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Abstract

Actuaries are often faced with the task of estimating tails of loss

distributions from just a few observations. Thus estimates of tail prob-

abilities (reinsurance prices) and percentiles (solvency capital require-

ments) are typically subject to substantial parameter uncertainty. We

study the bias and MSE of estimators of tail probabilities and per-

centiles, with focus on 1-parameter exponential families. Using asymp-

totic arguments it is shown that tail estimates are subject to significant

positive bias. Moreover, the use of bootstrap predictive distributions,

which has been proposed in the actuarial literature as a way of address-

ing parameter uncertainty, is seen to double the estimation bias. A bias

corrected estimator is thus proposed. It is then shown that the MSE of

the MLE, the parametric bootstrap and the bias corrected estimators

only differ in terms of order O(n−2), which provides decision-makers

with some flexibility as to which estimator to use. The accuracy of

asymptotic methods, even for small samples, is demonstrated exactly

for the exponential and related distributions, while other 1-parameter

distributions are considered in a simulation study. We argue that the

presence of positive bias may be desirable in solvency capital calcula-

tions, though not necessarily in pricing problems.

Keywords: reinsurance pricing, VaR, parameter uncertainty, bias, bootstrap,

exponential families.

∗Corresponding author. Address: Cass Business School, 106 Bunhill Row, London

EC1Y 8TZ, United Kingdom. Email: a.tsanakas.1@city.ac.uk

1



1 Introduction

Actuaries and other insurance risk modellers are often preoccupied by the

potential of a portfolio to produce high losses. Hence the tails of loss dis-

tributions are of particular interest, for example, in the context of pricing

high reinsurance layers or calculating solvency capital requirements.

Severe limitations in the size of available data sets mean that often tails

of distributions are estimated from just a few hundreds or even tens of rel-

evant data points. The result is a substantial potential for parameter error

in tail estimates. It is thus no surprise that parameter uncertainty has been

a recurring theme in the actuarial community, both in academic and prac-

titioner circles; see for example Cairns (2000), Mata (2000), Cummins and

Lewis (2003), Powers et al (2003), Verrall and England (2006), Borowicz and

Norman (2009), Richards (2009), Saltzmann and Wüthrich (2010), Gerrard

and Tsanakas (2010).

The literature is fairly consistent in proposing that parameter uncer-

tainty be reflected in risk calculations by the use of a predictive distribution,

that is, a mixture of the loss distribution by a density of estimated param-

eters. This density of parameters may be obtained by a Bayesian posterior,

leading to a Bayesian predictive distribution, or a bootstrap estimate of

the sampling distribution, yielding a bootstrap predictive distribution. The

rationale behind this approach is that predictive distributions tend to be

more volatile than, say, Maximum Likelihood Estimators (MLE), and thus

produce more conservative risk estimates. Thus, an implicit risk load for

parameter uncertainty is produced.

Nonetheless, the performance of tail estimation procedures based on pre-

dictive distributions is usually not considered in relation to standard fre-

quentist criteria such as the bias and Mean-Squared-Error (MSE). This is

an issue worth considering; it has been shown by Smith (1998) that the

simple MLE estimates of extreme tails often outperform estimates based on

Bayesian prediction, when viewed though such a lense.

In Section 2 of the present contribution, we start our discussion with

simple analytically tractable examples. We show that the MLE of single

parameter exponential/Pareto tail probabilities is subject to significant pos-

itive bias, with the bias increasing as one moves further out into the tail. The

same holds when considering the MLE of Pareto percentiles. This indicates

that the simple MLE of tail functionals, before any predictive distribution
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is derived, is already in a sense conservative.

In order to generalise these arguments, in Section 3 asymptotic approx-

imations are developed that allow the accurate calculation of the expected

value of functions of sample means. Approximations are of “delta-type” and

follow from a Taylor expansion around the sample mean and characterisa-

tion of the remainder term by combining Edgeworth and Laplace integral

asymptotics.

Using these approximations, it is shown in Section 4 that the MLEs of

extreme tail probabilities and percentiles in single-parameter exponential

families will tend to be positively biased, thus generalising the insights of

Section 2.

In Section 5 we turn our attention to the use of bootstrapping in tail

estimation. It is shown that the parametric bootstrap estimator of tail prob-

abilities and percentiles is indeed more conservative than the MLE. However,

the price one pays for such conservativism is a bias that is double that of

the MLE. Consequently, we propose an alternative estimator, which corrects

the O(1/n) term of the bias; this correction could be seen as an alternative

use of the parametric bootstrap. We then show that the MSE of the three

estimators considered differs only in terms of O(1/n2). Consequently we

argue that bias correction is possible without a significant penalty in MSE.

In a numerical example involving exponential tail functions, we show that

the bias corrected estimator actually has a lower MSE than the others when

considering the extreme tail.

In Section 6 we summarise our conclusions and further discuss the re-

sults obtained in the paper. In particular, we argue that the desirability of

the estimation bias (and hence the choice of estimator) may depend on the

application at hand, where positively biased estimators may be quite mean-

ingful in the context of solvency capital calculation, but not necessarily in

reinsurance pricing.

Throughout the paper, the performance of asymptotic approximations

and estimators is demonstrated with reference to the exponential distri-

bution, for which all quantities considered (eg bias and MSE of different

tail-function estimators) can be analytically calculated. These calculations

are documented in Appendix A. The stated results for the exponential dis-

tribution hold identically for distributions of random variables that can be

written as increasing transforms of exponential variables. Thus, the cases of

distributions such as the one-parameter Pareto (the large loss model most
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widely used in practice) and Weibull distributions are also implicitly dealt

with. To establish further the applicability of our results, a simulation study

is presented in Appendix B, considering one-parameter versions of the (log-

)Normal, (log-)Gamma and Inverse Gaussian distributions.

2 Bias in tail estimation: two examples

Consider an i.i.d. sample of losses (e.g. insurance claims) X = (X1, . . . , Xn)

with density f(·; θ), where θ ∈ Θ ⊆ R is an unknown parameter to be

estimated from X. Denote by θ̂ the MLE of θ based on X. Henceforth

we will assume that f(·; θ) is positive on R+ and that the corresponding

distribution function F (·; θ) is invertible.
Usually, rather than the parameter itself, a function of the parameter

is of interest. For example, in (re)insurance pricing the tail probability

F̄ (x; θ) = 1 − F (x; θ) is of importance, since its integral over the interval

(d, d + l) gives the expected value of reinsurance layer of l in excess of d,

E [min ((X − d)+, l)] =
∫ d+l
d F̄ (x; θ)dx. Alternatively, in a solvency frame-

work one is often interested in estimating the percentile F−1(p; θ). If a

portfolio faces a future loss Y ∼ f(·; θ), then c = F−1(p; θ) corresponds

to the level of capital that needs to be held in order to achieve a portfo-

lio default probability of p (where default is narrowly defined as the event

{Y > c}).
It hence becomes necessary for an insurer to estimate the extreme tail

of the loss distribution, in order to be able to price a high layer or limit the

default probability to an acceptable level. However in practice data sets,

e.g. of insurance claims, can be very small, which leads to possibly large

estimation errors. A substantial component of that error may be estimation

bias. In the following two examples, we show that the two quantities of

interest, the tail probability and the percentile, can be subject to significant

positive bias.

Example 1 (Exponential/Pareto tail function). Consider the case were we

are interested in estimating the probability that an exponentially distributed

random variable with mean θ exceeds threshold y > 0, that is, we seeking to

estimate F̄ (y; θ) = e−y/θ. Then the MLE of θ is θ̂ = 1
n

∑n
j=1Xj and the

MLE of F̄ (y; θ) is F̄ (y; θ̂).

θ̂ is unbiased, but F̄ (y; θ̂) is not. In fact the bias of F̄ (y; θ̂) can be
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explicitly calculated. Since θ̂ ∼ Gam(n, n/θ), we have

E
[

F̄ (y; θ̂)
]

=

∫ ∞

0
e−y/t

tn−1 exp (−tn/θ)
(θ/n)n Γ(n)

dt =
2(ny/θ)n/2

Γ(n)
Kn(2

√

ny/θ),

(1)

where Kn is a modified Bessel function of the second kind (Gradshteyn and

Ryzhik, 2007; eq. 3.471/8).

We note that in reinsurance pricing a more common loss model is based

on the simple Pareto tail function (b/y)α, y > b. If a random variable Y

follows an exponential distribution with mean θ, then Ỹ = beY follows a

Pareto distribution with parameters α = 1/θ, b. Therefore for a Pareto

distribution, the equation (1) will also hold, after substituting log(y/b) for

y.

In figure 1, we plot the relative estimation bias E
[

F̄ (y; θ̂)
]

/F̄ (y; θ) −
1 against values of the true tail probability F̄ (y; θ), for sample sizes n =

10, 20, 50. It can be seen that there is a substantial positive bias, particularly

for low exceedance probabilities (high thresholds) and small sample sizes.

Given that it is not uncommon to just have a few tens of samples from

which to price a high layer, a relative bias of 28% for n = 20, F̄ (y; θ) = 0.01

is striking.

Example 2 (Pareto percentiles). Consider now the case that the distribu-

tion is a single-parameter Pareto with tail function F̄ (x; θ) = (x/b)−1/θ, x >

b (where b is known) and that we are interested in estimating the percentile

F−1(p; θ) = b(1− p)−θ, where p is close to 1, e.g. p = 0.995, as required by

insurance regulation under the impending Solvency II regime. The MLE of

θ is θ̂ = 1
n

∑

j log(Xj/b), which again follows a Gam(n, n/θ) distribution.

Now the expected value of the percentile’s MLE is:

E
[

F−1(p; θ̂)
]

= bE
[

e−θ̂ log(1−p)
]

= b

[

1 +
θ

n
log(1− p)

]−n

. (2)

In figures 2 and 3, the relative estimation bias for F−1(p; θ̂) is plotted,

against the confidence level and the sample size respectively, for different

values of the parameter α = 1/θ. It can be seen that the bias increases

dramatically for high confidence levels p, small samples sizes n, and low

values of a corresponding to heavier tails.

Besides the issue of bias, for both examples discussed above, small data

sizes will imply very substantial estimation errors; this is further discussed

in section 5.3.
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Figure 1: Relative bias of tail function estimate E
[

F̄ (y; θ̂)
]

/F̄ (y; θ) − 1

against true tail probability F̄ (y; θ) (inverted scale) for the exponential /

Pareto model; sample sizes n=10, 20, 50.
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Figure 2: Relative bias of Pareto percentile estimate against confidence level

p; α = 2.5, p ∈ [0.5, 0.995], n = 10, 20, 50.
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Figure 3: Relative bias of Pareto percentile estimate against sample size n;

p=0.995, α = 2.5, 5, 10.

3 Asymptotic approximations

The analytically tractable examples of section 2 show that tail estimates may

be very biased. In order to be able to treat more general cases, we develop

in this section asymptotic formulas that can be used to approximate the

expected value of non-linear functions of the sample mean. For distributions

in a 1-parameter exponential family, such approximations allow calculation

of estimation bias and Mean Squared Error to a high degree of accuracy.

First, in Lemma 1 we provide a result characterising the asymptotic

behaviour of functions of the form g(µ̂)(µ̂ − µ)k. Subsequently, in Lemma

2, we derive the approximations that are used in this paper.

In the sequel we use the following standard asymptotic notation. Con-

sider function ζ(x, n) : X ∈ R× Z+ 7→ R. We say that ζ(x, n) = O(η(n)) as

n → ∞, uniformly in x, if for every x ∈ X there exist M,n∗ > 0 such that

for all n > n∗ it is |ζ(x, n)| ≤M |η(n)|. For a family of random variables Zn,

we say that Zn = OP (η(n)) if for any ǫ > 0 there exists Mǫ > 0 such that

P (|Zn| > Mǫ|η(n)|) < ǫ.

Lemma 1. Consider i.i.d. random variables X1, . . . , Xn with density f(·)
and characteristic function ϕ(·). Denote by µ̂ the sample mean of X1, . . . , Xn
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and let µ = E(X1), µi =
∫∞
−∞(x − µ)if(x)dx. k ≥ 3 is an odd integer and

g(·) a real-valued function. Assume that

a)
∫∞
−∞ |ϕ(ζ)|νdζ <∞, for some ν ≥ 1.

b) µi <∞ for i = 1, . . . , k + 4.

c) The function g(w) has an infinite number of derivatives in some open

interval containing w = µ.

d)
∫∞
−∞

∣

∣g(w)(w − µ)k
∣

∣ dw <∞.

Then

E
[

g(µ̂)(µ̂− µ)k
]

= O
(

n−
k+1

2

)

(3)

as n→ ∞, uniformly in µ.

Proof. First write

E
[

g(µ̂)(µ̂− µ)k
]

=

∫ ∞

−∞
g(µ+ σn−1/2v)(σn−1/2v)kfS∗(v)dv,

where fS∗(·) is the density of the standardised sample mean S∗ = n1/2σ−1(µ̂−
µ). The technical conditions allow an Edgeworth expansion of fS∗(·) and in

particular as n→ ∞ it is (Feller, 1966; p. 535)

fS∗(v) = φ(v) + φ(v)
k+3
∑

j=3

n−j/2+1Pj(v) +O
(

n−k/2−1
)

uniformly in v. φ is the standard normal density and Pj are polynomials not

depending on n or k. The exact form of the polynomials is not of interest

as will be explained below. Hence there exists λ > 0 such that:

E
[

g(µ̂)(µ̂− µ)k
]

≤ I1 + I2

where

I1 =

∫ ∞

−∞
g(µ+ σn−1/2v)(σn−1/2v)k



φ(v) + φ(v)
k+3
∑

j=3

n−j/2+1Pj(v)



 dv

I2 =

∫ ∞

−∞

∣

∣

∣
g(µ+ σn−1/2v)(σn−1/2v)k

∣

∣

∣
λn−k/2−1dv.

Define integrals of the form:

h(k, r) =

∫ ∞

−∞
g(µ+ σn−1/2v)(σn−1/2v)kvrφ(v)dv

8



Then we can write I1 as:

I1 = h(k, 0) +
∑

m

bmn
−cmh(k, rm),

where cm ≥ 1/2. The above formula derives from observing that the sum of

polynomials Pj in the Edgeworth series will produce terms including powers

of v and n. In particular by studying integrals of the form h(k, r), we will

see that the order of h(k, r) depends on whether k+r is even or odd, but not

on the actual value of r. Hence the precise values of the constants bm, cm, rm

are not of interest.

We now examine the asymptotics of the integrals h(k, r). By the change

of variable v = (2n)1/2x we obtain

h(k, r) =

∫ ∞

−∞
g(µ+ σn−1/2v)(σn−1/2v)kvr(2π)−1/2e−v

2/2dv

= σkn(1+r)/22(k+r)/2π−1/2

∫ ∞

−∞
g(µ+ σ21/2x)xk+re−nx

2

dx.

The last integral admits an asymptotic expansion by a modification of Wat-

son’s lemma (see e.g. Murray 1974; pp. 24-26):

∫ ∞

−∞
g(µ+ σ21/2x)xk+re−nx

2

dx ∼ π1/2n−1/2

{

a0 +
a2
2n

+
1 · 3 · a4
22n2

+ . . .

}

= π1/2n−1/2
∞
∑

j=0

a2j(2j − 1)!!(2n)−j .

where the a2j are defined by the Taylor expansion

g(µ+ σ21/2x)xk+r = a0 + a1x+ a2x
2 + . . . .

This yields

h(k, r) ∼ σknr/22(k+r)/2
∞
∑

j=0

a2j(2j − 1)!!(2n)−j ,

Expanding the function x 7→ g(µ+ σ21/2x) around 0 gives

g(µ+σ21/2x)xk+r = g(µ)xk+r+g(1)σ21/2(µ)xk+r+1+
1

2!
g(2)(µ)σ22xk+r+2+. . .

We now distinguish between two cases. First consider the case that k + r

is even. Then the first non-zero term of even order in the expansion of

g(µ+ σ21/2x)xk+r corresponds to ak+r = g(µ). Hence

h(k, r) ∼ σknr/22(k+r)/2g(µ)(k+r−1)!!(2n)−(k+r)/2 = σkg(µ)(k+r−1)!!n−k/2
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On the other hand, if k + r is odd, the first non-zero term of even order in

the expansion of g(µ + σ21/2x)xk+r corresponds to ak+r+1 = g(1)(µ)σ21/2.

Thus

h(k, r) ∼ σknr/22(k+r)/2g(1)(µ)σ21/2(k + r)!!(2n)−(k+r+1)/2

= σk+1g(1)(µ)(k + r)!!n−(k+1)/2

Consequently, for any k, r, it is h(k, r) = O
(

n−k/2
)

, but for the case that

k + r is odd, it is h(k, r) = O
(

n−(k+1)/2
)

. In particular, since k is odd

h(k, 0) = O
(

n−(k+1)/2
)

. Regarding the other terms in the integral I1 we

have that, since cm ≥ 1/2,

n−cmh(k, rm) = O
(

n−k/2−cm
)

=⇒ n−cmh(k, rm) = O
(

n−k/2−1/2
)

.

Therefore we conclude that I1 = O
(

n−(k+1)/2
)

.

We now turn our attention to integral I2. By change of variable w =

µ+ σn−1/2v we have

I2 = λn−k/2−1

∫ ∞

−∞

∣

∣

∣
g(µ+ σn−1/2v)(σn−1/2v)k

∣

∣

∣
dv

= λn−k/2−1

∫ ∞

−∞

∣

∣

∣
g(w)(w − µ)k

∣

∣

∣
σ−1n1/2dw

= O
(

n−(k+1)/2
)

Since both I1, I2 are O
(

n−(k+1)/2
)

, so is E
[

g(µ̂)(µ̂− µ)k
]

≤ I1+ I2.

Lemma 2. Let X1, . . . , Xn be as in Lemma 1, with assumptions a) and b)

satisfied. Consider function ψ(·) with a continuous kth derivative, where k

is an odd integer. Assume that:

∫ ∞

−∞

∣

∣

∣

∣

∫ w

µ
ψ(k)(x)(w − x)k−1dx

∣

∣

∣

∣

dw <∞

Then the following approximations hold as n→ ∞, uniformly in µ:

i) For k = 3,

E[ψ(µ̂)] = ψ(µ) +
1

2
ψ′′(µ)

µ2
n

+O
(

n−2
)

(4)

ii) For k = 5,

E[ψ(µ̂)] = ψ(µ) +
1

2
ψ′′(µ)

µ2
n

+
1

6
ψ(3)(µ)

µ3
n2

+
1

8
ψ(4)(µ)

µ22
n2

+O
(

n−3
)

(5)
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Proof. Taylor expansions of ψ(µ̂) around µ give

ψ(µ̂) = ψ(µ) + ψ′(µ)(µ̂− µ) +
1

2
ψ′′(µ)(µ̂− µ)2 +

1

6
A3(µ̂),

ψ(µ̂) = ψ(µ) + ψ′(µ)(µ̂− µ) +
1

2
ψ′′(µ)(µ̂− µ)2 +

1

6
ψ(3)(µ)(µ̂− µ)3

+
1

24
ψ(4)(µ)(µ̂− µ)4 +

1

120
A5(µ̂),

where

Ak(µ̂) =

∫ µ̂

µ
kψ(k)(x)(µ̂− x)k−1dx = ψ(k)(µ∗)(µ̂− µ)k,

for µ∗ = µ + αµ̂(µ̂ − µ), α ∈ [0, 1]. Hence we can write the expected value

of ψ(µ̂) as

E[ψ(µ̂)] = ψ(µ) +
1

2
ψ′′(µ)

σ2

n
+

1

6
E[A3(µ̂)],

E[ψ(µ̂)] = ψ(µ)+
1

2
ψ′′(µ)

σ2

n
+
1

6
ψ(3)(µ)

µ3
n2

+
1

24
ψ(4)(µ)

κ4 + 3nσ4

n3
+

1

120
E[A5(µ̂)],

where κ4 is the fourth cumulant of X1.

Denote ψ(k)(µ+ αµ̂(µ̂− µ)) = g(µ̂). Then the order of E[Ak(µ̂)] follows

from Lemma 1 subject to differentiability and absolute integrability of g(·),
which we discuss at the end of the proof. For odd k it is:

E[Ak(µ̂)] = E
[

g(µ̂)(µ̂− µ)k
]

= O
(

n−(k+1)/2
)

By setting k = 3, 5, the approximations (4), (5) follow.

To establish the required technical conditions on g(·), note its alternative
form:

g(µ̂) =
Ak(µ̂)

(µ̂− µ)k
= k(µ̂− µ)−k

∫ µ̂

µ
ψ(k)(x)(µ̂− x)k−1dx

If ψ(k)(x) a continuous function in its domain, from the above expression

it follows that g(µ̂) is infinitely differentiable. Absolute integrability of g(·)
follows from

∫ ∞

−∞

∣

∣

∣g(w)(w − µ)k
∣

∣

∣ dw =

∫ ∞

−∞

∣

∣

∣ψ(k)(µ+ αw(w − µ))(w − µ)k
∣

∣

∣ dw

=

∫ ∞

−∞

∣

∣

∣

∣

k

∫ w

µ
ψ(k)(x)(w − x)k−1dx

∣

∣

∣

∣

dw

< ∞
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Figure 4: Relative bias for exponential tail function estimate against thresh-

old y using exact formulas and approximations with error terms O(n−2)

(Approx. 1) and O(n−3) (Approx. 2); n=10, µ = 10 .

The accuracy of the approximations is demonstrated for the tail function

of an exponential distribution, with ψ(µ) = e−y/µ.

In figure 4 the relative bias of ψ(µ̂) is plotted against the threshold y

for n = 10, µ = 10, using the exact formula (1), and the approximations

(4), (5). It is seen that even for such a small sample, the O(n−2) approxi-

mation performs quite well for values of y until about 70, corresponding to

a tail probability ψ(µ) of approximately 0.001. The O(n−3) approximation

performs well even for much higher thresholds.

In Table 1, for the cases y = 30, ψ(µ) ∼= 0.05 and y = 46, ψ(µ) ∼= 0.01,

the exact value of E[ψ(µ̂)] is given along with the two approximations and

the corresponding approximation errors, for sample sizes from n = 5 to

n = 50. If {E[ψ(µ̂)]}appr is an approximation to E[ψ(µ̂)], then the error

stated is given by 100
∣

∣

∣

{E[ψ(µ̂)]}appr
E[ψ(µ̂)] − 1

∣

∣

∣
%. Again the good performance of

the approximate formulas can be observed. For example, when considering

the high threshold y = 46 and with n = 15, the approximation error of

the approximation with O(n−2) error term is 2.575%, while the error of the

approximation with O(n−3) error is 0.453%.
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Table 1: Expected value of estimator of exponential tail function

ψ(µ) = e−y/µ, calculated using exact formulas and approximations with

error terms O(n−2) (Approx. 1) and O(n−3) (Approx. 2); µ = 10 .

a) y = 30, ψ(µ) ∼= 0.05

n Exact Approx. 1 Error (%) Approx. 2 Error (%)

5 0.0615 0.0647 5.278 0.0610 0.796

6 0.0599 0.0622 3.884 0.0596 0.445

7 0.0587 0.0605 2.978 0.0586 0.267

8 0.0578 0.0591 2.355 0.0577 0.170

9 0.0570 0.0581 1.909 0.0569 0.113

10 0.0564 0.0573 1.578 0.0563 0.078

15 0.0544 0.0548 0.746 0.0544 0.017

20 0.0533 0.0535 0.432 0.0533 0.006

30 0.0522 0.0523 0.198 0.0522 0.001

50 0.0512 0.0513 0.073 0.0512 0.000

b) y = 46, ψ(µ) ∼= 0.01

n Exact Approx. 1 Error (%) Approx. 2 Error (%)

5 0.0196 0.0221 12.841 0.0183 6.254

6 0.0182 0.0201 10.065 0.0175 4.161

7 0.0172 0.0186 8.134 0.0167 2.923

8 0.0165 0.0176 6.727 0.0161 2.138

9 0.0158 0.0167 5.667 0.0156 1.615

10 0.0153 0.0161 4.844 0.0151 1.251

15 0.0137 0.0141 2.575 0.0136 0.453

20 0.0129 0.0131 1.603 0.0128 0.214

30 0.0120 0.0121 0.796 0.0120 0.072

50 0.0112 0.0113 0.316 0.0112 0.017
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4 Exponential families

In section 2 it was shown that the estimates of extreme tail probabilities

and percentiles may be subject to significant positive bias. Here, using the

approximations of section 3, we extend this argument by showing that this

is a general property of single-parameter exponential families, of which the

exponential distribution is a particular case.

We start with Natural Exponential Families (NEF) with density of the

form

f(x; θ) = h(x)eθx−κ(θ) (6)

Consider a random variable Y ∼ f(·; θ) and denote µ = E(Y ) = κ′(θ), σ2 =

V ar(Y ) = κ′′(θ), µ3 = E
[

(Y − µ)3
]

= κ(3)(θ). Throughout this section,

we will restrict ourselves to non-negative random variables with an infinite

right tail.

The MLE for parameter µ is just the sample mean µ̂ = X̄ and hence

the MLE for any parameter of the form ψ(µ) will be ψ(µ̂). Henceforth we

will write any parameter of interest in the form ψ(µ), including θ := θ(µ) =

(κ′)−1(µ). We denote 2nd and 3rd central moments as functions of µ by

V (µ) = κ′′(θ(µ)) and γ(µ) = κ(3)(θ(µ)) respectively. It is then easily shown

that θ′(µ) = V (µ)−1 and θ′′(µ) = −γ(µ)V (µ)−3.

Equation (4) allows us to characterise the bias of ψ(µ̂); in particular it

shows that:

Bias(ψ(µ̂)) = E[ψ(µ̂)]− ψ(µ) ≈ 1

2
ψ′′(µ)

σ2

n
(7)

Hence convexity of the function ψ(·) at µ implies that the bias is positive.

We now establish increasingness and convexity of tail probabilities and per-

centiles, as functions of µ.

Lemma 3. Define the function g(m, y) = F̄ (y; θ(m)) =
∫∞
y f(x; θ(m))dx.

Let gµ(m, y) =
∂g(m,y)
∂m and gµµ(m, y) =

∂2g(m,y)
∂2m

. Then:

i) For y > µ it is

gµ(µ, y) > 0. (8)

ii) There exists y∗(µ) > 0 such that for y > y∗(µ) it is

gµµ(µ, y) > 0. (9)

14



Proof. Part i): Differentiation with respect to µ yields

gµ(µ, y) =

∫ ∞

y
h(x)eθ(µ)x−κ(θ(µ))θ′(µ)(x− κ′(θ(µ)))dx

= θ′(µ)

∫ ∞

y
f(x; θ(µ))(x− κ′(θ(µ)))dx,

from which it follows that, since θ′(µ) = V (µ)−1 > 0 it is gµ(µ, y) > 0 as

long as y > κ′(θ(µ)) = µ.

Part ii): Differentiating gµ(µ, y) with respect to its first argument we

obtain:

gµµ(µ, y) = θ′(µ)

{

θ′′(µ)

θ′(µ)

∫ ∞

y
f(x; θ(µ))(x− κ′(θ(µ)))dx

+θ′(µ)

∫ ∞

y
f(x; θ(µ))(x− κ′(θ(µ)))2dx

−
∫ ∞

y
f(x; θ(µ))dx

}

In view of the expressions for the derivatives of κ, θ that were given earlier,

we can write the above equations as:

gµµ(µ, y) =
1

σ2

{

−µ3
σ4
E[(X − µ)1X>y] +

1

σ2
E[(X − µ)21X>y]− P (X > y)

}

=
1

σ4
P (X > y)

{

[E(X|X > y)− µ]2 − µ3
σ2

[E(X|X > y)− µ]− σ2

+V ar(X|X > y)
}

,

since E
[

(X − µ)2|X > y
]

= V ar(X|X > y) + [E(X|X > y)− µ]2. As y

increases, [E(X|X > y)− µ] tends to +∞, but [E(X|X > y)− µ]2 increases

to ∞ faster, which makes the expression above positive for large enough

y.

Hence, if we let ψ(µ) = g(µ, y), for large enough y it will be ψ′′(µ) > 0.

Therefore the MLEs of extreme tail probabilities will tend to be positively

biased. This property of natural exponential families can be slightly gener-

alised as follows.

Corollary 1. Let Y ∼ f(·; θ(µ)), Ỹ = t(Y ), with t a strictly increasing

function. Then the tail probability Pθ(Ỹ > ỹ) = g(µ, t−1(ỹ)) is convex in µ

for ỹ > t(y∗), where y∗ is as in Lemma 3.

This means that our discussion does not only involve distributions such

as the exponential, but also distributions obtained by increasing transforms,

such as the Pareto, since if Y ∼ Exp(1/µ), Ỹ = b exp(Y ) ∼ Pareto(1/µ, b).

We now turn our attention to the case where percentiles are of interest.
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Lemma 4. Define the function q(m, p) = F−1(p; θ(m)). Let qµ(m, p) =
∂q(m,p)
∂m and qµµ(m, p) =

∂2q(m,p)
∂2m

. Then:

i) For p > F (µ; θ(µ)) it is

qµ(µ, p) > 0. (10)

ii) There exists p∗(µ) ∈ (0, 1) such that for p > p∗(µ) it is

qµµ(µ, p) > 0. (11)

Proof. Part i): By the definition of the functions g, q, it is g(µ, q(µ, p)) =

1− p. Taking the total derivative wrt µ yields:

gµ(µ, q(µ, p)) + gy(µ, q(µ, p))qµ(µ, p) = 0 =⇒ qµ(µ, p) =
gµ(µ, q(µ, p))

−gy(µ, q(µ, p))

The denominator is just the density f(q(µ, p); θ(µ)), therefore positive. For

p > F (µ; θ(µ)) it is q(µ, p) > µ and therefore by Lemma 3i) the numerator

is also positive.

Part ii): Taking the second total derivative of g(µ, q(µ, p)) = 1− p wrt

to µ yields the equation

gµµ + gµyqµ + (gyµ + gyyqµ) qµ + gyqµµ = 0 =⇒

qµµ = (−gy)−1
(

gyyq
2
µ + 2gyµqµ + gµµ

)

,

where gyµ = ∂2g
∂µ∂y and the functions’ arguments have been suppressed. Now

observe the following

◦ −gy(µ, q(µ, p)) = f(q(µ, p);µ) > 0 for p > 0.

◦ −gyy(µ, q(µ, p)) is the first derivative of the density. For large enough

p, by the assumption of an infinite right tail, the density will be de-

creasing and thus gyy(µ, q(µ, p)) > 0.

◦ By differentiating the density with respect to µ it is easily obtained

that gyµ(µ, q(µ, p)) = −V (µ)−1f(q(µ, p);µ)(q(µ, p)− µ). By finiteness

of the mean, it is gyµ(µ, q(µ, p)) → 0 as p→ 1.

◦ By part i) of the Lemma, for large enough p it is qµ(µ, p) > 0.

◦ By the proof of Lemma 3ii), gµµ(µ, q(µ, p)) can be made arbitrarily

large with increasing p.
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From the above observations it follows that that a p large enough can be

found such that qµµ(µ, p) > 0.

Hence MLEs of extreme percentiles will also be convex in µ and hence

positively biased. Again we can move slightly beyond natural exponential

families.

Corollary 2. Let Y ∼ f(·; θ(µ)), Ỹ = t(Y ), with t a strictly increasing and

convex function. Then the pth percentile of Ỹ , t(h(µ, p)), is convex in µ for

p > p∗, where y∗ is as in Lemma 4.

5 Bootstrapping

5.1 Bootstrap-predictive distribution

A method often proposed in order to address the issue of estimation error

and associated parameter uncertainty, both in pricing and in solvency ap-

plications, is to use a predictive distribution, rather than the ‘estimative’

one derived from MLE. Predictive distributions arise as mixtures of distri-

butions over distributions of parameters, which may be derived by Bayesian

arguments (eg Cairns (2000), Verrall and England (2006), Saltzmann and

Wüthrich (2010)) or as (bootstrap approximations to) sampling distribu-

tions of MLEs (Harris (1989), Mata (2000), Verrall and England (2006)).

Staying within the framework of 1-parameter exponential families, con-

sider again a parameter of interest that can be written as ψ(µ). Then the

parametric bootstrap estimator (PBE) of ψ(µ) is given by:

ψPB(µ̂) =

∫ ∞

0
ψ(m)fµ̂(m; µ̂)dm, (12)

where fµ̂(·;µ) is the density of the sample mean, when the true mean is µ.

The link with bootstrapping is established by considering the evaluation of

integral (12) via Monte-Carlo simulation.

If the parameter of interest is a tail probability, ψ(µ) = F̄ (y; θ(µ)),

then the function y 7→ ψPB(µ̂) is called a bootstrap-predictive tail func-

tion. Note that the integral in (12) is formally identical with E[ψ(µ̂)] =
∫∞
0 ψ(m)fµ̂(m;µ)dm, with the only difference that in (12) the estimated

rather then the true value of the mean is used to evaluate the density of

the sample mean. Hence the approximations of Section 3 can be used to
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evaluate ψPB(µ̂), yielding

ψPB(µ̂) = ψ(µ̂)+
1

2
ψ′′(µ̂)

V (µ̂)

n
+
1

6
ψ(3) γ(µ̂)

n2
+
1

8
ψ(4)V (µ̂)2

n2
+OP (n

−3). (13)

In the sequel we will denote the approximation arising from keeping terms

up to order n−1 by

ψ∗(µ̂) := ψ(µ̂) +
1

2
ψ′′(µ̂)

V (µ̂)

n
(14)

It is noted that an approximate formula essentially identical to (14) has been

obtained by Landsman (2004), in the context of Bayesian estimation.

The above equations imply that bootstrap predictive distributions can

be evaluated via simple analytical approximations, without the need to use

simulation methods. It furthermore reveals that if the function ψ(·) is convex
at µ, as is the case for tail or percentile functions of exponential families,

then the PBE tends to be higher than the MLE. Hence, the use of the

bootstrap predictive distributions, e.g in pricing applications, is indeed more

conservative than just using the MLE. On the other hand, the following

Lemma shows also that using the PBE will approximately double the bias

in comparison with the MLE.

Lemma 5. For ψ∗(µ̂) as defined in (14) and assuming the relevant condi-

tions of Lemma 2 fulfilled, it is

E[ψ∗(µ̂)] = ψ(µ) + ψ′′(µ)
V (µ)

n
+O(n−2) (15)

Proof. ψ∗(µ̂) can be viewed as a function of µ̂, and thus the approximation

(4) can again be used, but now considering the function ψ∗(·) rather than

ψ(·). Therefore

E[ψ∗(µ̂)] = ψ∗(µ) +
1

2
ψ∗′′(µ)

V (µ)

n
+O(n−2)

It is

ψ∗(µ)=ψ(µ) +
1

2
ψ′′(µ)

V (µ)

n
=⇒ ψ∗′′(µ) = ψ′′(µ) +O(n−1)

Putting the above expressions together yields:

E[ψ∗(µ̂)]=

[

ψ(µ) +
1

2
ψ′′(µ)

V (µ)

n

]

+
1

2

[

ψ′′(µ) +O(n−1)
] V (µ)

n
+O(n−2)

= ψ(µ) + ψ′′(µ)
V (µ)

n
+O(n−2)
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We note that the result of Lemma 5 does not change if an approximation

to ψPB including more terms is used. More accurate approximations for the

bias of ψ∗, are given in Appendix A.

5.2 Bias-corrected estimators

Both the MLE ψ(µ̂) and the (approximate) PBE ψ∗(µ̂) are biased. In

fact, boostrapping procedures can be used for correcting such bias (e.g.

Hall, 1997). The bootstrap estimate for the bias of the MLE ψ(µ̂) is

ψPB(µ̂)−ψ(µ̂). Using the approximation ψPB(µ̂)−ψ(µ̂) ≈ ψ∗(µ̂)−ψ(µ̂) =
1
2ψ

′′(µ̂)V (µ̂)
n , we consider the bias-corrected estimator (BCE) ψ̄(µ̂):

ψ̄(µ̂) := ψ(µ̂)− 1

2
ψ′′(µ̂)

V (µ̂)

n
(16)

This type of bias correction by an estimate of the O(n−1) bias term is in

essence the one suggested by Cox and Hinkley (1979; Sec 8.4).

The effectiveness of ψ̄(µ̂) in correcting for the bias is shown via the fol-

lowing lemma, whose proof is very similar to that of Lemma 5 and therefore

omitted.

Lemma 6. For ψ̄(µ̂) as defined in (16) and assuming the relevant conditions

of Lemma 2 fulfilled, it is

E[ψ̄(µ̂)] = ψ(µ) +O(n−2) (17)

More accurate approximations for the bias of ψ̄ are given in Appendix A.

5.3 Mean Squared Errors

So far, three estimators were considered, the MLE ψ(µ̂), the approximate

PBE ψ∗(µ̂) and the BCE ψ̄(µ̂). It was shown that the three have different

levels of bias, with the PBE approximately doubling the bias of the MLE

and the BCE approximately eliminating it. However to effectively compare

the three estimators we need to consider their estimation accuracy. We do

this by deriving an approximation for the Mean-Squared-Errors (MSE) of

the three estimators.

The following lemma shows that three estimators considered have all

approximately the same Mean Squared Error.
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Lemma 7. Assuming the relevant conditions of Lemma 2 fulfilled, it is

MSE(ψ(µ̂)) =
[

ψ′(µ)
]2 V (µ)

n
+O(n−2) (18)

MSE(ψ∗(µ̂)) =
[

ψ′(µ)
]2 V (µ)

n
+O(n−2) (19)

MSE(ψ̄(µ̂)) =
[

ψ′(µ)
]2 V (µ)

n
+O(n−2) (20)

Proof. All three estimators can be written in the form ψ(µ̂) + a
2ψ

′′(µ̂)V (µ̂)
n .

Consider function

v(m) =

(

ψ(m) +
a

2
ψ′′(m)

V (m)

n
− ψ(µ)

)2

Then the MSE of an estimator of the form ψ(µ̂)+ a
2ψ

′′(µ̂)V (µ̂)
n c an be written

as E[v(µ̂)]. Note that

v(µ) =

[

a

2
ψ′′(µ)

V (µ)

n

]2

= O(n−2).

Differentiation of v yields

v′′(m) = 2
[

ψ′(m)
]2
+2(ψ(m)−ψ(µ))ψ′′(m)+O(n−1) =⇒ v′′(µ) = 2

[

ψ′(µ)
]2
+O(n−1).

Substituting the above expressions for v(µ), v′′(µ) in

E[v(µ̂)] = v(µ) +
1

2
v′′(µ)

V (µ)

n
+O(n−2)

yields the required result.

More accurate approximations for the MSE of the three estimators con-

sidered are given in Appendix A.

Therefore, for any of the three estimators considered, the root-Mean

Squared Error (rMSE) equals

√

ψ′(µ)2
σ2

n
+O(n−2) = n−

1

2

√

ψ′(µ)2σ2 +O(n−1) = |ψ′(µ)|σn− 1

2 +O(n−
3

2 )

(21)

Therefore the bias of the three estimators differs by terms of the order

O(n−1), while the rMSE differs by terms of order O(n−3/2). Hence, bias

correction can be performed without a substantial penalty in terms of esti-

mation accuracy.

Moreover, all three estimators are nearly efficient. For parameter ψ(µ)

it is easily shown that in the natural exponential family of distributions the

Fisher information is In(ψ) = nκ′′(θ)
(

∂θ
∂ψ

)2
. By noting that κ′′(θ) = V (µ)
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and ∂θ
∂ψ = ∂θ

∂µ
∂µ
∂ψ = [V (µ)ψ′(µ)]−1 it follows that the Cramer-Rao lower

bound for an unbiased estimator of ψ(µ) is [ψ′(µ)]2 V (µ)
n .

It is noted here that all results given above, holding for a distribution in

the natural exponential family, also hold for a distribution arising from an

increasing transform of a random variable following the original distribution.

As in Section 4, consider a random variable Ỹ = t(Y ), where t(·) is a strictly

increasing function. Fix P (Y > y) = ψ(µ), such that y corresponds to a

fixed percentile of Y . Now set ỹ = t(y) such that again P (Ỹ > ỹ) = ψ(µ).

Let X̃1, . . . , X̃n be a sample from the distribution of Ỹ . It is straightforward

to show that then the MLE of the parameter µ from that sample is given

by 1
n

∑n
j=1 t

−1(X̃j) =
1
n

∑n
j=1Xj = µ̂. Therefore the statistics ψ(µ̂), ψ∗(µ̂),

ψ̄(µ̂) that are of interest in this paper, remain unchanged subject to such

increasing transformations.

The following example demonstrates the performance of the estimators

introduced in this section, when Y follows an exponential distribution. From

the above discussion it follows that the presented results actually hold for

a wider range of distributions. For example, if t(y) = b exp(y), b > 0, then

Ỹ follows a 1-parameter Pareto distribution, which is the most widely used

model in practice for modelling large losses when data are not abundant.

Alternatively for t(y) = y1/γ , γ > 0, we obtain a Weibull distribution with

fixed shape parameter.

Example 3. Once more, we deal with the example of an exponential tail

function, with ψ(µ) = P (Y > y) = e−y/µ. The relative biases of the esti-

mators ψ(µ̂), ψ∗(µ̂), ψ̄(µ̂) are plotted against the sample size n in figure 5,

for µ = 10, y = 30, corresponding to ψ(µ) = 0.0498. It can be seen how

the BPE has a higher bias than the MLE and how with the BCE the bias is

nearly eliminated.

We now compare the three estimators in terms of their rMSE, along

with the square root of the CRLB, denoted by rCRLB. In Table 2 we provide

values for the rMSEs and the rCRLB for a range of sample sizes. It can

be seen that there are some differences, which, as argued in Section 5.3,

disappear fairly quickly as the sample size increases, particularly for y =

30. For y = 30, it can be seen that for very small samples the rMSE of

the PBE is lower than that of the MLE, which is lower than that of the

BCE. Moreover the rMSE of the MLE and PBE are also lower than the

rCRLB. This indicates that for very small samples, there is an element of
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Table 2: Comparative rMSE of estimators of exponential tail probability

ψ(µ) = e−y/µ for µ = 10.

a) y = 30, ψ(µ) ∼= 0.05 b) y = 46, ψ(µ) ∼= 0.01

n MLE PBE BCE rCRLB

5 0.0653 0.0609 0.0715 0.0668

6 0.0599 0.0567 0.0645 0.0610

7 0.0556 0.0532 0.0592 0.0565

8 0.0521 0.0502 0.0550 0.0528

9 0.0492 0.0477 0.0516 0.0498

10 0.0467 0.0455 0.0488 0.0472

15 0.0383 0.0377 0.0393 0.0386

20 0.0332 0.0329 0.0339 0.0334

30 0.0272 0.0270 0.0275 0.0273

50 0.0211 0.0210 0.0212 0.0211

MLE PBE BCE rCRLB

0.0310 0.0360 0.0289 0.0207

0.0274 0.0320 0.0251 0.0189

0.0247 0.0288 0.0224 0.0175

0.0225 0.0263 0.0204 0.0163

0.0208 0.0243 0.0188 0.0154

0.0194 0.0226 0.0175 0.0146

0.0149 0.0170 0.0135 0.0119

0.0124 0.0139 0.0113 0.0103

0.0096 0.0106 0.0090 0.0084

0.0071 0.0076 0.0068 0.0065

MSE / bias trade-off, though these effects quickly disappear as the sample

size increases. For y = 46, the picture somewhat changes. The differences

between the estimators are more pronounced and the rMSE of the PBE is

now the highest.

The biases and rMSEs in this example were calculated with exact formu-

las; these are rather tedious and are given in Appendix A.

Finally we plot the tail functions obtained by using the MLE, the PBE

and BCE in figure 6, for n = 10 and µ̂ = 10. The plot shows that the

predictive distribution obtained by PBE is more conservative than the one

obtained by MLE. On the other hand, the BCE tail function is not only lower,

but for large thresholds also presents a substantial distortion in its shape (for

very large thresholds it even becomes negative). Though such high thresholds

will typically not be of interest in a pricing problem (especially when starting

from a sample as small as 10 data points), they would be considered in the

rare case of an infinite reinsurance layer or when a tail-based risk measure

such as Tail-Value-at-Risk is used.

The performance of the tail function estimators discussed is further stud-

ied in Appendix B for distributions that do not arise from increasing trans-

forms of an exponential variable. In particular, 1-parameter versions of the

(log-)Normal, (log-)Gamma, and Inverse Gaussian distributions are consid-

ered. For those distributions, the bias and MSE cannot in general be calcu-
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Figure 5: Relative biases for Maximum Likelihood, Parametric Bootstrap

and Bias Corrected Estimators of exponential tail function against sample

size; µ = 10, y=30.
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Figure 6: Exponential tail function estimates, using Maximum Likelihood,

Parametric Bootstrap and Bias Corrected Estimators; µ̂ = 10, n = 10.
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lated analytically and therefore Monte-Carlo simulation is used to evaluate

numerically the quantities studied. Appendix B demonstrates that the esti-

mators have properties consistent with the insight obtained by asymptotic

theory, for a range of models that is wider than the exponential and associ-

ated distributions.

6 Conclusions and discussion

We derived accurate approximations for functionals of sample means, sub-

ject to some technical conditions. For single-parameter exponential families,

we showed that the tail and percentile functions are convex in the mean for

high enough thresholds. These technical considerations allowed us to discuss

the following:

• Maximum likelihood estimators of extreme tail probabilities and per-

centiles are approximately positively biased and accurate approxima-

tions of the bias were derived.

• Parametric bootstrap predictive distributions can be evaluated via an-

alytical approximations and are shown to be more conservative than

distributions estimated by MLE. However, parametric bootstrap esti-

mators exacerbate the bias of the MLE.

• Analytical bias-corrected estimators can be easily introduced, but may

distort the shape of the estimated distribution, especially in the ex-

treme tail.

• The maximum likelihood, parametric bootstrap and bias corrected es-

timators have approximately the same Mean-Squared-Error, implying

that there is only a limited MSE/bias trade-off.

We did not, however, discuss which of the 3 estimators one should use in

practice; since their MSEs are approximately the same, this is not a trivial

question. Arguably the choice of estimator may depend on the application

in mind. For example, in a solvency related context, one may be interested

in setting capital such that a given solvency probability is achieved, after

allowing for the potentially adverse impact of parameter uncertainty. It

was shown in Gerrard and Tsanakas (2010) that such a solvency criterion is

best served by the use of a predictive distribution, which would point to the

direction of a PBE. In that context, the issue of estimation bias does seem
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problematic. On the contrary, the presence of some positive bias in capital

estimation becomes desirable, as this acts as an implicit risk load against

parameter uncertainty.

On the other hand consider a stylised pricing example. A reinsurance

company sells r policies, each of which produces a loss, modelled by the

random variable Zj . Losses Z1, . . . , Zr are considered i.i.d. and the premium

for each policy is calculated as its expected loss. Parameters for each loss

distribution are calculated from a different sample, Xj and let us also assume

that each sample is of the same size n. Denote the premium for the jth policy

as p(Xj). Then a possible criterion for the accuracy of the pricing method

is the quadratic deviation between total premium and total loss. Simple

manipulations show that this can be written as

E









r
∑

j=1

Zj −
r

∑

j=1

p(Xj)





2

 = rV ar(Z)+rV ar(p(X))+r2 (E(Z)− π(X))2 ,

showing that as the portfolio size r increases, the portfolio pricing error is

primarily driven by the bias (E(Z)− π(X)), due to the r2 term, rather than

the estimation variance V ar(p(X)). In other words, for a large homogenous

portfolio the estimation volatility ‘diversifies away’, while the bias does not.

This indicates the potential desirability of bias correction in such a context.

In reality such a homogenous portfolio of independent exposures will not

exist, so that the diversification of estimation volatility will never be more

than partial. In that case, it may be desirable to allow for some positive bias

to act as a safety loading against parameter error. Figure 5 can be viewed

in such a way; under the MLE and PBE, a smaller sample size implies

a higher positive bias, that would lead to a premium which, on average,

would be higher than the expected loss. As the sample size increases, the

need for such a loading is eliminated. A difficult question to answer is how

much bias one should allow; in other words what should be the value of

a in an estimator of the form ψ(µ̂) = ψ(µ̂) + a
2ψ

′′(µ̂)V (µ̂)
n ? This cannot be

answered without a well specified, economically motivated decision criterion.

Formulating such criteria is outside the scope of the present investigation,

but remains a possible topic for future research.
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Appendix A

I. Higher order approximations for MSE and Bias of estima-

tors in exponential families

Notation

We consider a 1-parameter exponential family with mean µ. The second,

third and fourth cumulants are denoted as functions of µ by V (µ), γ(µ), δ(µ)

respectively. It can be checked that V ′(µ) = γ(µ)
V (µ) , V

′′(µ) = δ(µ)
V (µ) −

γ(µ)2

V (µ)3
.

We are interested in the performance of a class of estimators for ψ(µ),

that are given by

ψa(µ̂) = ψ(µ̂) +
a

2
ψ′′(µ̂)

V (µ̂)

n
,

where µ̂ denotes the sample mean based on a sample of size n.

In what follows, the following approximation will be used:

E[v(µ̂)] = v(µ) +
1

2
v′′(µ)

µ2
n

+
1

6
v(3)(µ)

µ3
n2

+
1

8
v(4)(µ)

µ22
n2

+O
(

n−3
)

(22)

where v(·) is a function satisfying the conditions of Lemma 2.

Bias calculation

Let v(m) = ψa(m)−ψ(µ). Differentiating with respect to m, setting m = µ,

and collecting terms up to the order of interest, yields:

v(µ) =
a

2
ψ′′(µ)

V (µ)

n

v′(µ) = ψ′(µ) +
a

2

[

ψ(3)(µ)V (µ) + ψ′′(µ)V ′(µ)
] 1

n
+O(n−2)

v′′(µ) = ψ′′(µ) +
a

2

[

ψ(4)(µ)V (µ) + ψ(3)(µ)V ′(µ) + ψ(3)(µ)V ′(µ) + ψ′′(µ)V ′′(µ)
] 1

n
+O(n−2)

v(3)(µ) = ψ(3)(µ) +O(n−1)

v(4)(µ) = ψ(4)(µ) +O(n−1)

Using (22) and the expressions for the derivatives of V (µ), an approximation

to the bias with error term O(n−3) can be obtained.
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MSE calculation

Now v(m) = (ψa(m) − ψ(µ))2. Differentiating with respect to m, setting

m = µ, and collecting terms up to the order of interest, yields:

v(µ) =
a2

4
ψ′′(µ)2

V (µ)2

n2

v′′(µ) = 2ψ′(µ)2 + 2a

[

ψ′(µ)
(

ψ(3)(µ)V (µ) + ψ′′(µ)V ′(µ)
)

+
1

2
ψ′′(µ)2V (µ)

]

1

n
+O(n−2)

v(3)(µ) = 6ψ′(µ)ψ′′(µ) +O(n−1)

v(4)(µ) = 6ψ′′(µ)2 + 8ψ′(µ)ψ(3)(µ) +O(n−1)

Using (22) and the expressions for the derivatives of V (µ), an approximation

to the MSE with error term O(n−3) can be obtained.

II. Exact formulas for MSE of exponential tail function esti-

mators

Let ψ(µ) = e−y/µ =⇒ ψ′′(µ) = e−y/µ(y2µ−2−2yµ−1). We need to calculate

MSE[ψa(µ̂)] = E[(ψa(µ̂)− ψ(µ))2],

where µ ∼ Gam(n, n/µ) and ψa(µ) = ψ(µ) + a
2ψ

′′(µ)µ
2

n . The calculation of

MSE[ψa(µ̂)] will involve a sum of terms including expectations of the form

E[µ̂−ke−ry/µ̂]. To calculate these, define the integrals

η(c, b, x, k) =

∫ ∞

0

tc−k−1e−x/te−t/b

Γ(c)bc
dt =

2(x/b)(c−k)/2

Γ(c)bk
Kc−k(2

√

x/b),

where Kc−k(·) is a modified Bessel function of the second type. Hence it

follows that

E[µ̂−ke−ry/µ̂] = η(n, b, ry, k),

where b = µ/n. From developing the expression for the MSE and using the

above equation, some rather tedious calculations yield:

MSE[ψa(µ̂)] = η(n, b, 2y, 0) +
a2y4

4n2
η(n, b, 2y, 4) +

a2y2

n2
η(n, b, 2y, 2)

+
ay2

n
η(n, b, 2y, 2)− 2ay

n
η(n, b, 2y, 1)− a2y3

n2
η(n, b, 2y, 3)

−2e−y/µ
[

η(n, b, y, 0) +
a

2n

(

y2η(n, b, y, 2)− 2yη(n, b, y, 1)
)

]

+e−2y/µ

27



Appendix B

Here we consider the performance of the asymptotic approximations to the

expected value of E[ψ(µ̂)], for one parameter versions of the Normal, Gamma

and Inverse Gamma distributions. Furthermore, the Bias and rMSE of the

three tail probability estimators considered (MLE, PBE, BCE) is deter-

mined. As for most of those quantities explicit expressions are hard to

obtain, evaluation is by Monte-Carlo simulation.

I. Distributions used

Normal distribution

Let Φ, φ be respectively the standard normal distribution function and den-

sity and note that

φ′(z) = −zφ(z).

As before, set ψ(µ) equal to the tail probability P (Y > y), calculated under

parameter µ. Then, for the Normal distribution with mean µ and fixed

variance σ2, it is:

ψ(µ) = 1− Φ

(

y − µ

σ

)

ψ′(µ) = φ

(

y − µ

σ

)

1

σ

ψ′′(µ) = −φ′
(

y − µ

σ

)

1

σ2

ψ∗(µ̂) = ψ(µ̂) +
1

2
ψ′′(µ̂)

σ2

n

ψ̄(µ̂) = ψ(µ̂)− 1

2
ψ′′(µ̂)

σ2

n

The distribution of the sample mean is µ̂ ∼ N(µ, σ2/n).

It can be easily shown that E[ψ(µ̂)] = 1−Φ

(

y−µ√
σ2(1+1/n)

)

, so that this

particular quantity can be calculated analytically.

While the normal distribution is not a common model for insurance

claims, note that the analysis holds identically for a log-normal distribution,

with the µ (relating to a scale parameter in the log-normal case) unknown

and the shape parameter σ fixed.
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Gamma distribution

Let G(·;α), g(·;α) be respectively the distribution function and density of a

Gam(α, 1) random variable, such that

g(z;α) =
zα−1 exp(−z)

Γ(α)
, g′(z;α) =

(

1

z
(α− 1)− 1

)

g(z;α)

For a Gam(α, λ) distribution with mean µ, it is λ = α/µ, V (µ) = µ2/α.

Thus:

ψ(µ) = 1−G

(

yα

µ
;α

)

ψ′(µ) = g

(

yα

µ
;α

)

yα

µ2

ψ′′(µ) = −g′
(

yα

µ
;α

)

(yα)2

µ4
− 2g

(

yα

µ
;α

)

yα

µ3

ψ∗(µ̂) = ψ(µ̂) +
1

2
ψ′′(µ̂)

µ̂2

αn

ψ̄(µ̂) = ψ(µ̂)− 1

2
ψ′′(µ̂)

µ̂2

αn

The distribution of the sample mean is µ̂ ∼ Gam(nα, nα/µ).

Again the discussion of the Gamma distribution also addresses the case

of the log-Gamma distribution, which is a distribution with Pareto-type tail

and tail index λ = α/µ.

Inverse Gaussian distribution

We consider an Inverse Gaussian distribution IG(µ, λ), such that the mean

is µ and the variance function is V (µ) = µ3/λ. More about the Inverse

Gaussian distribution can be found in section A.4.1.2 of Klugman et al

(2004). For simplicity, here and in the sequel, we fix λ ≡ 1.

Let u = (y + µ)/µ and z = (y − µ)/µ. Then, it is:

ψ(µ) = 1− Φ

(

z

y1/2

)

− e2/µΦ

(

− u

y1/2

)

ψ′(µ) =
y1/2

µ2

[

φ

(

z

y1/2

)

− e2/µφ

(

− u

y1/2

)]

+
2

µ2
e2/µΦ

(

− u

y1/2

)

ψ′′(µ) = −4e2/µΦ

(

− u

y1/2

)[

1

µ3
+

1

µ4

]

+e2/µφ

(

− u

y1/2

)

[

2y1/2

µ3
+

4y1/2

µ4
− uy1/2

µ4

]

+φ

(

z

y1/2

)

[

−2y1/2

µ3
+
zy1/2

µ4

]
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ψ∗(µ̂) = ψ(µ̂) +
1

2
ψ′′(µ̂)

µ̂3

n

ψ̄(µ̂) = ψ(µ̂)− 1

2
ψ′′(µ̂)

µ̂3

n

The distribution of the sample mean is µ̂ ∼ IG(µ, n).

II. Simulation study

Here we present results from a simulation study, assessing the performance

of the asymptotic approximations and tail probability estimators introduced

in the paper. Consistent parameters are chosen for the three distributions,

such that for all of them the mean is equal to 0.16 and the coefficient

of variation is 0.4. Hence the parameterisations used are N(0.16, 0.0642),

Gam(6.25, 39.0625), and IG(0.16, 1). For all three distributions, a threshold

y corresponding to ψ(µ) = 0.05 is used. For each distribution and value of

n, 108 pseudo-random samples from the distribution of µ̂ are simulated.

In Table 3, for different values of the sample size n, the biases of the

MLE ψ(µ̂), the PBE ψ∗(µ), and the BCE ψ̄(µ) are given. The bias of

MLE is calculated by simulation (or exactly in the case of the Normal), as

well as using an approximation with error of order O(n−2). The tabulated

results are consistent with the results for the exponential/Pareto distribution

presented earlier in the paper. In particular, the approximate value for the

bias is quite close to the exact value, the PBE has bias approximately double

of that of the MLE, and the BCE reduces the bias to nearly zero. Though

the accuracy of asymptotic approximations decreases for very small sample

sizes, the bias correction is still quite effective. For example, in the case of

the Inverse Gaussian distribution, for n = 5, the relative bias of the MLE

is 0.01461/0.05 ∼= 29%, while for the BCE it is 0.00255/0.05 ∼= 5%. When

n = 10, the relative bias of the MLE is 0.008/0.05 ∼= 16%, while for the

BCE it becomes 0.00076/0.05 ∼= 1.5%.

In Table 4, the rMSE of the MLE ψ(µ̂), the PBE ψ∗(µ), and the BCE

ψ̄(µ) are given. In agreement with the asymptotic arguments of Section

5.3, it is seen that the rMSE of the three estimators are quite close to

each other, with the rMSE of the BCE usually lowest. This confirms the

previous conclusion that, for distributions in the exponential family, the bias

correction proposed does not entail an increase in MSE.
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Table 3: Bias of estimators MLE, PBE and BCE of tail probability ψ(µ) =

0.05.

a) Normal distribution, N(0.16, 0.0642).

n MLE (exact) MLE (approx.) PBE BCE

5 0.01661 0.01696 0.03278 0.00044

6 0.01390 0.01414 0.02751 0.00029

7 0.01195 0.01212 0.02370 0.00021

8 0.01048 0.01060 0.02081 0.00015

9 0.00933 0.00942 0.01854 0.00012

10 0.00840 0.00848 0.01672 0.00010

15 0.00562 0.00565 0.01121 0.00004

20 0.00422 0.00424 0.00843 0.00002

30 0.00282 0.00283 0.00564 0.00001

50 0.00169 0.00170 0.00339 0.00001

b) Gamma distribution, Gam(6.25, 39.0625).

n MLE (simul.) MLE (approx.) PBE BCE

5 0.01580 0.01791 0.03003 0.00158

6 0.01343 0.01492 0.02571 0.00115

7 0.01167 0.01279 0.02247 0.00087

8 0.01032 0.01119 0.01997 0.00068

9 0.00925 0.00995 0.01796 0.00055

10 0.00839 0.00895 0.01632 0.00045

15 0.00571 0.00597 0.01121 0.00021

20 0.00433 0.00448 0.00854 0.00012

30 0.00292 0.00298 0.00578 0.00006

50 0.00177 0.00179 0.00352 0.00002

c) Inverse Gaussian distribution, IG(0.16, 1).

n MLE (simul.) MLE (approx.) PBE BCE

5 0.01461 0.01782 0.02667 0.00255

6 0.01253 0.01485 0.02320 0.00187

7 0.01098 0.01273 0.02053 0.00144

8 0.00976 0.01113 0.01840 0.00113

9 0.00880 0.00990 0.01667 0.00092

10 0.00800 0.00891 0.01524 0.00076

15 0.00552 0.00594 0.01068 0.00036

20 0.00421 0.00445 0.00821 0.00021

30 0.00286 0.00297 0.00563 0.00010

50 0.00174 0.00178 0.00344 0.00003
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Table 4: rMSE of estimators MLE, PBE and BCE of tail probability ψ(µ) =

0.05.

a) Normal distribution, N(0.16, 0.0642)

n MLE PBE BCE

5 0.06002 0.06634 0.05768

6 0.05304 0.05811 0.05119

7 0.04787 0.05207 0.04636

8 0.04388 0.04742 0.04261

9 0.04069 0.04373 0.03960

10 0.03806 0.04072 0.03712

15 0.02970 0.03125 0.02917

20 0.02509 0.02614 0.02474

30 0.01996 0.02055 0.01976

50 0.01512 0.01540 0.01502

b) Gamma distribution, Gam(6.25, 39.0625).

n MLE PBE BCE

5 0.06468 0.06953 0.06274

6 0.05810 0.06210 0.05654

7 0.05310 0.05646 0.05181

8 0.04913 0.05201 0.04803

9 0.04591 0.04842 0.04497

10 0.04321 0.04542 0.04239

15 0.03438 0.03571 0.03391

20 0.02935 0.03026 0.02903

30 0.02358 0.02410 0.02340

50 0.01801 0.01827 0.01792

c) Inverse Gaussian distribution, IG(0.16, 1).

n MLE PBE BCE

5 0.06486 0.06859 0.06325

6 0.05884 0.06200 0.05752

7 0.05417 0.05688 0.05306

8 0.05042 0.05277 0.04947

9 0.04732 0.04940 0.04651

10 0.04472 0.04657 0.04401

15 0.03603 0.03717 0.03561

20 0.03095 0.03174 0.03066

30 0.02503 0.02550 0.02487

50 0.01922 0.01945 0.01914
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