
              

City, University of London Institutional Repository

Citation: Tsanakas, A. & Christofides, N. (2006). Risk exchange with distorted 

probabilities. Astin Bulletin, 36(1), pp. 219-243. doi: 10.2143/ast.36.1.2014150 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/5986/

Link to published version: https://doi.org/10.2143/ast.36.1.2014150

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


 Electronic copy available at: http://ssrn.com/abstract=1006586 Electronic copy available at: http://ssrn.com/abstract=1006586

RISK EXCHANGE WITH DISTORTED PROBABILITIES

by

Andreas Tsanakas1 and Nicos Christofides2

This version: January 2006.

Final version published in ASTIN Bulletin.

Abstract

An exchange economy is considered, where agents (insurers/banks) trade risks. Deci-

sion making takes place under distorted probabilities, which are used to represent either

rank-dependence of preferences or ambiguity with respect to real-world probabilities. Pric-

ing formulas and risk allocations, generalising the results of Bühlmann (1980, 1984) are

obtained via the construction of aggregate preferences from heterogeneous agents’ utility

and distortion functions. This involves the introduction of a novel ‘collective ambiguity

aversion’ coefficient. It is shown that probability distortion changes insurers’ behaviour,

who trade not only to share the aggregate market risk, but are also found to bet against

each other. Moreover, probability distortion tends to increase the price of insurance (in-

crease asset returns). While the cases of rank-dependence and ambiguity are formally

similar, an important distinction emerges as for rank-dependent preferences equilibria are

determinate, while for ambiguity they are generally indeterminate.

1 INTRODUCTION

Equilibrium asset pricing models of financial and insurance markets have been exten-

sively studied in the economics, financial and actuarial literature. A pioneering paper in

the subject area is by Borch (1962), whose approach was continued by Bühlmann’s (1980,

1Lloyd’s of London. The authors are grateful to an anonymous referee for insightful suggestions that

significantly improved the paper.
2Imperial College London.
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1984) celebrated pricing models. Useful overviews are provided by Duffie (2001) and Aase

(1993, 2002). The purpose of this paper is to provide asset pricing and risk sharing mod-

els, which address two distinct issues that are not present in the classic insurance/asset

pricing literature. The first concerns the violations of utility theory frequently observed

in practice, which can be explained by a distorted perception of probability by economic

agents (Quiggin, 1993). The second issue is the presence of Knightian uncertainty or am-

biguity in financial markets. It was argued by Knight (1921) that there persists significant

uncertainty in markets, not only with respect to the future states of the world, but also

with respect to the probabilities of those states. Besides the main goal of determining

asset prices in the above situations, we are interested in asking questions such as: What

are the characteristics of equilibrium allocations when agents operate under a distorted

probability and do not conform to the expected utility paradigm? How are market prices

affected by ambiguity? Do diverging beliefs create additional incentives for trading? How

can one express ambiguity on a market-aggregate, rather than agent-specific level?

The above issues are studied within the analytical framework provided by distorted

probabilities. Distorted probabilities arise from the application of non-linear functions on

probability measures and allow three distinct interpretations. The first is in the context

of preferences modelled by Rank-Dependent Expected Utility (RDEU) theory (Quiggin,

1982; 1993), where the probability distortion is seen as reflecting the effect of distorted

perception of probability by economic agents. Experimental evidence suggests that such

a distortion is a common feature of decision making under risk and leads to violations of

the expected utility paradigm, e.g. to phenomena such as the Allais paradox, the common

ratio effect and preference reversal (Quiggin, 1993). Distorted probabilities can also be

shown to give rise to a set of probability measures or ‘priors’, whose presence can be seen

as a representation of Knightian uncertainty. This second interpretation of probability

distortion, gives rise to an economic decision model under ambiguity known as Choquet

Expected Utility (CEU) (Schmeidler, 1989). A third interpretation, not discussed in

detail in this paper, relates the use of distorted probabilities in constructing functionals

(Denneberg (1990), Wang (1996)) that are consistent with the coherence axioms of Artzner

et al. (1999) for risk measures used to set regulatory capital requirements.

Apart from reflecting individual preferences that are inconsistent with expected utility

theory, distorted probabilities can be employed to explain particular economic phenomena

that the classical model fails to address. Classic utility theory implies that agents’ risk

allocations are shares of the market risk portfolio. However this is not the case in practice

2



for a variety of reasons, including market incompleteness and asymmetric information.

The framework of distorted probability shows that a ‘betting’ behaviour produced by rank-

dependent preferences and ambiguity could be an additional reason behind this. Another

important phenomenon for which our framework can provide explanation is the equity

premium puzzle (Mehra and Prescott, 1985), that is, the observation that asset returns

are higher than what a utility-based model would predict. Moreover, it is noted that the

emergence of risk sensitive regulation in recent years (e.g. Basle, 2003) produces a new set

of imperatives for financial institutions. As distorted probabilities are an effective tool for

producing well behaved risk measures for setting capital requirements, it has been argued

that a risk takers decision problem should include both utility and probability distortion

components (Tsanakas and Desli, 2003). It is noted that in the latter interpretation,

probability distortion is introduced in a normative rather than descriptive way, as it

reflects regulatory imperatives rather than individual preferences.

Equilibrium models where distorted probabilities are used for representing agents’

preferences have been studied in the literature, usually with the interpretation of CEU as

a model for ambiguity. Dow and Werlang (1992) studied the problem of portfolio choice

under ambiguity and showed that when an agent can invest into one risky and one risk-

free asset, there is an interval of (exogenously given) prices, under which no trade takes

place in the risky asset. Epstein and Wang (1994) and Chen and Epstein (2002) develop

dynamic representative agent asset pricing models, using generalisations of Gilboa and

Schmeidler’s (1989) maxmin expected utility model. No-trade intervals and indeterminacy

of the resulting equilibria, are features of these models too. Characterisations of Pareto

optimal allocations are given in Chateauneuf et al. (2000) and Dana (2002).

In this paper we study an risk exchange economy, similar to the one considered by

Bühlmann (1980, 1984), with the difference that economic agents’ decision-making takes

place under a distorted probability. Each agent is thus characterised by a utility and a

distortion function. We determine equilibrium prices and risk allocations, thus providing

the basis for an insurance/asset pricing model. In the context of the risk exchange the

different interpretations of distorted probability are treated to some extent concurrently,

due to the formal similarity between the models. Thus we discuss equilibria and determine

price functionals, when agents’ preferences are characterised by RDEU and when agents

are ambiguous about the probabilities of future events (CEU). It is noted that as the

paper is primarily about Pareto optima, conditions for existence of equilibrium are not

discussed. The particular analytical tool that enables us to solve the posed preference
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maximisation problems is the concept ‘quantile derivatives’ (Tasche, 2000), which proves

useful for teh differentiation of functionals involving distorted probabilities.

In equilibrium models with heterogeneous agents, a standard technique for calculating

prices is to construct the preferences of a fictional ‘representative agent’ (e.g. Duffie, 2001)

and then determine prices as marginal costs to this agent. We carry out a construction

of aggregate preferences under distorted probabilities. Such preferences are expressed in

terms of two quantities which we call ‘collective risk and ambiguity aversions’. While

the collective risk aversion is the usual (e.g. Wilson, 1968) inverse of the sum of agents’

Arrow-Pratt risk tolerances, the notion of collective ambiguity aversion is introduced in

this paper. If we interpret collective ambiguity aversion and the associated distortion

function as a quantifier of ambiguity at market level, it is shown that ambiguity, as

opposed to ordinary risk, cannot by ‘diversified away’ by trading in a market.

As one of our aims is to present a pricing model, we obtain explicit and transparent

pricing formulas for traded risks, as well as for the equilibrium risk allocations. The

price density depends on two factors, one relating to collective risk and one to collective

ambiguity aversion, and can be seen to be a generalisation of the pricing formulas obtained

by Bühlmann (1980, 1984). It is shown that the effect of Knightian uncertainty is to inflate

asset returns (equivalently to increase the price of insurance). As already observed by

Epstein and Wang (1994), this implies that ambiguity is one of the candidate explanations

for the equity premium puzzle (Mehra and Prescott, 1985). It is a contribution of this

study that such reduction in asset may also be due to rank dependence of preferences.

Agents’ equilibrium risk allocations also consist of two parts, relating to risk and ambi-

guity aversion respectively. If we interpret distortion functions as generators of ambiguity,

the latter part of the allocation only occurs due to agents’ diverging beliefs. It is shown

that, given the presence of aggregate risk in the market, risk aversion causes the agents

to share that risk, while ambiguity provides an incentive to bet against each other. If all

agents are characterised by the same distortion function, such betting behaviour vanishes

and trading takes place only in relation with sharing the aggregate market risk. It is

noted that betting behaviour has been produced by previous models, such as Wilson’s

(1968), which considers diverging beliefs in the context of Savage expected utility. The

present paper shows that rank dependence of preferences as well as diverging beliefs cause

incentives for betting.

Equilibrium models where agents are characterised either by a distorted perception

of probability or by ambiguity are solved concurrently. However, an important difference
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arises relating to the determinacy of the equilibrium. In the case of RDEU the equilib-

rium calculated in the paper is completely determined, while in the case of CEU it is not.

Mathematically, this follows from the fact that ambiguity is not represented uniquely by

a distortion function; different representations give rise to different equilibria. While in

the equilibrium with RDEU it is implicitly assumed that all agents agree on a probabil-

ity, in the case of ambiguity agreement on a (reference) probability measure would be

meaningless. On the other hand, if the agents’ ambiguous beliefs are characterised by the

same sets of probabilities, in effect an agreement becomes possible and the indeterminacy

vanishes.

The structure of the paper is as follows. In Section 2 we introduce the preference

functionals used in the paper, along with a discussion of risk and ambiguity aversion,

as defined for the purposes of the present investigation. In Section 3 the equilibrium

models for Rank Dependent and Choquet Expected Utilities are presented. Pricing and

risk allocation formulas are given, and the effect of ambiguity, the (in)determinacy of

equilibrium, and the concept of collective preferences, are discussed. Conclusions from

the paper are summarised in Section 4.

2 PREFERENCES

2.1 Preference functionals

A one-period economy is considered. At time 0 economic agents (e.g. financial institu-

tions, insurance companies) make decisions concerning their consumption of assets and

liabilities with random payoffs. At some fixed future time t the state of the world is re-

vealed and gains and losses are realised. A probability space (Ω,P0,F) is defined, where

Ω is the set of all possible states of the world at time t, P0 is a probability measure (which

will be interpreted according to the context as either the actuarial ‘real-world’ probability

or just a reference measure), and F ⊂ 2Ω is a σ-algebra with respect to which random

variables are measurable, representing the amount of information available to agents at

time t. We consider a set, X , of square-integrable random variables on this probability

space, which represent investment opportunities available to the market agents. For tech-

nical reasons we assume that elements of X have continuous conditional densities in the

sense of Tasche (2000).3 Elements of X are henceforth called positions. We denote by

3The assumption of continuity is a sufficient condition for the differentiability of preference functionals,

see Lemma 6. For an alternative approach see Carlier and Dana (2002).
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E[·] the expectation operator under P0 and use the notation SX(x) = P0(X > x) for the

decumulative (survival) distribution function of X ∈ X .

For each market agent, a preference relation ‘�’ is defined on X , associated with a

preference functional V : X 7→ R, i.e. V (X) ≥ V (Y ) ⇔ X � Y . (It is in fact the owners of

the financial institutions / insurance companies that are endowed with preferences rather

than the companies themselves. Individuals owning the companies’ random portfolios

have preferences over end-of-period consumption, which in the present one-period setting

corresponds to random wealth.) The preference functional is given by:

Vu,h(X) =

∫ 0

−∞

(h(Su(X)) − 1)dx+

∫ ∞

0
h(Su(X))dx, (1)

where u is an increasing and concave utility function and h is an increasing and convex

probability distortion function with h(0) = 0 and h(1) = 1. The set function h(P0) is

called a distorted probability. The above preference functional emerges as a generalisation

of the von Neumann-Morgenstern (1947) expected utility operator; in fact, when h is

linear, equation (1) reduces to an expected utility. There are two possible interpretations

of the effect of the probability distortion h.

The first interpretation, in the context of Rank-Dependent Expected Utility (Quiggin,

1982), is a behavioral one. Under such a light, the probability distortion h is related to

the perception of probability by an economic agent. It has been observed (e.g. Quiggin,

1993) that agents often tend to overstate the probability of adverse events. Note that an

adverse event is not understood here by the value itself of the random variable X, but by

its rank among all possible outcomes. It is noted Quiggin’s (1993) development considers

a different formulation of the preference functional: Vu,h(X) =
∫

u(x)d(g ◦ FX(x)). This

can be derived from (1) by integration by parts and setting g(s) = 1 − h(1 − s). The

reason for using the slightly more complicated expression (1) is to achieve consistency

with Choquet Expected Utility discussed below.

An alternative interpretation relates to the study of preferences under Knightian un-

certainty, in the sense of ambiguity with respect to the probability distribution of the

underlying risks. The distorted probability can be viewed as a set function γ = h(P0).

Moreover, when h is increasing and convex, the set function γ is supermodular, i.e.

γ(A∪B)+ γ(A∩B) ≥ γ(A)+ γ(B), A,B ∈ F (Denneberg, 1994) . Then, the preference

functional (1) is re-expressed as the Choquet integral:

Vu,γ(X) =

∫

u(X)dγ =

∫ 0

−∞

(γ(u(X) > x) − 1)dx+

∫ ∞

0
γ(u(X) > x)dx. (2)
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Choquet integrals are defined with respect to monotone set functions (or ‘capacities’)

instead of additive measures (Choquet (1954), Denneberg (1994)). The preference func-

tional (2) can be derived from a set of axioms (Schmeidler, 1989), and is called a Choquet

Expected Utility.

The relationship of Choquet expected utility to Knightian uncertainty can be seen

via the representation of the supermodular set function γ and the respective preference

functional (2) through sets of probability measures (Denneberg, 1994):

γ(A) = inf
P≥γ

P(A), A ∈ F ,

∫

u(X)dγ = inf
P≥γ

EP[X], X ∈ X . (3)

Thus, the preference functional can be understood as the minimal expected utility with

respect to a set of probability measures induced by the set function γ. The fact that a

set of probability measures is used instead of only one reflects ambiguity with respect to

the actual probability distribution of the risk X ∈ X . That expected utility is evaluated

at the infimum with respect to that set of measures reflects the aversion of economic

agents to such ambiguity. We note that this interpretation of the distortion function,

the probability measure P0 is no more a ‘real-world’ probability but just a reference

measure used in representing the capacity, γ, via a distorted probability, h(P0). Technical

conditions under which such a representation is possible are studied by Gilboa (1985) and

Wang et al. (1997).

We conclude this section by stating the set of assumptions on utility and distortion

functions that are used throughout the paper. Utility functions are strictly increasing,

strictly concave, continuous and twice differentiable. Distortion functions are strictly

increasing, strictly convex, continuous and twice differentiable. Furthermore, we assume

throughout that the economic agents characterised by CEU have capacities which can be

expressed by distorted probabilities.

2.2 Risk aversion

In the context of RDEU, the effect of the utility and distortion functions is quite different,

though difficult to disentangle. Considering the relationship between RDEU and risk

aversion as expressed through the concept of mean preserving increase in risk (MPIR)

(Rothschild and Stiglitz, 1970), Chew et al. (1987), have shown that: (i) a preference

relation displays aversion to MPIR, in the sense that every mean preserving increase in

risk reduces the value of the preference functional, if and only if the utility function is

concave and the distortion function is convex; and (ii) one preference relation is more
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averse to MPIR than another if and only if the utility and distortion functions of the

former are respectively concave and convex transformations of those of the latter.

On the other hand, in the context of Schmeidler’s (1989) model of preferences under

ambiguity, the convexity of the capacity γ (and therefore of the distortion function) is

a mathematical precondition for representing the preference functional as a minimal ex-

pected utility with respect to a set of probability measures. In that sense convexity of the

distortion function reflects ‘ambiguity aversion’.

The concavity of the utility function is usually characterised through the Arrow-Pratt

coefficient of risk aversion:

Definition 1. The coefficient of risk aversion associated with a (twice differentiable)

utility function u is defined as

ρ(x) = −
u′′(x)

u′(x)
. (4)

For the purposes of this investigation, we proceed to characterizing the convexity of a

distortion function in a very similar way:

Definition 2. The coefficient of ambiguity aversion associated with a (twice differentiable)

distortion function h is defined as

τ(s) =
h′′(s)

h′(s)
. (5)

The term ‘ambiguity aversion’ relates to the interpretation of the distortion function

as a way of generating a set of probability measures; as will be shown below, the more

convex h is, the larger is the set of measures {P : P(A) ≥ h(P0(A)) ∀A ∈ F} induced

by it and thus the higher the ambiguity surrounding the probability distribution. Even

though in this paper the distortion function is not used exclusively in the CEU context,

we will use for simplicity the term ‘ambiguity aversion’ throughout. It is noted that the

differential equations (4) and (5) can be solved to determine uniquely a utility (up to an

affine transformation) and a distortion function.

The above definitions of risk and ambiguity aversion coefficients relate to the compar-

ison by Chew et al. (1987) of preference functionals in terms of their aversion to MPIR,

as shown below.

Lemma 1. (i) An agent characterised by a utility function, u, and a distortion func-

tion, h, is averse to MPIR if and only if the associated risk and ambiguity aversion

coefficients are non-negative, i.e. ρ(x) ≥ 0 ∀x ∈ R and τ(s) ≥ 0, ∀s ∈ [0, 1].
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(ii) An agent characterised by utility and distortion functions, u1, h1, respectively is

more averse to MPIR than another with utility and distortion functions, u2, h2, if

and and only it holds for the associated risk and ambiguity aversion coefficients that

ρ1(x) ≥ ρ2(x) ∀x ∈ R and τ1(s) ≥ τ2, ∀s ∈ [0, 1].

Proof:

(i) Follows trivially from Chew et al. (1987), as positivity of the risk and ambigu-

ity aversion coefficients guarantee the concavity and convexity of the utility and

distortion functions respectively.

(ii) We must show that the condition ρ1(x) ≥ ρ2(x) ∀x ∈ R (resp. τ1(s) ≥ τ2, ∀s ∈ [0, 1])

is equivalent to u1 (resp. h1) being a concave (resp. convex) transformation of u2

(resp. h2).

If u1(x) = c(u2(x)), where c is an increasing and concave function,

u′1(x) = c′(u2(x))u
′
2(x), u′′1(x) = c′′(u2(x))(u

′
2(x))

2 + c′(u2(x))u
′′
2(x) (6)

Thus

−
u′′1(x)

u′1(x)
= −

c′′(u2(x))u
′
2(x)

c′(u2(x))
−
u′′2(x)

u′2(x)
⇒

ρ1(x) ≥ ρ2(x) (7)

Conversely, if ρ1(x) ≥ ρ2(x) ⇔ ρ1(x) = ρ2(x) + f(x), f(x) ≥ 0, then we can define

the increasing and concave function:

c(x) =

∫ x

−∞

exp

(

−

∫ u−1
2 (y)

−∞

f(t)dt

)

dy, (8)

It is then easy to show that

f(x) = −
c′′(u2(x))u

′
2(x)

c′(u2(x))
, (9)

which, given ρ1(x) = ρ2(x) + f(x), yields u1(x) = c(u2(x)).

The proof for the distortion functions is the same. �

Finally, in the context of ambiguity represented by distorted probabilities, it can

be shown that comparing the ambiguity aversion coefficient associated with two agents

provides a comparison of the ambiguity characterizing each.
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Lemma 2. Let two agents’ preferences be characterised by Choquet Expected Utility and

their respective supermodular capacities can be represented as h1(P0) and h2(P0). Define

the the ambiguity aversions τ1, τ2 by (5) and the sets P1 = {P : P(A) ≥ h1(P0(A)) ∀A ∈

F} and P2 = {P : P(A) ≥ h2(P0(A)) ∀A ∈ F} representing the agents’ ambiguity. Then,

τ2(s) ≤ τ1(s) ∀s ∈ [0, 1] implies that P2 ⊆ P1.

Proof: From Lemma 1ii) it can be seen that τ1(s) ≥ τ2(s) implies that h1(s) = c(h2(s)),

where c is an increasing convex function with c(0) = 0, c(1) = 1. This in turn implies

that h1(s) ≤ h2(s) ∀s ∈ [0, 1] which yields P2 ⊆ P1.

3 RISK EXCHANGE

3.1 General setup

Let n agents, standing for financial institutions ((re)insurance companies, banks etc), be

participating in an exchange economy, similar to the one defined by Borch (1962) and

Bühlmann (1980, 1984). Each holds an initial endowment Xi ∈ X , i = 1, ..., n (random

assets and liabilities including cash), which can be traded in the exchange. Let F be

the σ-algebra generated by the initial endowments Xi, i = 1, ..., n. Agents can acquire

through trading any position Y ∈ X that is measurable with respect to F , that is, the

positions available to traders are restricted to functions of the Xi’s. Additionally we

assume that a safe asset 1Ω with unit price and unit payoff is traded in the market; this

implies zero interest rates.4 We assume that market prices are given by a linear functional

π(X) = E[ζX], where ζ ∈ L2(Ω,P0,F). The price of the safe asset is 1, hence:

π[1Ω] = 1 ⇒ E[ζ] = 1. (10)

Agents are characterised by preference functionals of the form (1). Each agent is

equipped with a strictly increasing and concave utility function ui and a strictly increasing

and convex probability distortion hi, i = 1, ..., n, both ui and hi being continuous and

twice differentiable. We denote the ith agent’s preference functional as Vi. The ith agent

decides on his optimal investment by maximizing his preference functional, subject to a

budget condition:

max
Yi

Vi(Yi), such that π(Yi) ≤ π(Xi). (11)

4We note that this collection of available positions includes nonlinear functions of the initial endowments

and thus refers to an infinite-dimensional commodity space. The richness of this class of traded assets is

necessary for the complete market setting implicitly assumed here, due to the fact that the probability

space is also infinite dimensional.
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As discussed in Section 2.1 these preference functionals can be associated either with

RDEU or with CEU. Due to the formal similarity of these two models, they are treated

concurrently in the sequel. However, an important difference arises relating to the de-

terminacy of equilibrium, which is discussed in Section 3.5. Furthermore, an implicit

assumption used in the sequel is that, if the preference functional is associated with Cho-

quet expected utility, all agents’ capacities can be expressed as distortions of the same

probability measure. This has two consequences. One is that all capacities have the same

null-sets. The other is that the sets of probability measures associated with each agent

have a non-empty intersection (it is easy to see that the reference measure will belong to

all those sets, e.g. P0(A) ≥ h(P0(A)), A ∈ F .

3.2 Necessary conditions for equilibrium

We define the aggregate risk in the market as Z =
∑n

j=1Xj . The economy will be at

equilibrium if and when all agents have solved their preference maximisation problem (11)

and the market has cleared:
n
∑

j=1

Yj = Z. (12)

The optimisation problem (11) has Lagrangian:

Vi(Yi) − λi(π(Yi) − π(Xi)). (13)

The following lemma yields a necessary condition for equilibrium, which can be viewed

as a generalised version of Borch’s (1962) characterisation of Pareto optima.

Lemma 3. (i) At equilibrium each agent’s risk allocation, Yi, is related to the price

density, ζ, via the relationship

u′i(Yi)h
′
i(SYi

(Yi)) = λiζ, i = 1, ..., n. (14)

(ii) The risk allocations to the agents, Y1, Y2, . . . , Yn are comonotonic random variables.

Proof:

(i) To solve the maximisation problem (11) we proceed using some standard methodol-

ogy from variational calculus. For N ∈ X we define f(β) = Vi(Yi+βN)−λi(π(Yi+

βN) − π(Xi)). In order that the objective function of (11) achieves an optimum at

Yi it must be, f ′(0) = 0, ∀N ∈ X . From Lemma 6 we obtain:

f ′(β) = E[Nu′i(Yi + βN)h′i(SYi+βN (Yi + βN))] − λiπ(N). (15)
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Thus:

f ′(0) = E[Nu′i(Yi)h
′
i(SYi

(Yi))] − λiπ(N) = 0 ∀N ∈ X , (16)

which yields condition (14).

(ii) Consider equation (14). Since both ui and hi are strictly increasing, λi > 0. Con-

sider now the function ηi(x) = (1/λi)u
′
i(x)h

′
i ◦ SYi

(x). The first derivative of ηi is

strictly negative

η′i(x) =
1

λi
(u′′i (x)h

′
i ◦ SYi

(x) − u′i(x)h
′′
i ◦ SYi

(x)fYi
(x)) < 0, (17)

since the functions u′i, h
′
i are strictly decreasing and increasing respectively. Thus ηi

is strictly decreasing. Therefore its inverse η−1
i exists and is also strictly decreasing.

We observe that all random variables Yi = η−1
i (ζ) are strictly decreasing functions

of the random variable ζ. Hence Y1, Y2, . . . , Yn are comonotonic. �

Comonotonic risks are characterised by the strongest form of positive statistical de-

pendence. An economic interpretation of comonotonic risks is that they cannot be used as

hedges for each other (Yaari, 1987). The fact that the final positions Yi are comonotonic

has the interpretation that agents have ridded themselves of the individual risk embedded

in their initial endowments Xi and are left only with the market’s systemic risk. Thus,

our model is consistent with a well known tenet of capital asset pricing. Moreover, it has

been shown that comonotonicity of the risk allocations Yi is a precondition for efficient

spreading of the market risk to the agents (Landsberger and Meilijson, 1994).

Comonotonicity of the random variables Y1, Y2, . . . , Yn has two important consequences

which will prove useful in the sequel. These are summarised below.

Lemma 4. The following properties of comonotonic random variables hold:

a) The comonotonic random variables Yi, i = 1, ..., n are also comonotonic to (increas-

ing functions of) their sum Z.

b)

FYi
(Yi) = FZ(Z) = U a.s., ∀i = 1, ..., n, (18)

where U is uniformly distributed on the unit interval.

Proof: E.g. Dhaene et al. (2002).
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3.3 Solution for exponential utility and distortion functions

Before proceeding with the calculation of equilibrium prices for more general utility and

distortion functions, we study the case of exponential utility and distortion. This situation

gives rise to simple and transparent solutions, as well as providing a generalisation of

Bühlmann’s (1980) pricing formula and a distorted probability version of the well-known

Esscher transform.

Let each agent have an exponential utility function with risk aversion ρi > 0 and an

exponential distortion function hi with ambiguity aversion τi > 0:

ui(x) =
1

ρi
(1 − e−ρix), hi(s) =

eτis − 1

eτi − 1
. (19)

The first and second derivatives of these functions are:

u′i(x) = e−ρix > 0, u′′i (x) = −ρie
−ρix < 0. (20)

h′i(s) =
τie

τis

eτi − 1
> 0, h′′i (s) =

τ2
i e
τis

eτi − 1
> 0. (21)

In the sequel, the following rewriting of h′i(SYi
(Yi)) will also be used:

h′i(SYi
(Yi)) =

e−τiFYi
(Yi)

E[e−τiFYi
(Yi)]

. (22)

We now define two quantitities which prove useful in the sequel.

Definition 3. In the risk exchange with exponential utility and distortion functions, the

collective risk aversion, ρ, and the collective ambiguity aversion, τ , are defined by the

equations:

1

ρ
=

n
∑

j=1

1

ρj
, τ = ρ

n
∑

j=1

τj
ρj
. (23)

The collective risk and ambiguity aversions are treated for the time being only as

notational simplifications. Their meaning will be discussed in Section 3.6. We note here

that the formula for collective risk aversion is well known (e.g. Bühlmann, 1980), while

the formula for collective ambiguity aversion is being introduced in this paper.

The following result provides a simple formula for the equilibrium price density, ζ.

Proposition 1. In the risk exchange with exponential utilities and distortions the equi-

librium price density, ζ, has the form:

ζ =
e−ρZ−τFZ(Z)

E[e−ρZ−τFZ(Z)]
. (24)
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Proof: Condition (14) for equilibrium that was derived earlier yields:

e−ρiYih′i(SYi
(Yi)) = λiζ ⇒ Yi =

1

ρi
ln(h′i(SYi

(Yi))) −
1

ρi
ln(ζ) −

1

ρi
ln(λi). (25)

By summing both sides of the above equation over i and taking into account the clearing

condition (12) we obtain:

Z =
n
∑

j=1

1

ρj
ln(h′j(SYj

(Yj))) −
n
∑

j=1

1

ρj
ln(ζ) −

n
∑

j=1

1

ρj
ln(λj). (26)

The first term of the right-hand side becomes:

ln
∏n
j=1 h

′
j(SYj

(Yj))
1

ρj
(22)
= ln

∏n
j=1 e

−

τj
ρj

FYj
(Yj)

∏n
j=1 E[e

−τjFYj
(Yj)

]
1

ρj

=

(18)
= ln e

−
∑n

j=1

τj
ρj
U
− ln

∏n
j=1E[e−τjU ]

1
ρj .

(27)

Now, by putting together equations (26), (27) and (23) we obtain:

Z = −
τ

ρ
U − ln

n
∏

j=1

E[e−τjU ]
1

ρj −
1

ρ
ln(ζ) −

n
∑

j=1

1

ρj
ln(λj). (28)

We set the constant, K = −ρ(ln
∏n
j=1E[e−τjU ]

1
ρj +

∑n
j=1

1
ρj

ln(λj)). Then equation (28)

becomes:

ρZ + τU = K − ln ζ ⇒ ζ = e−ρZ−τUeK . (29)

Since we have assumed that there exists in the market a risk-free asset 1Ω with unit price,

from (10) we obtain:

E[ζ] = 1
(29)
⇒ E[e−ρZ−τUeK ] = 1 ⇒ eK = E[e−ρZ−τU ]−1. (30)

Substituting exp(K) in (29), we obtain formula (24) for the price density. �

Note that formula (24) is a generalisation of the Esscher transform, which was ob-

tained by Bühlmann (1980), who studied a market model where agents’ preferences are

characterised by exponential utility functions. The probability weighting factor exp(−ρZ)

in the price density associates the price of a traded position with the random value of the

market portfolio Z. The fact that it is a decreasing function of Z has the interpretation

that a position, which is likely to assume a high value when Z is low, is traded at a high

price because of its usefulness in hedging market risk. On the other hand, the additional

probability weighting exp(−τFZ(Z)) that is introduced here is due to the probability dis-

tortions and associates the price of a position with the rank of the outcome of Z, in the

set of possible outcomes. For this factor, the absolute value of Z is not of interest, but
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rather the ranking of its possible outcomes, induced by the application of its cumulative

distribution function, FZ . That the price density is a decreasing function of FZ(Z) has

again the interpretation that a position, which is likely to assume a high value when

FZ(Z) is low, is traded at a high price because of its usefulness in hedging. However,

hedging now takes place not with respect to the absolute level of market risk, but with

respect to its rank among all possible outcomes; in that sense this is not hedging against

losses, but hedging against scenarios.

The effect of a change in collective risk or ambiguity aversion is not easily glanced from

(24). However, by expanding π(X) for small values of ρ and τ , and considering only first

order terms one obtains π(X) ≈ E[X] − ρCov(X,Z) − τCov(X,FZ(Z)), which could in

effect be viewed as a generalised version of the Capital Asset Pricing Model formula. Form

that it is apparent that increases in the collective risk or ambiguity aversion coefficients

lead to a decreases in the price of an instrument that is positively correlated to the

aggregate risk. This is equivalent to saying that asset returns will increase and that

insurance will become more expensive. Intuitively this makes sense as one would expect

increased risk and ambiguity aversion would drive agents to require higher returns on

their risky investments. Moreover, the parameter τ introduces an increase in prices not

captured by classical utility-based models; ambiguity aversion can thus be viewed as a

possible explanation for the ‘equity premium puzzle’ (Mehra and Prescott, 1985). In the

CEU interpretation of distortion functions, Knightian uncertainty is the reason behind

such an increase in market prices, a point already argued by Epstein and Wang (1994).

Our framework additionally shows that rank-dependence of preferences may also be the

reason behind asset returns that exceed utility theory’s predictions.

We can now explicitly calculate the agents’ final positions Y1, Y2, . . . , Yn.

Proposition 2. In the risk exchange with exponential utilities and distortions the risk

allocations Y1, Y2, . . . , Yn are given by

Yi =
ρ

ρi
(Z − π(Z)) +

τ − τi
ρi

(FZ(Z) − π(FZ(Z))) + π(Xi), i = 1, 2, . . . , n. (31)

Proof: Equations (25), (24) yield:

e−ρiYi
e−τiU

E[e−τiU ]
= λi

e−ρZ−τU

E[e−ρZ−τU ]
⇒ Yi =

ρ

ρi
Z +

τ − τi
ρi

U −
1

ρi
ln

(

λi
E[e−τiU ]

E[e−ρZ−τU ]

)

. (32)

From the constraint in (11) we obtain (the equality being a consequence of the strict
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positivity of the lagrangian multiplier λi (14)):

π(Yi) = π(Xi) ⇒

− 1
ρi

ln
(

λi
E[e−τiU ]

E[e−ρZ−τU ]

)

= −E
[(

ρ
ρi
Z + τ−τi

ρi
U
)

ζ
]

+ E[Xiζ].
(33)

Substituting (33) in (32) yields Yi. �

It can easily be seen that, as expected, the share of the aggregate risk that the ith

agent holds after the exchange decreases as his risk and ambiguity aversion coefficients

increase. Specifically, Yi depends on how they compare with the corresponding collective

risk and ambiguity aversions. Note that the risk allocation Yi consists of two terms: the

first is a proportional share of the aggregate risk Z, due to risk aversion, and the second a

proportional share of FZ(Z), due to ambiguity aversion. Regarding the latter, it depends

on the difference between the individual and collective ambiguity aversions τ − τi; if they

are equal it vanishes. Furthermore, the aggregate traded share of FZ(Z) is zero, since
∑n

j=1
τ−τj
ρj

= 0. In the context of ambiguity, we can interpret the trading in FZ(Z) as

agents’ with diverging beliefs betting against each other. In that sense, ambiguity can

be a source of trading, as discussed in Billot et al. (2000). It is noted that betting

behaviour has been produced by older models, such as Wilson’s (1968), which considers

diverging beliefs in the context of Savage expected utility. The above results show that

rank dependence of preferences as well as diverging beliefs can cause incentives for betting.

The reason behind this is that under the rank-dependent model agents’ probabilities are

re-weighted by h′i(SYi
(Yi)). Mathematically this corresponds to a change of probability

measure and is thus akin to diverging beliefs.

3.4 Solution for the general case

We now proceed with the calculation of the equilibrium price density, for the case where

agents’ preferences are characterised by more general utility and distortion functions.

In Section 3.2 it was shown that at equilibrium the agents’ final positions Yi will be

comonotonic to each other, as well as to their sum Z. Thus for each i = 1, ..., n, Yi can

be written as an increasing function ψi of Z, Yi = ψi(Z). From equation (14) it is then

apparent that the price density ζ will be a decreasing function φ of Z, ζ = φ(Z). Thus,

we can rewrite the condition for equilibrium (14) as:

u′i(ψi(Z))h′i(SZ(Z)) = λiφ(Z), i = 1, ..., n. (34)

Denoting the ith agent’s risk aversion and ambiguity aversion functions by ρi(x) and
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τi(s) respectively,

ρi(x) = −
u′′i (x)

u′i(x)
, τi(s) =

h′′i (s)

h′i(s)
, (35)

we proceed with the following definition:

Definition 4. In the risk exchange with general utility and distortion functions, the col-

lective risk aversion, ρ(x), and the collective ambiguity aversion, τ(s), are defined by the

equations:

ρ(Z) =





n
∑

j=1

1

ρj(ψj(Z))





−1

, τ(SZ(Z)) = ρ(Z)
n
∑

j=1

τj(SZ(Z))

ρj(ψj(Z))
. (36)

Again the formula for the collective risk aversion goes back to Bühlmann (1984) and

Borch (1985), while the formula for τ(s) is being introduced in this paper.

As before, the calculation of the equilibrium price density, ζ, relies on the constructs

of collective risk and ambiguity aversion.

Proposition 3. In the risk exchange with general utilities and distortions the equilibrium

price density, ζ, has the form:

ζ =
e−

∫ Z

−∞
ρ(x)dx−

∫ FZ (Z)
0 τ(1−y)dy

E[e−
∫ Z

−∞
ρ(x)dx−

∫ FZ (Z)
0 τ(1−y)dy]

. (37)

Proof: Taking the logarithmic derivative of both sides of (34) (which will exist because

of our smoothness assumptions) yields

∂ ln(u′i(ψi(Z))h′(SZ(Z)))
∂Z

= ∂ ln(λiφ(Z))
∂Z

⇒

u′′i (ψi(Z))
u′i(ψi(Z))

ψ′
i(Z) −

h′′i (SZ(Z)
h′i(SZ(Z)

fZ(Z) = λi
φ′(Z)
φ(Z) ,

(38)

where fZ is the probability density function of Z. Substituting the ith agent’s risk and

ambiguity aversions (35) in eq. (38) yields

ψ′
i(Z) = −

1

ρi(ψi(Z))
λi
φ′(Z)

φ(Z)
−
τi(SZ(Z))

ρi(ψi(Z))
fZ(Z). (39)

Differentiating the clearing condition (12) yields
∑n

j=1 ψ
′
j(Z) = 1. Thus, summing over i

in (39) using the definition of the collective risk and ambiguity aversions, ρ(x) and τ(s)

we obtain the ordinary differential equation

φ′(Z)

φ(Z)
= λ−1

i (−ρ(Z) − τ(SZ(Z))fZ(Z)) ⇒ φ(Z) = Ke−
∫ Z

−∞
ρ(x)dx−

∫ Z

−∞
τ(SZ(x))fZ(x)dx,

(40)

for some constant K. Eq. (40) and the condition E[φ(Z)] = E[ζ] = 1 yield formula (37)

for the price density.�
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This price density is a generalisation of the formula obtained by Bühlmann (1984).

Again the market’s ambiguity aversion introduces an additional weighting factor,

exp{−
∫ FZ(Z)
0 τ(1 − y)dy}. The discussion in the previous sections of the influence of

ambiguity aversion on the pricing of risk retains its validity in this, more general setting.

In the case of exponential utility and distortion functions studied in the previous section,

the market as well as the individual risk and ambiguity aversion functions are constant

and it is easily seen that equation (37) reduces to (24).

We now obtain an expression for the risk allocations ψi(Z) = Yi.

Proposition 4. In the risk exchange with general utilities and distortions the risk allo-

cations Y1, Y2, . . . , Yn are given by

Yi = (u′i)
−1 ◦ exp

{

−

∫ Z

−∞

ρ(x)dx−

∫ FZ(Z)

0
(τ(1 − y) − τi(1 − y))dy −K

}

, (41)

where the constant K is determined by the budget condition π(Yi) = π(Xi).

Proof: As mentioned in Section 2.2, from the quantities ρ(Z) and τ(SZ(Z)) we can

determine unique corresponding utility and distortion functions u and h respectively (up

to a normalisation of u). We can rewrite the price density (37) as

φ(Z) =
u′(Z)h′(SZ(Z)

E[u′(Z)h′(SZ(Z)]
, (42)

which yields

φ′(Z)

φ(Z)
=
u′′(Z)h′(SZ(Z)) − u′(Z)h′′(SZ(Z))fZ(Z)

u′(Z)h′(SZ(Z))
= −ρ(Z) − τ(Z)fZ(Z). (43)

Substituting the term φ′(Z)
φ(Z) in equation (39) results in the differential equation

ψ′
i(Z)ρi(ψi(Z)) = ρ(Z) + τ(SZ(Z)) − τi(SZ(Z))fZ(Z). (44)

The definition of the risk aversion coefficient yields ψ′
i(Z)ρi(ψi(Z)) = −∂ lnu′i(ψi(Z))/∂Z.

Hence (44) yields

u′i(ψi(Z)) = exp

{

−

∫ Z

−∞

ρ(x)dx−

∫ Z

−∞

(τ(SZ(s)) − τi(SZ(s)))ds−K

}

, (45)

whence (41) follows. �

From (41) and (44) we see that, as in the previous section, Yi depends on how the ith

agent’s risk and ambiguity aversions compare to the collective ones. Observe that in this

more general case the Yi’s do not consist of proportional shares of Z and FZ(Z), but are

non-linear functions thereof. The trading in FZ(Z) can again be interpreted as betting

behaviour, similarly to the previous section. We note that (41) does not provide a closed

form solution for Yi, as the collective risk aversion ρ does in general depend on the Yi’s.
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3.5 Ambiguity, (in)determinacy and betting

In the previous sections, agents’ distortion functions have been taken to represent either

rank-dependent preferences or ambiguity with respect to probability, without any dis-

tinction being made between these two very different cases. As mentioned earlier, an

important difference is the role played by the probability measure P0. In the rank depen-

dent case P0 is a ‘real-world’ probability measure, known by all agents, and the distortion

functions affect the subjective perception of this probability by the agents. Thus the

equilibrium prices and allocations calculated in previous sections completely determine

the equilibrium of the risk exchange.

On the other hand, if distortion functions are interpreted as inducing sets of proba-

bility measures representing Knightian uncertainty, then P0 is just a reference measure,

arbitrarily drawn from a set of probability measures with the same null-sets. Agents’

probabilistic beliefs are represented by supermodular capacities, which can be obtained

by distorting a probability measure from that set, with the distortion functions gener-

ally depending on the reference measure chosen. This means that the analysis carried

out in the previous sections could be repeated for a different reference measure, say P̄0.

Given that there is no conceivable mechanism by which agents would agree on a refer-

ence measure before trading, if the equilibrium calculated under P̄0 is different than the

one under P0, then the conclusion must be that, in the case of ambiguity, equilibria are

indeterminate.

To show that this is actually the case, we can restrict ourselves to the case where

utilities are exponential. Consider an agent for whom hi(P0) = h̄i(P̄0). As hi, h̄i will

in general be different, the same will hold for the associated ambiguity aversions, i.e.

τi(s) 6= τ̄i(s). Note that FZ(Z) will be uniformly distributed under both measures and

that the individual and collective risk aversions, ρj , j = 1, . . . , n and ρ, will be independent

of the equilibrium risk allocation and thus not depend on the reference measure. From

(41), it can now be seen that, if the τi’s change, other things being equal, the equilibrium

allocations change. Thus ambiguity is a source of indeterminacy.

Consider the case of all agents’ beliefs being represented by the same capacity. It is

then obvious that for any reference measure it is τi(s) = τ(s)∀s ∈ [0, 1],∀i = 1, . . . , n.

From (41) it can be seen that that this makes the risk allocations independent of the

reference probability measure P0. Thus, in the case of a shared capacity the indeterminacy

of the risk allocations vanishes. Furthermore, the part of the allocation which is due to
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ambiguity aversion, is increasing in the difference between individual and collective risk

aversion, that is, in the degree to which an agents’ beliefs diverge from the average. As

discussed in Sections 3.3 and 3.4, diverging beliefs are a cause of trading, in the sense

that it motivates agents to bet against each other. If all agents’ ambiguity is represented

by the same capacity, then the part of the allocation depending on ambiguity aversion

vanishes for all agents. This is consistent with Chateauneuf et al. (2000), who showed

that risk allocations in the case of a common capacity are the the same as von Neumann-

Morgenstern ones. Thus, under homogeneity of beliefs, betting ceases. On the other

hand, equilibrium prices always depend on collective ambiguity aversion, as can be seen

from (37). Therefore even in the case where agents have the same beliefs, equilibrium

prices are indeterminate.

Agents’ betting behavior under diverse levels of ambiguity, allows for a further inter-

pretation of the comonotonicity of allocations. When allocations are comonotonic, agents

use the same probability distribution at equilibrium.5 Thus, even though equilibrium does

not lead to the resolution of ambiguity, it yields an implicit agreement between agents,

since they behave as if they were using the same unique probability distribution.

Finally, we note that if the aggregate risk is zero, i.e. Z is a constant, the risk

allocations are also constant, meaning that the lack of aggregate risk yields full insurance

allocations, regardless of ambiguity. This is consistent with Billot et al. (2000).

3.6 On collective preferences

In the equilibrium models discussed in previous sections, agents’ risk allocations, Yi, i =

1, ..., n, and the price density, ζ, have been found to be functions only of the aggregate

market risk, Z. Furthermore, the price functional depends only on Z and the collective

risk and ambiguity aversions, ρ(x) and τ(s) respectively. The technique of defining col-

lective preferences is not a novelty; it is closely related to the device of the ‘representative

agent’ often employed in the economics literature, while the aggregation of preferences

has been proposed as a way of solving equilibrium models by Borch (1962), Wilson (1968),

Rubinstein (1974) and Bühlmann (1980, 1984).

A new element introduced in this paper has been the definition of aggregate preferences

in the cases of RDEU and CEU, using what we called ‘collective ambiguity aversion’. From

the definitions of collective ambiguity aversion (23), (36) it can be seen that it does not

5The representation of Choquet integrals of comonotonic random variables through the same probability

measure follows from Proposition 10.1 in Denneberg (1994).
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only depend on the ambiguity aversions of the individual agents, but also on their risk

aversions. In fact the collective ambiguity aversion τ is determined as the average of

individual ambiguity aversions τi, weighted by the risk tolerances 1/ρi. This could appear

problematic. It is however justifiable, considering that collective preferences depend on

the allocation of risks, which in turn depend on the utilities as well as the distortion

functions of agents. From equations (31) and (44) it can be seen that the allocations

of risk (i.e. functions of both Z and FZ(Z)) to the agents are dependent on the risk

tolerances 1/ρi (in the exponential case the risk allocations are actually proportional to

the risk tolerances). It is reasonable that an agent who ends up buying a larger share of

the market risk will also have a larger effect on aggregate preferences, as the definition of

collective ambiguity aversion implies.

It is apparent from the definitions (23) and (36) that the collective risk aversion is lower

than that of any agent in the exchange. This can be interpreted as reflecting the reduction

in risk that the possibility of risk sharing and diversification through the exchange entails.

A way to see this is to observe that the reduction of agents’ risk aversion caused by their

participation in the market also results in a reduction of the price of insurance for a

risk. On the other hand, such reduction does not take place in the case of ambiguity

aversion. As collective ambiguity aversion is a weighted average of agents’ individual

ambiguity aversions, it might be greater or smaller than the one of an agent. This effect

can be better understood through the interpretation of the convex probability distortion

functions as reflecting ambiguity with respect to probability, in the context of Knightian

uncertainty. If all agents are uncertain about the probabilities of future events, there is

no reason why adding traders to the market (provided they are not better informed than

the rest) should reduce such uncertainty; ambiguity cannot thus be ‘diversified away’.

From the collective risk and ambiguity aversions we can determine respectively a utility

u and a distortion h, as well as the corresponding preference functional V . Consider now

the representative agent, holding Z and with preferences characterised by V . We define

the indifference price of a position X to the collective, πind(X;Z), as the solution of

V (Z −X + πind(X;Z))) = V (Z) and the marginal cost of X to the collective as:

MC(X;Z) =
∂πind(βX;Z)

∂β

∣

∣

∣

∣

β=0

. (46)

It can then be shown, using the same techniques as in the proof of Lemma 6, that the
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marginal cost of X to the collective equals the equilibrium price of X:

MC(X;Z) = E

[

X
u′(Z)h′(SZ(Z)

E[u′(Z)h′(SZ(Z)]

]

= E



X
e−

∫ Z

−∞
ρ(x)dx−

∫ FZ (Z)
0 τ(1−y)dy

E[e−
∫ Z

−∞
ρ(x)dx−

∫ FZ (Z)
0 τ(1−y)dy]



 . (47)

This is, of course, just another way to say that at equilibrium risks are priced under

collective preferences.

Finally, we note that an alternative interpretation of collective preferences is to view

the risk exchange at equilibrium as a pooling arrangement, where agents pool their initial

endowments, Xi, i = 1, ..., n, and thereafter share the aggregate risk Z by buying their

final positions Yi from the pool, according to an agreed price mechanism. The analogy

between risk exchange and risk pooling has already been observed by Borch (1962), who

commented on the possibility of applying cooperative game theory to the problem. The

marginal cost price mechanism, which yields equilibrium prices, has a theoretical jus-

tification in the context of cooperative games, as it belongs to the class of semi-values

(Dubey et al., 1981), while it can also be derived from a set of economically motivated

axioms (Samet and Tauman, 1982). The relationship between pooling (cooperative risk

sharing) and trading (competitive risk sharing) follows from the comonotonicity of the

risk allocations at equilibrium. Comonotonicity will make all agents’ fortunes move in the

same direction, as it would have been, were they pooling their risks. It is thus the efficient

spreading of risk that comonotonicity implies, which makes cooperative and competitive

economic behavior in some sense equivalent.

4 CONCLUSIONS

Equilibria in risk exchanges were studied, when agents’ decision making takes place un-

der distorted probabilities. Distorted probabilities are used to represent the preference

functionals of Rank-Dependent and Choquet Expected Utilities, which have emerged in

recent years as important correctives to the Expected Utility paradigm. Explicit formu-

lae for the state-price density and risk allocations were obtained, thus generalizing results

obtained by Borch (1962) and Bühlmann (1980, 1984), who considered expected utility

preferences.

The solution of the equilibrium models utilises the construction of collective prefer-

ences. A ‘collective ambiguity aversion’ coefficient was introduced in the paper to charac-

terise the effect of probability distortion on aggregated preferences. It was shown that due

to probability distortion an additional term appears in both the state price density and
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the allocations of risk to insurers. The change in risk allocations shows that probability

distortion gives to agents incentives to trade, not only in order to share the aggregate

risk, but also to bet against each other. In the context of CEU, such behaviour can be

attributed to diverging beliefs about the probabilities of future states of the world.

While the RDEU and CEU preference models present some formal similarities, they

are quite different in terms of the phenomena they seek to explain. Thus, while in the

case of rank-dependent preferences a known probability measure is distorted by agents’

perception, in the case of ambiguity a distorted reference measure is used to represent

ambiguous beliefs. Choice of different reference measures yields different equilibria; hence

one concludes that equilibria under ambiguity are indeterminate.

A TWO LEMMAS

Let an agent’s preferences be characterised by a utility function u and a distortion function

h. Here we obtain two results concerning the operator Vu,h that are used extensively in

the paper.

Lemma 5. For every X ∈ X , Vu,h(X) = E[u(X)h′(SX(X))].

Proof: The Choquet integral (1) of u(X) with respect to the supermodular set function

h(P0), admits the following quantile representation (Denneberg, 1994):

Vu,h(X) =

∫ 1

0
G−1
u(X)(t)dt,

where G−1
u(X)(t) is the (generalised) inverse of the (decumulative) distribution function

of u(X) under h(P0), Gu(X)(x) = h(P0(u(X) > x)) = h(Su(X)(x)). Since the func-

tions SX , h, u, Su(X) are strictly monotonic, G−1
u(X)(t) = S−1

u(X)(h
−1(t)) = u(S−1

X (h−1(t))).

Vu,h(X) can then be written as:

Vu,h(X) =

∫ 1

0
u(S−1

X (h−1(t)))dt.

By performing the change of variable t = h(SX(x)), we obtain:

Vu,h(X) =

∫ −∞

+∞

u(x))dh(SX(x)) =

∫ −∞

+∞

u(x)h′(SX(x))(−fX(x))dx.

Thus Vu,h(X) = E[u(X)h′(SX(X))]. �

Corollary 1. Rh(X) = −E[Xh′(SX(X))].
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Lemma 6. Let X,N ∈ X and β ∈ R. Then Vu,h(X + βN) is differentiable with respect

to β and the partial derivative equals:

∂

∂β
Vu,h(X + βN) = E[Nu′(X + βN)h′(SX+βN (X + βN))].

Proof: As in the proof of the previous lemma, we use the quantile representation of

the Choquet integral:

Vu,h(X + βN) =

∫ 1

0
u(S−1

X+βN (h−1(t)))dt =

∫ 1

0
u(S−1

X+βN (s))dh(s).

Assuming continuity of conditional densities, Tasche (2000) shows that:

∂

∂β
S−1
X+βN (s) = E[N |X + βN = S−1

X+βN (s)].

Thus, the derivative of Vu,h(X + βN) with respect to β is:

∂
∂β
Vu,h(X + βN) =

∫ 1
0 u

′(S−1
X+βN (s)) ∂

∂β
S−1
X+βN (s)dh(s) =

∫ 1
0 u

′(S−1
X+βN (s))E[N |X + βN = S−1

X+βN (s)]dh(s)
(S−1

X+βN
(s)=y)

=
∫ −∞

+∞
u′(y)E[N |X + βN = y]dh(SX+βN (y)) =

∫ −∞

+∞
u′(y)

(

∫ +∞

−∞
n
fN,X+βN (n,y)
fX+βN (y) dn

)

h′(SX+βN (y))(−fX+βN (y))dy =
∫ +∞

−∞

∫ +∞

−∞
nu′(y)h′(SX+βN (y))fN,X+βN (n, y)dndy.

So, we finally obtain:

∂

∂β
Vu,h(X + βN) = E[Nu′(X + βN)h′(SX+βN (X + βN))].

�

Corollary 2.

∂

∂β
Rh(X + βN) = −E[Nh′(SX+βN (X + βN))].
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