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Risk Margin for a Non-Life Insurance Run-Off

Mario V. Wüthrich∗, Paul Embrechts∗ †, Andreas Tsanakas‡

September 5, 2011

Abstract

For solvency purposes insurance companies need to calculate so-called best-estimate re-

serves for outstanding loss liability cash flows and a corresponding risk margin for non-

hedgeable insurance-technical risks in these cash flows. In actuarial practice, the calculation

of the risk margin is often not based on a sound model but various simplified methods are

used. In the present paper we properly define these notions and we introduce insurance-

technical probability distortions. We describe how the latter can be used to calculate a risk

margin for non-life insurance run-off liabilities in a mathematically consistent way.

Key words. Claims reserving, best-estimate reserves, run-off risks, risk margin, market

value margin, one-year uncertainty, claims development result, market-consistent valuation.

1 Market-consistent valuation

The main task of an actuary is to predict and value insurance cash flows. These predictions and

valuations form the basis for premium calculation as well as for solvency considerations of an

insurance company. As a consequence, and in order to be able to successfully run the insurance

business, actuaries need to have a good understanding of such insurance cash flows. In most

situations, insurance cash flows are not traded on deep and liquid financial markets. There-

fore valuation of insurance cash flows basically means pricing in an incomplete financial market

setting. Article 75 of the Solvency II Framework Directive (Directive 2009/138/EC) states “li-

abilities shall be valued at the amount for which they could be transferred, or settled, between

two knowledgeable willing parties in an arm’s length transaction”. The general understanding
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is that this amount should consist of two components, namely the so-called best-estimate re-

serves for the cash flows and a risk margin for non-hedgeable risks in these cash flows. We will

discuss these two elements in detail by giving an economically based approach how they can be

calculated.

The calculation of the best-estimate reserves is fairly straightforward. Article 77 of the Solvency

II Framework Directive says “the best estimate shall correspond to the probability-weighted

average of future cash-flows, taking account of time value of money ... the calculation of the

best estimate shall be based upon up-to-date and credible information ... ”. This simply means

that the best-estimate reserves are a time value adjusted conditional expectation of future cash

flows, conditioned on the information that we have collected up to today.

The calculation of the risk margin has led to more discussion as there is no general understanding

on how it should be calculated. The most commonly used approach is the so-called cost-of-

capital approach. The cost-of-capital approach is based on the reasoning that a financial agent

provides for every future accounting year the risk bearing capital that protects against adverse

developments in the run-off of the insurance cash flows. Since that financial agent provides

this yearly protection, a reward in the form of a yearly price is expected. The total of these

yearly prices constitutes the so-called cost-of-capital margin which is then set equal to the risk

margin. The difficulty with this cost-of-capital approach is that in almost all situations it is

not tractable. It involves path-dependent multi-period risk measures; see Salzmann-Wüthrich

[10]. In most interesting cases these path-dependent multi-period risk measure loadings can not

be calculated analytically, nor can they be calculated numerically in an efficient way because

they usually involve large amounts of nested simulations. Therefore, various proxies are used in

practice. Probably the two most commonly used proxies are the proportional scaling proxy and

the split of total uncertainty proxy; see Salzmann-Wüthrich [10], Wüthrich [13] and Articles

TP.5.32 and TP.5.41 of QIS5 [9]. Related papers are Artzner-Eisele [1] and Möhr [8].

In this paper we present a completely different, more economically based approach. We argue

that the risk margin should be related to the risk aversion of the financial agent that provides the

protection against adverse developments. This risk aversion can be modeled using probability

distortion techniques and this will lead to a mathematically fully consistent risk margin. Under

the proposed method, risk-adjusted values of insurance cash flows are calculated as expected

values after modifying (distorting) the probabilities used. This kind of idea has been used in ac-

tuarial practice for a very long time, however typically in the field of life insurance mathematics,

corresponding to the construction of first order life tables out of second order life tables. Second
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order life tables are expected death/survival probabilities whereas for first order life tables a

safety loading is added to insure that the (life) insurance premium is sufficiently high.

We apply these ideas to the context of non-life insurance liabilities. We study the run-off of

outstanding loss liabilities in a chain ladder framework. Using probability distortions, we develop

so-called risk-adjusted chain ladder factors from the classical chain ladder factors. These risk-

adjusted factors have a surprisingly simple form and allow for a natural inclusion of the risk

margin into our considerations. Related literature to these probability distortion considerations

(and the related change-of-measure techniques in financial mathematics) are, among others,

Bühlmann et al. [2], Denuit et al. [4], Föllmer-Schied [5], Tsanakas-Christofides [11], Wang [12]

and Wüthrich et al. [14].

The paper is organized as follows. In the next section we define the Bayesian log-normal chain

ladder model for claims reserving. Within this model we then calculate the best-estimate reserves

as required by the solvency directive; see Section 3 below. In Section 4 we introduce general

insurance-technical probability distortions. An explicit choice for the latter then provides the

positive risk margin. Finally, in Section 5 we provide a real data example that is based on

private liability insurance data. We compare our numerical results to other concepts used in

practice. All the proofs of the statements are provided in the Appendix.

2 Model assumptions

We assume that a final time horizon n ∈ N is given and consider the insurance cash flow valuation

problem in discrete time t ∈ {0, . . . , n}. For simplicity we assume that the time unit corresponds

to years. We denote the underlying probability space by (Ω,G,P) and assume that, on this

probability space, we have two flows of information given by the filtrations F = (Ft)t=0,...,n and

T = (Tt)t=0,...,n. We assume F0 and T0 are the trivial σ-fields. The filtration F corresponds to

the financial market filtration and T corresponds to the insurance-technical filtration. In order

to keep the model simple, we assume that these two filtrations are stochastically independent

under the probability law P; see also Section 2.6 in Wüthrich et al. [14]. Of course, this last

assumption can be rather restrictive in applications, however, we emphasize that it can be

relaxed by expressing insurance liabilities in the right financial units; see the valuation portfolio

construction in Wüthrich et al. [14].

This independent decoupling into financial variables adapted to F and insurance-technical vari-
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ables adapted to T implies that we can replicate expected insurance cash flows in terms of default-

free zero coupon bonds; see Assumption 5.1 and Remark 5.2 in Wüthrich et al. [14]. This is

in-line with Article 77 of the Solvency II Framework Directive, but needs to be questioned if we

have no independent decoupling into financial and insurance-technical variables.

Insurance cash flows are denoted by Xi,j , where i ∈ {1, . . . , I} are the accident years of the

insurance claims (origin years) and j ∈ {0, . . . , J} are the development years of these insurance

claims (payment delays). We assume that all claims are settled after development year J and

that I ≥ J + 1. With this terminology, cash flow Xi,j is paid in accounting year k = i+ j. This

provides the accounting year cash flows (over all accident years i ∈ {1, . . . , I})

Xk =
∑
i+j=k

Xi,j =
I∧k∑

i=1∨(k−J)

Xi,k−i =

J∧(k−1)∑
j=0∨(k−I)

Xk−j,j .

We denote the total cash flow by X = (X1, . . . , Xn) and the outstanding loss liabilities at time

t < n are given by

X(t+1) = (0, . . . , 0, Xt+1, . . . , Xn).

Thus, our aim is to model, predict and value this outstanding loss liability cash flow X(t+1) for

every t < n. For the modeling of the cash flow X we use the following Bayesian chain ladder

model.

Model 2.1 (Bayesian log-normal chain ladder model) We assume n = I + J and

• Tt = σ {Xi,j ; i+ j ≤ t, i = 1, . . . , I, j = 0, . . . , J} for all t = 1, . . . , I + J ;

• conditionally, given Φ = (Φ0, . . . ,ΦJ−1) and σ = (σ0, . . . , σJ−1), we have

– Xi,j are independent for different accident years i;

– cumulative payments Ci,j =
∑j

l=0Xi,l satisfy

ξi,j+1
def.
= log

(
Ci,j+1

Ci,j
− 1

)∣∣∣∣
Ti+j ,Φ,σ

∼ N
(
Φj , σ

2
j

)
for j = 0, . . . , J − 1 and i = 1, . . . , I;

• σ > 0 is deterministic and Φj, j = 0, . . . , J − 1, are independent with

Φj ∼ N
(
φj , s

2
j

)
,

with prior parameters φj and sj > 0, and
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• (X1,0, . . . , XI,0) and Φ are independent.

We assume that the insurance-technical filtration T is generated by the insurance cash flows

Xi,j . This suggests that this is the only insurance-technical information available to solve the

cash flow prediction problem. Moreover, since we have assumed independence between F and T

we know that the time value adjustments of cash flows need to be done with default-free zero

coupon bonds. This immediately implies that the best-estimate reserves for the outstanding loss

liabilities at time t < n are given by

Rt
(
X(t+1)

)
=

∑
k≥t+1

E [Xk| Tt] P (t, k) =
∑
k≥t+1

∑
i+j=k

E [Xi,j | Tt] P (t, k), (2.1)

where P (t, k) is the price at time t of the default-free zero coupon bond that matures at time

k. This definition of best-estimate reserves provides the necessary martingale framework for the

joint filtration of F and T (under the measure P) which in these terms provides an arbitrage-free

pricing framework; for more details see Chapter 2 in Wüthrich et al. [14].

We have chosen a Bayesian Ansatz in the assumptions of Model 2.1. The advantage of a

Bayesian model is that the parameter uncertainty is, in a natural way, included in the model,

and parameter estimation is canonical using posterior distributions. Moreover, we have chosen

an exact credibility model (see Bühlmann-Gisler [3], Chapter 2) which has the advantage that

we obtain closed form solutions for posterior distributions. However, our analysis is by no

means restricted to the Bayesian log-normal chain ladder model. Other models can be solved

completely analogously, but in some cases one has to rely on simulation methods such as the

Markov Chain Monte Carlo (MCMC) simulation methodology.

3 Best-estimate reserves calculation

In formula (2.1) we have defined the best-estimate reserves. In this section we calculate these

best-estimate reserves explicitly for Model 2.1. We assume that t ≥ I, which implies that at time

t all initial payments Xi,0 have been observed for accident years i ∈ {1, . . . , I}. For i+ j > t we

then obtain, using the tower property for conditional expectations (note that we also condition

on the model parameters Φ),

E [Xi,j | Tt,Φ] = Ci,t−i

(
j−2∏
l=t−i

(
exp

{
Φl + σ2l /2

}
+ 1
))

exp
{

Φj−1 + σ2j−1/2
}
. (3.1)
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For a proof, we refer to Lemma 5.2 in Wüthrich-Merz [15]. Formula (3.1) implies that we would

like to do Bayesian inference on Φ, given the observations Tt. That is, we would like to determine

the posterior distribution of Φ at time t. This then provides the Bayesian predictor

E [Xi,j | Tt] = Ci,t−i E

[(
j−2∏
l=t−i

(
exp

{
Φl + σ2l /2

}
+ 1
))

exp
{

Φj−1 + σ2j−1/2
}∣∣∣∣∣ Tt

]
.

In Model 2.1 we can explicitly provide the posterior density of Φ, given the observations Tt:

h (Φ| Tt) ∝
J−1∏
j=0

exp

{
− 1

2s2j
(Φj − φj)2

}
I∏
i=1

(t−i)∧J∏
j=1

exp

{
− 1

2σ2j−1
(ξi,j − Φj−1)

2

}
.

The first term on the right-hand side is the prior information about the parameters Φ, the second

term is the likelihood function of the observations, given the parameters Φ. This posterior

density immediately provides the following theorem.

Theorem 3.1 In Model 2.1, the posteriors of Φj, given Tt with t ≥ I, are independent normally

distributed random variables with

Φj |Tt ∼ N
(
φ
(t)
j , (s

(t)
j )2

)
,

and posterior parameters

φ
(t)
j = (s

(t)
j )2

φj
s2j

+
1

σ2j

(t−j−1)∧I∑
i=1

ξi,j+1

 and (s
(t)
j )2 =

(
1

s2j
+

(t− j − 1) ∧ I
σ2j

)−1
.

Theorem 3.1 implies that

φ
(t)
j = E [Φj | Tt] = β

(t)
j ξ

(t)
j +

(
1− β(t)j

)
φj , (3.2)

with sample mean and credibility weight given by

ξ
(t)
j =

1

(t− j − 1) ∧ I

(t−j−1)∧I∑
i=1

ξi,j+1 and β
(t)
j =

[(t− j − 1) ∧ I] s2j
σ2j + [(t− j − 1) ∧ I] s2j

.

Hence, the posterior mean of Φj is a credibility weighted average between the sample mean ξ
(t)
j

and the prior mean φj with credibility weight β
(t)
j . For non-informative prior information we

let sj → ∞ and find that β
(t)
j → 1 which means that we give full credibility to the observation

based parameter estimate ξ
(t)
j . For perfect prior information we let sj → 0 and conclude that

β
(t)
j → 0, i.e. we give full credibility to the prior estimate φj .

Using the posterior independence and Gaussian properties of Φj we obtain the following corollary

for the Bayesian predictor.
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Corollary 3.2 In Model 2.1 we obtain, for i+ j > t ≥ I ,

E [Xi,j | Tt] = Ci,t−i

(
j−2∏
l=t−i

f
(t)
l

) (
f
(t)
j−1 − 1

)
,

with posterior chain ladder factors

f
(t)
l = E

[
exp

{
Φl + σ2l /2

}
+ 1
∣∣ Tt] = exp

{
φ
(t)
l + (s

(t)
l )2/2 + σ2l /2

}
+ 1.

Moreover, (f
(t)
l )t=0,...,n are (P,T)-martingales for all l = 0, . . . , J − 1.

This lemma has the consequence that, in Model 2.1, the best-estimate reserves at time t ≥ I

are given by

Rt
(
X(t+1)

)
=

I∑
i=t+1−J

Ci,t−i

J∑
j=t−i+1

(
j−2∏
l=t−i

f
(t)
l

) (
f
(t)
j−1 − 1

)
P (t, i+ j). (3.3)

This solves the question about the calculation of best-estimate reserves for outstanding loss

liabilities: it is a probability-weighted, time value adjusted amount that considers the most

recent available information. We now turn to the more challenging calculation of the risk margin

which covers deviations from these best-estimate reserves.

4 Risk-adjusted reserves and risk margin

In this section we define the risk margin using the economic argument that a risk averse financial

agent will ask for a premium that is higher than the conditionally expected discounted claim.

This will be achieved by introducing a probability distortion on the payments Xi,j which will

lead to the so-called risk-adjusted reserves R+
t

(
X(t+1)

)
at time t. The risk margin at time t can

then by defined as the difference

RMt

(
X(t+1)

)
= R+

t

(
X(t+1)

)
−Rt

(
X(t+1)

)
, (4.1)

which will be strictly positive under an appropriate probability distortion. Before doing this

explicitly for the Bayesian chain ladder model, we describe the probability distortions that we

are going to use in more generality. The crucial idea is that we introduce a density process ϕ =

(ϕ0, . . . , ϕn) that modifies the probabilities in an appropriate way. The probability distortion

functions introduced by Wang [12] relate to our framework in sufficiently smooth cases and the

change-of-measure techniques from financial mathematics are obtained by the transformations

presented in Sections 2.5 and 2.6 of Wüthrich et al. [14].
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4.1 Insurance-technical probability distortions

An insurance-technical probability distortion ϕ = (ϕ0, . . . , ϕn) is a T-adapted and strictly pos-

itive stochastic process that is a (P,T)-martingale with normalization ϕ0 = 1. This is exactly

the definition given in (2.103) of Wüthrich et al. [14] and means that ϕ is a density process

w.r.t. (P,T) (which can be used for a change-of-measure). For a cash flow X we can then define

the risk-adjusted units by

Λt,k =
1

ϕt
E [ϕk Xk| Tt] .

In view of (2.1), the risk-adjusted reserves are then defined by

R+
t

(
X(t+1)

)
=

∑
k≥t+1

Λt,k P (t, k) =
∑
k≥t+1

∑
i+j=k

1

ϕt
E [ϕk Xi,j | Tt] P (t, k). (4.2)

For the choice ϕ ≡ 1 the best-estimate reserves and the risk-adjusted reserves coincide, but for

an appropriate risk averse choice of ϕ we will obtain a strictly positive risk margin RMt

(
X(t+1)

)
.

For the latter, it is required that ϕk|Tt and Xk|Tt are positively correlated, where in this case

(using the martingale property of ϕ)

Λt,k =
1

ϕt
E [ϕk Xk| Tt] ≥

1

ϕt
E [ϕk| Tt] E [Xk| Tt] = E [Xk| Tt] .

This correlation inequality is often achieved by using the Fortuin-Kasteleyn-Ginibre (FKG)

inequality from [6], which sometimes is also called the supermodular property. The positive

correlatedness implies that more probability weight is given to adverse scenarios. In order to

have time-consistency w.r.t. to risk aversion, we require that (Λt,k)t=0,...,n is a (P,T) super-

martingale. This implies that

E [Λt+1,k − E [Xk| Tt+1]| Tt] ≤ Λt,k − E [Xk| Tt] , (4.3)

which says that, in expectation, the risk margin is constantly released over time.

4.2 Risk-adjusted reserves for the Bayesian chain ladder model

In the previous section, using insurance-technical probability distortions, we have given the

general concept for the calculation of a positive risk margin. In the present section we give an

explicit example for the insurance-technical probability distortion ϕ that will fit to our Bayesian

chain ladder model. We make the following particular choice:

ϕn =

J∏
j=1

exp

{
α1

I∑
i=1

ξi,j + α2 Φj−1 − (Iα1 + α2) φj−1 − (Iα1 + α2)
2
s2j−1

2
− Iα2

1

σ2j−1
2

}
,

(4.4)
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where α1, α2 ≥ 0 are fixed constants. As will become apparent below, the parameters α1 and

α2 characterize risk aversion: α1 relates to the process risk in ξi,j and α2 to the parameter

uncertainty in Φ. We then define the insurance-technical probability distortion ϕ by ϕt =

E [ϕn| Tt].

Lemma 4.1 ϕ is a strictly positive and normalized (P,T)-martingale.

The proof of the lemma is provided in the appendix. We are now ready to state our main

theorem.

Theorem 4.2 In Model 2.1 we have, for k > t ≥ I and i ∈ {k − J, . . . , I},

1

ϕt
E [ϕk Xi,k−i| Tt] = Ci,t−i

(
k−i−2∏
l=t−i

f
(+t)
l

)(
f
(+t)
k−i−1 − 1

)
,

with risk-adjusted chain ladder factors

f
(+t)
l = exp

{
φ
(t)
l +

(s
(t)
l )2

2
+
σ2l
2

}
exp

{
(α2 + [I − (t− l − 1)]α1) (s

(t)
l )2 + α1σ

2
l

}
+ 1.

The theorem is proved in the appendix. In view of Corollary 3.2 and Theorem 4.2 we obtain,

for l ≥ t − I, the inequality f
(+t)
l ≥ f

(t)
l . The posterior chain ladder factors f

(t)
l provide

the best-estimate reserves at time t, the risk-adjusted chain ladder factors f
(+t)
l provide risk-

adjusted reserves that consider both process risk in ξi,j and parameter uncertainty in Φj . The

risk-adjusted reserves are then given by

R+
t

(
X(t+1)

)
=

I∑
i=t+1−J

Ci,t−i

J∑
j=t−i+1

(
j−2∏
l=t−i

f
(+t)
l

) (
f
(+t)
j−1 − 1

)
P (t, i+ j), (4.5)

and we obtain a positive risk margin RMt

(
X(t+1)

)
.

Remarks.

• We observe that it is fairly easy to calculate the risk-adjusted reserves in the Bayesian

log-normal chain ladder Model 2.1 with probability distortion (4.4), all that we need to do

is to modify the chain ladder factors appropriately:

f
(+t)
l =

(
f
(t)
l − 1

)
exp

{
(α2 + [I − (t− l − 1)]α1) (s

(t)
l )2 + α1σ

2
l

}
+ 1. (4.6)

The following function for l ≥ t− I ≥ 0,

τl,t(α1, α2) = exp
{

(α2 + [I − (t− l − 1)]α1) (s
(t)
l )2 + α1σ

2
l

}
≥ 1

9



exactly reflects this modification according to the risk aversion parameters α1 ≥ 0 and

α2 ≥ 0. Note that τl,t(α1, α2) is deterministic and, as stated before, represents the level

of prudence similar to the construction of the first and second order life tables in life

insurance.

• The parameter α2 reflects risk aversion in the parameter uncertainty and the parameter α1

reflects risk aversion in the process risk. However, α1 also influences parameter uncertainty

because in the Bayesian analysis we do inference on the parameters from the observed

information Tt.

• This concept of constructing risk-adjusted chain ladder factors is by no means exclusive

to the Bayesian log-normal chain ladder model. It can be applied to other chain ladder

models, or even more broadly, to every claims reserving and pricing model (similar as

the risk neutral measure constructions in financial mathematics). It hence yields a very

general concept for constructing a risk margin. We have chosen the Bayesian log-normal

chain ladder model because of its practical relevance and because it allows for closed form

solutions, helping interpretation. Note that (4.4) gives a special type of probability distor-

tion, other choices could have been made. The remaining, more economic and regulatory,

question then is: which are alternative constructions of insurance-technical probability

distortions used in practice, and how should these be calibrated?

4.3 Expected run-off of the risk margin

In this subsection we study the expected run-off of the best-estimate and of the risk-adjusted

reserves. For this, we need the following lemma.

Lemma 4.3 For l ≥ t− I ≥ s− I ≥ 0 we have

f
(+t,s)
l = E

[
f
(+t)
l

∣∣∣ Ts] =
(
f
(s)
l − 1

)
τl,t(α1, α2) + 1.

The proof of this lemma immediately follows from (4.6) and the martingale property of the

chain ladder factors (f
(t)
l )t=0,...,n. Observe that τl,t(α1, α2) is decreasing in t which gives the

super-martingale property (4.3). Moreover, we have the following theorem.

Theorem 4.4 For t > s ≥ I we have for the expected best-estimate reserves

E
[
Rt
(
X(t+1)

)∣∣ Ts,Fs] =
I∑

i=t+1−J
Ci,s−i

J∑
j=t−i+1

j−2∏
l=s−i

f
(s)
l

(
f
(s)
j−1 − 1

)
E [P (t, i+ j)| Fs] ,
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and for the expected risk-adjusted reserves

E
[
R+
t

(
X(t+1)

)∣∣ Ts,Fs] =

I∑
i=t+1−J

[
Ci,s−i

t−i−1∏
l=s−i

f
(s)
l

×
J∑

j=t−i+1

j−2∏
l=t−i

f
(+t,s)
l

(
f
(+t,s)
j−1 − 1

)
E [P (t, i+ j)| Fs]

]
.

Note that, in order to project the expected run-off of the best-estimate reserves and the risk

margin for t ≥ s ≥ I, we also need to model the expected future zero coupon bond prices

E [P (t, i+ j)| Fs]. In the next section we give a numerical example for this run-off.

5 Real data example

We present a real data example. The data set is a 17× 17 private liability insurance cash flow

triangle. In Table 4 we provide the cumulative payments Ci,j =
∑j

l=0Xi,l for i + j ≤ 17. We

choose the final accident year under consideration I = 17 and we assume that all claims are

settled after development year J = 16. We then consider the run-off situation at time I for

t = I, . . . , n = 33.

Using the parameter choices from Table 4 we are able to calculate the credibility weights β
(t)
j

and the posterior means φ
(t)
j at time t = 17. In Figure 1 we present the prior means φj , sample

-10

-8

-6

-4

-2

0
0 2 4 6 8 10 12 14

prior mean sample mean posterior mean

Figure 1: Prior mean φj , sample mean ξ
(t)
j and posterior mean φ

(t)
j for j = 0, . . . , 15 and t = 17.

means ξ
(t)
j and posterior means φ

(t)
j based on the data Tt with t = 17. We see that the posterior

mean smooths the sample mean using the prior mean with credibility weights 1− β(t)j ; see also

the credibility formula (3.2).
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Next, we need to provide the term structure for the zero coupon bond prices at time t = 17 in

order to calculate the best-estimate and the risk-adjusted reserves. We choose the actual CHF

bond yield curve available from the Swiss National Bank∗. Finally, we choose the risk aversion

parameters: α1 = 0.02 and α2 = 1. Now, we are ready to calculate the best-estimate and the

risk-adjusted reserves, they are given in Table 1. These reserves are calculated under the actual

R17(X(18)) R+
17(X(18)) RM17(X(18))

reserves under actual ZCB prices 23’977 25’066 1’089

nominal reserves, i.e. P (17, k) ≡ 1 24’672 25’814 1’142

discounting effect 695 748 53

discounting effect in % 2.82% 2.90% 4.64%

Table 1: Best-estimate reserves R17(X(18)), risk-adjusted reserves R+
17(X(18)) and risk margin

RM17(X(18)) for the data set given in Table 4.

CHF bond yield curve and for nominal prices, i.e. P (17, k) ≡ 1. We observe that the discounting

effect is quite small which comes from the fact that we are currently in a low interest rate period.

On the other hand we obtain a risk margin RM17(X(18)) of 1’089 which is 4.54% in terms of

the best-estimate reserves R17(X(18)). Of course, the size of this risk margin heavily depends

on the choice of the risk aversion parameters. In our case we have chosen these such that we

obtain a similar risk margin as in the cost-of-capital approach under the parameter choices used

for Solvency II. If we choose the split of total uncertainty approach from Salzmann-Wüthrich

[10] with security loading φ = 2 and cost-of-capital rate c = 6% (see formula (4.2) in [10] and

TP.5.25 in [9]) we obtain for nominal reserves a risk margin of 1’107 (see also Table 3) which is

comparable to the 1’142 of the probability distortion approach. Finally, the balancing between

α1 and α2 was done such that if we turn off one of these two parameters then the risk margin has

similar size; see Table 2. The question of the choice of the risk aversion parameters also needs

input from the regulator. The latter gives the legal framework within which a loss portfolio

transfer needs to take place. This question concerns whether or not the insurance portfolio is

sent into run-off. Moreover, the regulator needs to decide at which state of the economy this

transfer should take place between so-called willing financial agents because this also determines

their risk aversion.

In Table 3 we compare the probability distortion approach (4.5) to the split of total uncertainty

∗Swiss National Bank’s website: www.snb.ch
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R17(X(18)) R+
17(X(18)) RM17(X(18))

α1 = 0.02 and α2 = 1 23’977 25’066 1’089

α1 = 0 and α2 = 1 23’977 24’478 501

α1 = 0.02 and α2 = 0 23’977 24’546 568

Table 2: Best-estimate reserves R17(X(18)), risk-adjusted reserves R+
17(X(18)) and risk margin

RM17(X(18)) for different risk aversion parameter choices.

nominal reserves R17(X(18)) R+
17(X(18)) RM17(X(18))

probability distortion approach (4.5) 24’672 25’814 1’142

split of total uncertainty approach [10] 24’672 25’779 1’107

proportional scaling proxy TP.5.41 in [9] 24’672 25’350 678

Table 3: Comparison of probability distortion approach (4.5), split of total uncertainty approach

[10] and proportional scaling proxy TP.5.41 in [9] in the risk measure framework of [10].

approach (proposed in Salzmann-Wüthrich [10]) and to the proportional scaling proxy (which

is the method used in QIS5 [9], Article TP.5.41, see also Salzmann-Wüthrich [10] and Keller

[7]). We see that in this example the proportional scaling proxy is clearly below the other two

approaches. This is further investigated in Figure 3 below (we also refer to Wüthrich [13]).

Next, we calculate the expected run-off of the best-estimate reserves and the risk margin. There-

fore, we need a stochastic model for the development of the term structure which determines

future zero coupon bond prices; see Theorem 4.4. For simplicity we only consider nominal cash

flows for the run-off analysis which avoids modeling future zero coupon bond prices, i.e. we set

P (t, k) ≡ 1 for t, k ≥ 17. Figure 3 provides for this case the expected run-off of the best-estimate

reserves and the risk margin.

Finally, we calculate the expected relative run-off of the risk margins defined by

wk =
E
[
RMk

(
X(k+1)

)∣∣ T17,F17

]
RM17

(
X(18)

) for k ≥ 17.

We observe that the split of total uncertainty approach vk(1), as defined in Salzmann-Wüthrich

[10], gives a similar picture to the risk margin run-off pattern wk, see Figure 3. On the other

hand, the proportional scaling proxy vk(2) from Article TP.5.41 in QIS5 [9], (see also Salzmann-

Wüthrich [10] and Keller [7]) clearly under-estimates run-off risks. This agrees with the findings

13
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Figure 2: Expected run-off of the best-estimate reserves E
[
Rk
(
X(k+1)

)∣∣ T17,F17

]
and the risk

margin E
[
RMk

(
X(k+1)

)∣∣ T17,F17

]
for k = 17, . . . , n− 1.

in Wüthrich [13] and reflects that the expected claims reserves as volume measure for the run-off

risk scaling is not appropriate. The main reason for this under-estimation of the proportional

scaling proxy is that the payout of the claims reserves takes places much faster than the release

of insurance technical risk because we first settle small non-risky claims and risky claims stay

in the run-off portfolio for much longer accounting for the fact that their settlement is more

difficult.

6 Conclusion

We have considered the concept of insurance-technical probability distortions for the calculation

of the risk margin in non-life insurance. This concept is based on the assumption that financial

agents are risk averse which is reflected by a positive correlation between the insurance-technical

probability distortions and the insurance cash flows. This then provides, in a natural and

mathematically consistent way, a positive risk margin. For our specific choice within the Bayesian

log-normal chain ladder model we have found that this concept results in choosing prudent chain

ladder factors. The prudence margin reflects the risk aversion in process risk and parameter

uncertainty. We have compared our choice of the risk margin to the methods used in practice and

we have found that the qualitative results are similar to the more advanced methods presented

14



0%

20%

40%

60%

80%

100%

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

run-off w_k run-off v_k (1) run-off v_k (2)

Figure 3: Expected relative run-off of the risk margins wk, k ≥ 17, compared to the split of

total uncertainty approach vk(1) of Salzmann-Wüthrich [10] and the proportional scaling proxy

vk(2) (see Article TP.5.41 in QIS5 [9] and Salzmann-Wüthrich [10]).

in Salzmann-Wüthrich [10].

In the present paper we have chosen one specific insurance-technical probability distortion be-

cause this choice has led to closed form solutions. Future research should investigate alternative

constructions of probability distortions (according to market behavior of financial agents) and

it should also investigate the question how these choices can be calibrated. In our example, we

have assumed that the insurance cash flow is independent from financial market developments.

This has resulted in the choice of the default-free zero coupon bond as replicating financial in-

strument. Future research should also analyze situations where this independence assumption

is not appropriate.

A Proofs

Proof of Lemma 4.1. The strict positivity and the martingale property immediately follow from the definition

of ϕ. So there remains the proof of the normalization ϕ0 = 1. Using the assumptions of Model 2.1 and the tower

property we obtain (note that T0 = {∅,Ω})

ϕ0 = E [ϕn] = E [E [ϕn|Φ]] = E

[
J−1∏
j=0

exp
{

(Iα1 + α2)Φj − (Iα1 + α2)φj − (Iα1 + α2)2s2j/2
}]

= 1.

This proves the claim.
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2

Proof of Theorem 4.2. Note that we have Ci,k−i = Xi,k−i − Xi,k−i−1, therefore it is sufficient to prove the

claim for cumulative claims Ci,k−i. We first condition on the knowledge of the chain ladder parameters Φ,

1

ϕt
E [ϕk Ci,k−i| Tt] =

1

ϕt
E [ϕn Ci,k−i| Tt] =

1

ϕt
E [E [ϕn Ci,k−i| Tt,Φ]| Tt] .

Further,

ϕn =

[
J∏

j=1

I∏
l=1

exp {α1ξl,j}

]
J−1∏
j=0

exp

{
α2Φj − (Iα1 + α2)φj − (Iα1 + α2)2

s2j
2
− Iα2

1

σ2
j

2

}
.

This means, that conditionally on Φ, the first term in the brackets is the only random term in ϕn. Define

ϕΦ
t = E [ϕn| Tt,Φ] =

J∏
j=1

(t−j)∧I∏
l=1

exp
{
α1ξl,j − α1Φj−1 − α2

1σ
2
j−1/2

}
×

J−1∏
j=0

exp

{
(Iα1 + α2)Φj − (Iα1 + α2)φj − (Iα1 + α2)2

s2j
2

}
.

Hence, for k > t,

E [ϕn Ci,k−i| Tt,Φ] = E
[
ϕΦ

k Ci,k−i

∣∣∣ Tt,Φ] .
For the last term, note that (ϕΦ

t )t=0,...,n is a martingale for the filtration (Tt,Φ)t=0,...,n and that the cumulative

claim

Ci,k−i = Ci,t−i

k−i∏
j=t−i+1

(exp {ξi,j}+ 1)

only contains terms for accident year i which are conditionally independent given Φ. This implies that, for k > t,

E
[
ϕΦ

k Ci,k−i

∣∣∣ Tt,Φ] = ϕΦ
t Ci,t−i

k−i−1∏
j=t−i

(
exp

{
Φj + α1σ

2
j + σ2

j /2
}

+ 1
)
.

We therefore conclude that

1

ϕt
E [ϕk Ci,k−i| Tt] =

Ci,t−i

ϕt
E

[
ϕΦ

t

k−i−1∏
j=t−i

(
exp

{
Φj + α1σ

2
j + σ2

j /2
}

+ 1
)∣∣∣∣∣ Tt

]
. (A.1)

There are three important observations that allow to calculate this last expression. The first is that E
[
ϕΦ

t

∣∣ Tt] =

ϕt (which is the tower property for conditional expectations). The second comes from Theorem 3.1, namely we

have posterior independence of the Φj ’s, conditionally given Tt. This implies that expected values over the products

of Φj can be rewritten as products over expected values. The third observation is that in the expected value of

(A.1) we have exactly the same product terms as in ϕt except for the development periods j ∈ {t−i, . . . , k−i−1}.

This implies that all terms cancel except the ones that belong to these development parameters. If, in addition,

we cancel all constants and Tt-measurable terms we arrive at

1

ϕt
E [ϕk Ci,k−i| Tt]

= Ci,t−i

k−i−1∏
j=t−i

E
[
exp {([I − (t− j − 1)]α1 + α2)Φj}

(
exp

{
Φj + α1σ

2
j + σ2

j /2
}

+ 1
)∣∣ Tt]

E [ exp {([I − (t− j − 1)]α1 + α2)Φj}| Tt]
.
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So there remains the calculation of the terms in the product of the right-hand side of the equality above. Using

Theorem 3.1 we obtain, for j ∈ {t− i, . . . , k − i− 1},

E
[
exp {([I − (t− j − 1)]α1 + α2)Φj}

(
exp

{
Φj + α1σ

2
j + σ2

j /2
}

+ 1
)∣∣ Tt]

E [ exp {([I − (t− j − 1)]α1 + α2)Φj}| Tt]

=
E [ exp {(1 + α2 + [I − (t− j − 1)]α1)Φj}| Tt]
E [ exp {(α2 + [I − (t− j − 1)]α1)Φj}| Tt]

exp
{
α1σ

2
j + σ2

j /2
}

+ 1

= exp
{
φ
(t)
j + (s

(t)
j )2/2 + σ2

j /2
}

exp
{

(α2 + [I − (t− j − 1)]α1)(s
(t)
j )2 + α1σ

2
j

}
+ 1.

This proves Theorem 4.2.

2

Proof of Theorem 4.4. We only prove the claim for the best-estimate reserves because the proof for the risk-

adjusted reserves is completely analogous. From Corollary 3.2 we see that φ
(t)
l is the only random term in f

(t)
l .

Therefore we can concentrate on this term. First we study the decoupling of φ
(t)
l conditionally given Tt−1. If we

use the credibility formula for this term we obtain

φ
(t)
l = β

(t)
l ξ

(t)

l +
(

1− β(t)
l

)
φl = γ

(t−1)
l ξt−l−1,l+1 + (1− γ(t−1)

l ) φ
(t−1)
l ,

with credibility weight given by

γ
(t−1)
l =

s2l
σ2
l + (t− l − 1)s2l

.

This is the well-known iterative update mechanism of credibility estimators; see for example Bühlmann-Gisler

[3], Theorem 9.6. Therefore, conditional on Tt−1, ξt−l−1,l+1 is the only random term in f
(t)
l . Since all these

terms belong to different accident years and development periods for l ∈ {t − i, . . . , J − 1} we have posterior

independence, conditional on Tt−1, which implies, for k > t ≥ I, that

E

[
Ci,t−i

j−2∏
l=t−i

f
(t)
l

(
f
(t)
j−1 − 1

)∣∣∣∣∣ Ts
]

= E

[
E

[
Ci,t−i

j−2∏
l=t−i

f
(t)
l

(
f
(t)
j−1 − 1

)∣∣∣∣∣ Tt−1

]∣∣∣∣∣ Ts
]

= E

[
E [Ci,t−i| Tt−1]

j−2∏
l=t−i

E
[
f
(t)
l

∣∣∣ Tt−1

]
E
[
f
(t)
j−1 − 1

∣∣∣ Tt−1

]∣∣∣∣∣ Ts
]

= E

[
Ci,t−i−1

j−1∏
l=t−i−1

f
(t−1)
l

(
f
(t−1)
j−1 − 1

)∣∣∣∣∣ Ts
]
.

Iteration of this argument completes the proof.

2
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[3] Bühlmann, H., Gisler, A. (2005). A Course in Credibility Theory and its Applications. Springer.

17



[4] Denuit, M., Dhaene, J., Goovaerts, M., Kaas, R., Laeven, R. (2006). Risk measurement with equiv-

alent utility principles. Statistics & Decisions 24/1, 1-25.
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[13] Wüthrich, M.V. (2010). Runoff of the claims reserving uncertainty in non-life insurance: a case

study. Zavarovalniski horizonti 6/3, 5-18.
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