

(

∫ V aRα1
(X)

V aRα1
(X)−ξ

F̄ (x) dx − ξ

)

,
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over ξ ∈
[

0, V aRα1
(X)

]

due to the fact that

ESα1

(

min
{(

X − V aRα1
(X) + ξ

)

+
, ξ
}

)

= ESα2

(

min
{(

X − V aRα1
(X) + ξ

)

+
, ξ
}

)

= ξ.

The decreasing property of the above-mentioned function implies that I∗
2 [X] = min

{

X, V aRα1
(X)

}

,

which concludes the λ1 > λ2 case.

We now consider the situation in which λ1 < λ2. One may get that (A.4) is minimised by

min{X, ξ} +
(

X − V aRα1
(X)

)

+
and min

{

X, ξ
}

whenever C < 0 and C > 0, respectively. Thus,

the second stage problems are the minimisation in ξ of

(

λ1 − λ2

)

(

∫ ξ

0

+

∫ xF

V aRα1
(X)

)

F̄ (x) dx +
(

λ2 − λ1

)(

ξ − V aRα1
(X)

)

+ λ2ESα2
(X) − λ1ESα1

(X)

and
(

λ1 − λ2

)

(

∫ V aRα1
(X)

V aRα1
(X)−ξ

F̄ (x) dx − ξ

)

,

provided that C < 0 and C > 0, respectively, over the set
[

0, V aRα1
(X)

]

. Clearly, both functions

are increasing on the whole domain, and therefore one may easily recover optimal contracts in our

setting, i.e. if λ1 < λ2.

The λ1 = λ2 setting is investigated at the moment, for which

min
F

ESα2
I2[X] − ESα2

I2[X] (A.5)

needs to be solved. The first stage problem becomes

min
0≤ξ≤V aRα1

(X)

α2 − α1

(1 − α1)(1 − α2)
E
(

I2[X] − ξ
)

+
, subject to I2

(

V aRα1
(X)

)

= ξ

as a result of relation (2.1). Note that C < 0 is the same as α1 > α2, which makes I2(·) to increase

with slope 1 from V aRα1
(X) onwards in order to solve A.6. In turn, the C > 0 case requires a leveled

I2(·) function on
[

V aRα1
(X), xF

]

, since α1 < α2. Thus, the justification of V aRα1
(X) = V aRα2

(X)

is now completed.

ii) The V aRα1
(X) > V aRα2

(X) case is further examined. If λ1 > λ2, then

(

λ1 − λ2

)

E
(

I2[X]
)

+ λ2ESα2

(

I2[X]
)

− λ1ESα1

(

I2[X]
)

≥
(

λ2 − λ1

)

(

ESα1

(

I2[X]
)

− E
(

I2[X]
)

)

,

and therefore (2.8) is the same as to maximse ESα1

(

I2[X]
)

−E
(

I2[X]
)

, which in turn is equivalent

to minimising ESα1

(

I1[X]
)

− E
(

I1[X]
)

. Thus, I∗
1 [X] = 0, which concludes the λ1 > λ2 subcase.

Our main objective from (2.8) can be solved via a two stage optimisation, whenever λ1 ≤ λ2.

Particularly, the first step can be written in the following fashion
{

min
I2∈F

(

λ1 − λ2

)

E
(

I2[X]
)

+ λ2ESα2

(

I2[X]
)

− λ1ESα1

(

I2[X]
)

subject to

I2

(

V aRα1
(X)

)

= ξ1, I2

(

V aRα2
(X)

)

= ξ2,

where (ξ1, ξ2) ∈ A2 is a fixed vector of constants. It can be shown that the solutions are

I∗
2 [X; ξ1, ξ2] =

{

I∗
2a[X; ξ1, ξ2], λ1 < λ2, C > 0,

I∗
2b[X; ξ1, ξ2], λ1 < λ2, C < 0,
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where

I∗
2b[X; ξ1, ξ2] =

{

X − V aRα1
(X) + ξ1, X > V aRα1

(X) + ξ2 − ξ1,

min
{

X, ξ2

}

, otherwise.

In the case that λ1 < λ2 and C < 0, we only need to solve

min
(ξ1,ξ2)∈A2

H(ξ1, ξ2) :=
(

λ1 − λ2

)

(

∫ ξ2

0

+

∫ xF

V aRα1
(X)+ξ2−ξ1

)

F̄ (x) dx (A.6)

+λ2

(

ξ2 +
1

1 − α2

∫ xF

V aRα1
(X)+ξ2−ξ1

F̄ (x) dx

)

− λ1

(

ξ1 +
1

1 − α1

∫ xF

V aRα1
(X)

F̄ (x) dx

)

.

Note that α2 < α∗
2 < α1 is true under this setting. The derivative of the above with respect to ξ1 is

given by (A.3), and it is non-positive if and only if ξ2 ≤ ξ1 ≤ ξ2 + V aRα1
(X) − V aRα∗

2
(X). Thus,

H(ξ1, ξ2) ≥ H
(

ξ2 + V aRα1
(X) − V aRα∗

2
(X), ξ2

)

= (λ1 − λ2)

(
∫ ξ2

0

F̄ (x) dx − ξ2

)

+ K,

where K is a constant with respect to ξ2. The latter function is increasing in ξ2 on
[

0, V aRα2
(X)

]

,

and therefore (A.6) is solved by
(

ξ∗1 , ξ
∗
2

)

=
(

V aRα1
(X)−V aRα∗

2
(X), 0

)

, which replicates the optimal

risk transfer in this subcase.

The situation in which λ1 < λ2 and C > 0 requires minimising over A2

(

λ1 − λ2

)

(

∫ ξ2

0

+

∫ V aRα1
(X)

V aRα1
(X)+ξ2−ξ1

)

F̄ (x) dx + λ2

(

ξ2 +
1

1 − α2

∫ V aRα1
(X)

V aRα1
(X)+ξ2−ξ1

F̄ (x) dx

)

− λ1ξ1.

Clearly, α2 < α1 < α∗
2, and therefore the function from above is non-decreasing in ξ1 for any fixed

ξ2, since again its derivative with respect with ξ1 is given by equation (A.3). Similar derivations to

the previous subcases lead to the global minimum to be attained at
(

ξ∗1 , ξ
∗
2

)

= (0, 0).

The final setting, under which λ1 = λ2, needs to be justified. The first stage optimisation problem

of (A.5) forces the risk transfer to remain flat on
[

V aRα2
(X), V aRα1

(X) − (ξ1 − ξ2)
]

, and increase

as fast as possible onwards, since α1 > α2. The second stage problem becomes

min
A2

ξ2 − ξ1 +
1

1 − α2

∫ xF

V aRα1
(X)−(ξ1−ξ2)

F̄ (x) dx −
1

1 − α1

∫ xF

V aRα1
(X)

F̄ (x) dx. (A.7)

Note that the above objective function is non-increasing in ξ1 for any fixed ξ2, and therefore the set

of solutions for (A.7) is given by
{

(

V aRα1
(X) − V aRα2

(X) + x, x
)

: 0 ≤ x ≤ V aRα2
(X)

}

.

Thus, we only need to impose a linear increasing with slope 1 for I2(·) on [V aRα2
(X), xF ] in order

to solve the initial optimisation problem. This completes the proof.

A.4. proof of Lemma 3.1. Note that V aRα1
(X1) = 0 and V aRα2

(X2) = V aRα∗

1
(X), which

together with (2.1) imply that

ESα1
(X1) =

1

1 − α1

∫ V aRα2
(X)

V aR
α
∗

1

(X)

F̄ (x) dx.
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Now,

EPD
(

X1; ESα1
(X1)

)

=

∫ xF

ESα1
(X1)

P (X1 > z) dz

=

∫ V aRα2
(X)

min
{

V aRα2
(X),V aRα∗

1

(X)+ESα1
(X1)
}

F̄ (x) dx

EPD
(

X2; V aRα2
(X2)

)

=

∫ xF

V aRα2
(X2)

P (X2 > z)dz =

∫ xF

V aRα2
(X)

F̄ (x) dx

from which part i) follows. Clearly, X̃1 =
(

X − V aRα∗

1
(X)

)

+
and we further have that

ESα1

(

X̃1

)

=
1

1 − α1

∫ xF

V aRα∗

1

(X)

F̄ (x) dx,

which concludes parts ii) and iii).

The first inequality in the lemma holds as long as

V aRα∗

1
(X) +

1

1 − α1

∫ V aRα2
(X)

V aRα∗

1

(X)

F̄ (x) dx ≤ V aRα2
(X).

The latter holds as a result of

1

1 − α1

∫ V aRα2
(X)

V aR
α∗

1

(X)

F̄ (x) dx ≤
F̄
(

V aRα∗

1
(X)

)

1 − α1

(

V aRα2
(X) − V aRα∗

1
(X)

)

≤
1 − α∗

1

1 − α1

(

V aRα2
(X) − V aRα∗

1
(X)

)

≤ V aRα2
(X) − V aRα∗

1
(X).

It only remains to show the very last inequality from Lemma 3.1, for which it is sufficient to show

that

V aRα∗

1
(X) +

1

1 − α1

∫ xF

V aR
α∗

1

(X)

F̄ (x) dx ≥ V aRα1
(X) +

1

1 − α1

∫ xF

V aRα1
(X)

F̄ (x) dx.

The latter is true since F̄
(

V aRα1
(X)

)

≤ 1 − α1 and the fact that

∫ xF

V aRα1
(X)

F̄ (x) dx =

∫ V aRα∗

1

(X)

V aRα1
(X)

F̄ (x) dx +

∫ xF

V aR
α
∗

1

(X)

F̄ (x) dx

≤
(

V aRα∗

1
(X) − V aRα1

(X)
)

F̄
(

V aRα1
(X)

)

+

∫ xF

V aR
α
∗

1

(X)

F̄ (x) dx.

A.5. proof of Lemma 3.2. Note first that V aRα1
(X1) = V aRα1

(X) and V aRα2
(X2) = 0, which

together with (2.1) give that

ESα1
(X1) = V aRα1

(X) +
1

1 − α1

∫ V aRα2
(X)

V aRα1
(X)

F̄ (x) dx.
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Clearly, X̃1 = X1 +
(

X2 − V aRα2
(X2)

)

+
= X. Now, part i) simply follows from

EPD
(

X1; ESα1
(X1)

)

=

∫ xF

ESα1
(X1)

P (X1 > z)dz =

∫ V aRα2
(X)

min
{

V aRα2
(X),ESα1

(X1)
}

F̄ (x) dx

EPD
(

X2; V aRα2
(X2)

)

=

∫ xF

V aRα2
(X2)

P (X2 > z)dz =

∫ xF

V aRα2
(X)

F̄ (x) dx.

Parts ii) and iii), as well as the equality EPD
(

X̃1; ESα1
(X̃1)

)

= EPD
(

X; ESα1
(X)

)

are true since

X̃1 = X. Finally, the inequality at the end of the lemma follows from ESα1
(X1) ≤ ESα1

(X).

A.6. proof of Theorem 3.1. It is easy to obtain

E
(

g[X; γ]
)

= E
(

I1[X]
)

+ γE
(

I2[X] − I2

(

V aRα2
(X)

)

)

+

= E
(

I1[X]
)

+ γ(1 − α2)
(

ESα2

(

I2[X]
)

− I2

(

V aRα2
(X)

)

)

,

as a result of equation (2.1). Moreover,

ESα1

(

g[X; γ]
)

= ESα1

(

I1[X]
)

+ γESα1

(

I2[X] − I2

(

V aRα2
(X)

)

)

+

= ESα1
(X) − ESα1

(

I2[X]
)

+ γ
1 − α2

1 − α1

(

ESα2

(

I2[X]
)

− I2

(

V aRα2
(X)

)

)

due to the co-monotonicity property and relation (2.1). Combining the last two equations, one may

reduce our main problem to minimising

h1(γ)I2

(

V aRα2
(X)

)

+ (λ1 − λ2)E
(

I2[X]
)

+ h2(γ)ESα2

(

I2[X]
)

− λ1ESα1

(

I2[X]
)

,

where h1(λ) = λ2 − h2(λ) and h2(λ) = γ(1 − α2)
(

1 + λ1α1/(1 − α1)
)

. Note that

γ

(

1 +
λ1α1

1 − α1

)

− λ2 −
λ1α1

1 − α1

is negative if γ ∈ [0, γ1) and positive if γ ∈ (γ1, 1].

Now, the solution for the first stage problem from part i) needs to increase as slowly as possible on
[

0, V aRα1
(X)

]

and increase rapidly on
[

V aRα1
(X), V aRα2

(X)
]

. In addition, the optimal solution

remains flat on
[

V aRα2
(X), xF

]

if γ1 < γ ≤ 1 and increases with slope 1 whenever 0 ≤ γ < γ1. All

of these facts generate the optimal solution
{

min
{(

X − V aRα1
(X) + ξ1

)

+
, ξ2

}

+
(

X − V aRα2
(X)

)

+
, 0 ≤ γ < γ1,

min
{(

X − V aRα1
(X) + ξ1

)

+
, ξ2

}

, γ1 < γ ≤ 1,

where (ξ1, ξ2) ∈ A1. Straightforward computations yield that the difference between the objective

functions for the second stage problem corresponding to the two scenarios, is a constant with respect

to ξ1 and ξ2. Therefore, both cases lead to the same solution, which is
(

V aRα1
(X), V aRα∗

1
(X)

)

.

We only discuss the second case, γ1 < γ ≤ 1, for which the second stage optimisation problem is

equivalent to minimising over A1

H(ξ1, ξ2) := λ2ξ2 + (λ1−λ2)

∫ V aRα1
(X)+ξ2−ξ1

V aRα1
(X)−ξ1

F̄ (x) dx−λ1

(

ξ1+
1

1 − α1

∫ V aRα1
(X)+ξ2−ξ1

V aRα1
(X)

F̄ (x) dx

)

.
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Taking the derivative with respect to ξ2, we get that

H(ξ1, ξ2) ≥ H
(

ξ1, ξ1 + V aRα∗

1
(X) − V aRα1

(X)
)

, for all (ξ1, ξ2) ∈ A1.

The right hand side function is increasing in ξ1, which justifies the first part of Theorem 3.1.

Part ii) is developed in the same manner as the previous case. The solution for the first stage

problem requires a rapid variation on
[

0, V aRα2
(X)

]

since λ1 − λ2 < 0 and

λ1 − λ2 − λ1/(1 − α1) = −λ1α1/(1 − α1) − λ2 < 0.

In addition, the optimal solution remains flat on
[

V aRα2
(X), xF

]

, if γ1 < γ ≤ 1 and increases with

slope 1 whenever 0 ≤ γ < γ1. Thus, our solutions are
{

min{X, ξ1} + min
{(

X − V aRα1
(X)

)

+
, ξ2 − ξ1

}

+
(

X − V aRα2
(X)

)

+
, 0 ≤ γ < γ1,

min{X, ξ1} + min
{(

X − V aRα1
(X)

)

+
, ξ2 − ξ1

}

, γ1 < γ ≤ 1,

where (ξ1, ξ2) ∈ A1. Similarly, both cases lead to the same solution, which is (0, 0). Let us justify

this for the case in which γ1 < γ ≤ 1, where the second stage optimisation problem is equivalent to

min
A1

H(ξ1, ξ2) := λ2ξ2 + (λ1 − λ2)

(

∫ ξ1

0

+

∫ V aRα1
(X)+ξ2−ξ1

V aRα1
(X)

)

F̄ (x) dx

−λ1

(

ξ1 +
1

1 − α1

∫ V aRα1
(X)+ξ2−ξ1

V aRα1
(X)

F̄ (x) dx

)

.

Taking the derivative with respect to ξ2, we get that H(ξ1, ξ2) ≥ H
(

ξ1, ξ1

)

for all (ξ1, ξ2) ∈ A1, due

to the fact that

F̄
(

V aRα1
(X) + ξ2 − ξ1

)

≤ F̄
(

V aRα1
(X)

)

≤ 1 − α1 ≤
λ2

λ2 + λ1α1/(1 − α1)
.

Finally, H
(

ξ1, ξ1

)

is increasing in ξ1, which completes the proof of Theorem 3.1.
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