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ABSTRACT

We discuss classes of risk measures in terms both of their axiomatic definitions and of the

economic theories of choice that they can be derived from. More specifically, expected utility

theory gives rise to the exponential premium principle, proposed by Gerber (1974), Dhaene

et al. (2003), whereas Yaari’s (1987) dual theory of risk can be viewed as the source of the

distortion premium principle (Denneberg (1990), Wang (1996)). We argue that the properties

of the exponential and distortion premium principles are complementary, without either of the

two performing completely satisfactorily as a risk measure. Using generalised expected utility

theory (Quiggin, 1993), we derive a new risk measure, which we call the distortion-exponential

principle. This risk measure satisfies the axioms of convex measures of risk, proposed by Föllmer

and Shied (2002a,b), and its properties lie between those of the exponential and distortion prin-

ciples, which can be obtained as special cases.
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1 Introduction

Recent years have witnessed the emergence in the financial literature of a sophisticated

theory of risk measures, as a means for determining capital requirements for the holders

of risky portfolios. A landmark in this development has been the axiomatic definition of

coherent risk measures by Arztner et al. (1999), which has by now achieved the status

of a classic. However, the functional forms and fundamental properties of risk measures

have been extensively studied in the actuarial literature for more than thirty years, in the

guise of premium calculation principles (e.g. Bühlmann (1970), Goovaerts et al. (1984)).

A specific class of coherent risk measures, termed distortion premium principles, were

introduced in an insurance pricing context by Denneberg (1990) and Wang (1996).

There are two alternative ways of defining (classes of) risk measures. One is to start

with a set of desirable properties that risk measures should satisfy and then determine

mathematically their corresponding functional representations. Artzner et al. (1999)

propagated such an axiomatic approach. The second way, often encountered in the

actuarial literature, is to determine the functional form of risk measures via economic

indifference arguments. The zero-utility premium principle was defined by Bühlmann

(1970) by considering an insurer whose preferences are characterised by expected utility

(von Neumann and Morgenstern, 1947). Furthermore it can be shown that the distortion

risk measures proposed by Denneberg (1990) and Wang (1996) can also be obtained via

indifference arguments, based on Yaari’s (1987) dual theory of choice, which was proposed

as a complementary approach to expected utility.

Our aim in this paper is to associate these two approaches of defining risk measures,

by discussing the sets of properties that risk measures, derived via alternative economic

theories of choice, are characterised by and vice versa. We believe that the simultaneous

study of sets of properties and corresponding economic theories is illuminating in both

directions. On the one hand, it sheds light on the implicit economic assumptions behind

the choice of a specific risk measure, while on the other, it studies the explicit conse-

quences of decision making with a specific theory of choice. As an example of such an

interaction between axiomatic definition and economic theory, we note the recent discus-
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sion of the appropriateness of coherent measures of risk for setting capital requirements.

Föllmer and Schied (2002a), observed that the positive homogeneity and subadditivity

properties of coherent risk measures make them insensitive to liquidity risk. Meanwhile

Dhaene et al. (2003) phrased a similar criticism, pointing out the incompatibility of co-

herent risk measures with expected utility theory. They proposed instead the use of the

exponential premium principle which is derived from an exponential utility function and

has an additional justification originating in actuarial ruin theory.

Our view is that both the (coherent) distortion risk measures, which are compatible

with the dual theory of choice, and risk measures derived from expected utility, such as

the exponential premium principle, are not completely satisfactory. Our criticism lies

both in terms of their corresponding sets of properties and of the accuracy with which

they describe economic agents’ preferences. We propose a class of risk measures based on

generalised expected utility theory (Quiggin, 1993), which is a combination of expected

utility and the dual theory of choice and provides a better characterisation of individual

preferences. Using an exponential utility function and an arbitrary probability distor-

tion function we define a risk measure which we call the distortion-exponential premium

principle. The properties of this risk measure lie in between those of the distortion and

the exponential premium principles. We provide numerical illustrations of the proposed

risk measure’s properties, which show that for relatively small portfolios of risks it be-

haves approximately like a coherent risk measure, whereas for larger portfolios, for which

liquidity and risk aggregation becomes an issue, it inherits properties of the exponential

premium principle.

The structure of the paper is as follows. In section , we give a brief exposition of alter-

native characterisations of economic agents’ preferences, namely expected utility theory,

the dual theory of choice under risk, and generalised expected utility. In section 3 we

define risk measures and discuss alternative sets of properties that they should obey.

Subsequently, we proceed in section 4 with the definition of risk measures via indiffer-

ence arguments for the three theories of choice that were presented earlier and discuss

their respective properties. In section 5 we define the distortion-exponential principle
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and compare its basic properties to those of distortion risk measures and the exponential

premium principle. Finally, we present our conclusions in section 6.

2 Choice under risk

2.1 Preference operators and functionals

Suppose that an economic agent (e.g. an insurance company) is exposed to a risk X ∈ X ,

where X is a random variable representing (the payoff from) a portfolio and X is the set

of available portfolios that the agent may hold. The agent will prefer some elements of

X to others. We characterise the agent’s preferences via the binary operator ‘º’, where

X º Y for X,Y ∈ X is understood as meaning ‘portfolio X is at least as preferable

as portfolio Y ’. Given that the operator ‘º’ has some reasonable properties (see the

Appendix A for details), we can use it to order all portfolios with random payoffs in X

with respect to how desirable they are to the agent.

In order to be able to carry out such an ordering of risky portfolios in practice, it is

useful to associate the preference relation ‘º’ with a real-valued function V , defined on

X via:

X º Y ⇔ V (X) ≥ V (Y ) for X,Y ∈ X (1)

V is called the preference functional associated with ‘º’. The exact form of V will

depend on the assumptions that we make for the general properties of the preference

operator ‘º’; different assumptions lead to different representations in terms of V . In

this section we will discuss three cases: expected utility theory, based on the work of von

Neuman and Morgenstern (1947), the dual theory of choice developed by Yaari (1987),

and the generalised or rank-dependent utility framework, which is a synthesis of the two

previous approaches (Schmeidler (1989), Quiggin (1993)). Conditions under which each

theory emerges are discussed in more detail in Appendix A, while a table summarising

alternative characterisations of preferences can be found in Appendix B.
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2.2 Risk aversion and second stochastic dominance

Economic theories of choice provide formal ways in which to characterise agents’ be-

haviour, which often is risk averse. Risk aversion is a standard assumption in the lit-

erature, while being also widely observed in the practice of economic decision making.

One prominent example is the buying of insurance by an individual at a higher cost than

the expected loss that the individual faces. Formally, an agent is risk averse if he always

prefers a deterministic portfolio R to a random one X, with expected value E[X] = R

(if the reverse is true, the agent is called risk seeking):

E[X] º X ⇔ V (E[X]) ≥ V (X) ∀X ∈ X (2)

A more sophisticated characterisation of risk aversion is via the concept of second order

stochastic dominance. Stochastic dominance provides a way of ordering risky portfolios in

terms of their risk characteristics. LetX,Y ∈ X be two portfolios that we wish to compare

and SX , SY their respective survival functions. We say that X second stochastically

dominates Y and write X º2nd Y , if:

∫ ∞

x

SY (t)dt ≤

∫ ∞

x

SX(t)dt for all x ∈ R, (3)

with the inequality being strict for some x ∈ R. The above equations have the interpre-

tation that, if portfolio X second stochastically dominates Y , the expected profit from

X in excess of any level x is higher than the expected profit from Y .

It is desirable that a preference relation is consistent with second stochastic domi-

nance. We say that a preference operator ‘º’ preserves second stochastic dominance,

whenever:

X º2nd Y ⇒ V (X) ≥ V (Y ) (4)

2.3 Expected utility theory

The first approach to modelling preferences on a collection of risky portfolios that we

discuss here is expected utility theory. This theory was introduced in the classic book by

von Neumann and Morgenstern (1947) and developed further by several authors. The
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intellectual roots of utility theory are however earlier and date back to the 18th century

and the work of the mathematician Daniel Bernoulli. Expected utility theory, despite its

drawbacks that will be discussed later, is the framework most widely used by economists

for modelling the preferences of economic agents.

We define expected utility as a preference functional U : X 7→ R of the form:

U(X) = E[u(X)] =

∫ +∞

−∞

u(x)dFX(x), (5)

where E[·] is the mathematical expectation operator, FX is the cumulative probability

distribution of X, and u is a real valued increasing function, called a utility function. The

utility function u can be interpreted as a non-linear transformation of the agent’s wealth,

that produces a mechanism for assigning a different weight to each outcome of X. The

fact that we require the utility function to be increasing is simply a consequence of the

fact that any reasonable agent would prefer more rather than less money (this simple but

important property is usually referred to as ‘increasing preferences’).

Given that an agent’s preferences are consistent with expected utility theory, a utility

function u will exist, such that the agent’s preferences are characterised by the expected

utility functional U(X) = E[u(X)], in the sense of equation (5). Furthermore this utility

function will be unique up to an affine transformation, i.e. if the utility function u

characterises the agent’s preferences, so does the function au(·) + b, where a > 0.

Utility functions have proved very useful for modelling the risk aversion of economic

agents. Characterisation of risk aversion via utility functions turns out to be very simple.

In the framework of expected utility, risk aversion is equivalent to requiring:

E[u(X)] ≤ u(E[X]) (6)

By Jensen’s inequality we have that:

E[u(X)] ≤ u(E[X]) ∀X ∈ X ⇔ u is a concave function. (7)

The concavity of the utility function represents ‘diminishing marginal returns’, in the

sense that, as the risk averse agent’s wealth increases, the additional benefit is smaller
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than the one obtained by the previous unit of wealth. In the context of choosing between

risky positions this property can be interpreted as follows. A risk averse agent with

initial wealth w is offered a fair bet: a coin is tossed and if the outcome is heads the

agent receives an amount a, while if tails is the outcome the agent has to pay a. The

expected value of the bet is zero, so if the agent is risk averse he will not accept the

bet. In terms of a concave utility function, an increase of wealth by a produces a lower

increase in the agent’s utility than the decrease caused by loosing a, and the bet thus is

unfavourable.

The concavity of the utility function is also a condition for preservation of second

stochastic dominance. In fact, it can be shown that X second stochastically dominates

Y if and only if it is E[u(X)] ≥ E[u(Y )] for all concave utility functions (Quiggin, 1993).

It is apparent that risk aversion is closely related to the concavity of the utility func-

tion. It would be desirable to quantify this relationship and define a corresponding

measure of risk aversion. Assuming that the utility function is twice differentiable, a sen-

sible measure of risk aversion is the Arrow-Pratt absolute risk aversion coefficient (risk

aversion coefficient for short):

ra(w) = −
u′′(w)

u′(w)
(8)

Since the utility function is increasing by definition, is is obvious that the risk aversion is

positive if and only if the utility function is concave, equivalently the agent is risk averse.

The division by the first derivative of u is carried out in order to ensure that the risk

aversion is invariant under affine transformations of the utility function. Note that given a

risk aversion coefficient ra(w), and subject to a normalisation (e.g. u(0) = 0, u′(0) = 1),

the corresponding utility function can be uniquely determined by solving the differential

equation (8).

In some cases an agent might actually be risk seeking. In such a case he will always

prefer a risky position with mean R to a safe one equal to R, the corresponding utility

function will be convex, and the risk aversion coefficient will be negative.

It can be seen that risk aversion is, in general, a function of the agent’s wealth. Thus
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risk aversion can be decreasing in wealth as for a logarithmic utility function:

u(w) = lnw ⇒ ra(w) =
1

w
(9)

or increasing in wealth as for a quadratic utility:

u(w) = w −
1

2c
w2 (c > 0, w ≤ c)⇒ ra(w) =

1

c− w
. (10)

A very important case is the one of exponential utility, which exhibits constant risk

aversion:

u(w) =
1

a
(1− e−aw)⇒ ra(w) = a (11)

Exponential utility functions are widely used in applications, the main reason being

that the assumption of constant risk aversion often yields explicit solutions to otherwise

untractable mathematical problems. The independence of risk aversion from wealth is

particularly appealing as in many cases the initial wealth of an economic agent is not

known.

2.4 The dual theory of choice under risk

Even though the axioms on which utility theory is built are generally accepted as being

reasonable, violations of utility theory often take place in practice. These violations

manifest themselves in the famous Elsberg and Allais paradoxes (e.g. Quiggin, 1993). A

fairly common violation of expected utility occurs when an individual simultaneously buys

insurance (risk averse behaviour) and plays the lottery (which constitutes risk seeking

behaviour since the odds are always against the player). In general, there is empirical

evidence that agents tend in their economic decision-making to overstate the probabilities

of extreme events, both of adverse (such as having a serious accident) and of favourable

ones (such as winning the lottery) (Quiggin, 1993).

Attempts to address these problems of utility theory have been made by several au-

thors, including Quiggin (1982) and Machina (1982). In terms of the axiomatic foun-

dations of alternative theories of choice, the point of contention has in general been the

‘independence axiom’ of expected utility theory, which has been substituted by alternative
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formulations or dropped altogether (Puppe (1991), Quiggin (1993)), see the Appendix A.

Here we briefly discuss Yaari’s (1987) ‘dual theory of choice under risk’, which was de-

veloped as a complementary approach to expected utility theory. Yaari’s theory resolves

some of the paradoxes created by expected utility, while creating others of its own.

Yaari (1987) proposes the following preference functional:

H(X) =

∫ 0

−∞

(h(SX(x))− 1)dx+

∫ ∞

0

h(SX(x))dx, (12)

where SX(x) = 1−FX(x) = P(X > x) is the decumulative probability distribution func-

tion (survival function) of X, while h : [0, 1] 7→ [0, 1] is an increasing function satisfying

h(0) = 0 and h(1) = 1, which we will call a probability distortion function. Without loss

of generality, let us for simplicity assume that X ≥ 0, such that:

H(X) =

∫ ∞

0

h(SX(x))dx. (13)

Observe that the mean of X can be written as:

E[X] =

∫ ∞

0

SX(x)dx (14)

Also observe that the function h(SX(x)) is itself a decumulative distribution, though

different than the original one. Thus, from equation (13) it can be seen that the effect

of the probability distortion h is to modify (‘distort’) the probability distribution of the

random portfolio. The preference functional is the expected value of the portfolio with

respect to the modified distribution function. In expected utility theory the preference

functional is given as the expected value of a non-linear transformation of wealth; in the

dual theory it is the expected value of wealth under a non-linear transformation of the

probability distribution.

Similarly to the case of expected utility theory, risk aversion can be simply charac-

terised in terms of the distortion function. It follows from equations (14), (13) that an

agent is risk averse if and only if his distortion function is always below the line h(s) = s:

H(X) ≤ E[X] = H(E[X]) ∀X ∈ X ⇔ h(s) ≤ s ∀s ∈ [0, 1]. (15)
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However, for the agent’s preferences to preserve second stochastic dominance, a more

stringent condition on the distortion function is required (Quiggin, 1993):

The operator H() preserves second stochastic dominance on X

⇔ h is a convex function.
(16)

Thus, in the dual theory of choice, risk aversion is closely related to the convexity of

the distortion function. To better understand the effect of the distortion function, rewrite

equation (13) as:

H(X) =

∫ ∞

0

xh′(SX(x))fX(x)dx = E[Xh′(SX(x))], (17)

where fX is the probability density of X. Because h is convex, its first derivative h′ is an

increasing function and thus h′(SX(x)) is decreasing in x, i.e. h′(SX(x)) becomes small

for large values of the random variable X. We can thus regard h′(SX(x)) as a weighting

mechanism which discounts the probability of desirable events (high X), while loading

the probability of adverse events (low X). In expected utility theory risk aversion is

induced by exaggerating the effects of adverse events; in the dual theory this is done by

exaggerating their probability.

To give a measure of risk aversion in the dual theory of choice, we define the uncer-

tainty aversion coefficient, which is a dual to the Arrow-Pratt risk aversion coefficient of

utility theory:

ua(w) =
h′′(s)

h′(s)
(18)

Examples of probability distortion functions are the dual power distortion (which has

increasing uncertainty aversion):

h(s) = 1− (1− s)q, 0 < q ≤ 1 ⇒ ua(s) = (1− q)(1− s)−1, (19)

and the exponential distortion function (which has constant uncertainty aversion):

h(s) =
eβs − 1

eβ − 1
, β > 0 ⇒ ua(s) = β. (20)
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2.5 Generalised expected utility

The von Neumann-Morgenstern utility theory and Yaari’s (1987) dual theory of choice

are complementary approaches. In fact, Yaari presented his theory less as a complete

characterisation of agents’ preferences but more as an illustrative example of preference

functionals and orderings alternative to the ones produced by expected utility.

We can actually produce a comprehensive description of an economic agent’s prefer-

ences by combining the two above-mentioned approaches. (A rigorous axiomatic charac-

terisation of such preferences is given by Schmeidler (1989), while the book by Quiggin

(1993) is also dedicated to the subject). Thus, we equip our agent with both a utility u

and a probability distortion h. This yields the generalised expected utility operator:

Vu,h(X) =

∫ 0

−∞

(h(Su(X)(x))− 1)dx+

∫ ∞

0

h(Su(X)(x))dx (21)

The preference functional Vu,h represents expected utility, calculated under a distorted

probability distribution.

In the context of generalised utility theory, second stochastic dominance gives us again

a clue about the shape of the utility and distortion functions. The preference functional

Vu,h preserves second stochastic dominance if and only if the utility function u is concave

and the distortion function h is convex (Quiggin, 1993). These two conditions will be

standing assumptions for the rest of this paper.

3 Risk measures and their properties

3.1 Definition of risk measures

Risk measures are defined as functions that take as arguments random variables, which

represent the terminal value of assets and/or liabilities at a fixed later date. Risk measures

return a real number which encapsules the risk assessment of the portfolio, whose random

value is used as an argument. The output of the risk measure represents the amount of

additional capital that the holder of the portfolio must add to his position in order that

a regulator or a rating agency or indeed the agent himself deems the aggregate position
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acceptable (this definition is due to Artzner et al. (1999)). Formally, a risk measure ρ

is defined as a real valued functional on a collection of portfolios X . Hence the holder

of the risky investment X has to keep an amount ρ(X) safely invested (for simplicity, in

our paper this means with zero interest). The higher the risk assessment (as produced

by the risk measure) of the position X, the more will the capital be that the agent has

to reserve.

3.2 Risk measures and premium principles

Risk measures are in many respects akin to actuarial premium calculations principles.

For an insurance carrier exposed to a liability X, a premium calculation principle Π gives

the minimum amount Π(X) that the insurer must raise from the insured in order that

it is in his interest to proceed with the contract. Thus a premium calculation principle

can be directly interpreted as a risk measure. A notational issue emerges here, because

in the actuarial literature insurance liabilities are usually denoted by positive random

variables, while in the more general risk management literature liabilities are denoted by

negative variables. In order not to contradict either convention, we will use the notation

Π(X) = ρ(−X) for a premium calculation principle and the associated risk measure. The

relation between risk measures and premium calculation principles is further discussed in

section 4.1.

3.3 Properties of risk measures

Before discussing specific classes of risk measures emerging from the three theories of

choice examined in the previous sections, we give a brief exposition of possible (sets of)

desirable properties that risk measures and the associated premium principles should

satisfy.

A first natural requirement that we can impose on a risk measure is that a portfolio

whose value at the end of one period is always higher than that of another, should also

induce lower capital requirements. This property, monotonicity, can be summarised as:
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Monotonicity: If X ≤ Y almost surely, then ρ(X) ≥ ρ(Y )

(Note that in terms of premium calculation principles, monotonicity is expressed as

Π(X) ≤ Π(Y ) for X ≤ Y .)

Recall that a risk measure has been defined as a function giving the amount of safely

invested capital that the holder of a risk position has to add to his position, in order

to make it acceptable. Then it is obvious that, should the investor add a cash amount

to his position, the risk of the aggregate should be reduced by an equal amount. This

consideration induces the translation invariance property of risk measures:

Translation Invariance: If a ∈ R then ρ(X + a) = ρ(X)− a

(In terms of premium calculation principles translation invariance is expressed as Π(X −

a) = Π(X)− a.)

The behaviour of a risk measure with respect to the aggregation of risky positions,

manifested by the award of diversification discounts or the imposition of penalties, is

crucial. The question can be posed as follows: given two portfolios X and Y and their

joint probability distribution, how does the risk of the aggregate, ρ(X +Y ), relate to the

risks of the individual positions, ρ(X) and ρ(Y )?

The answer to this question might be related to the way in which X and Y stochasti-

cally depend on each other. Let us now present some well-known notions (e.g. Joe, 1997)

of dependence that we will refer to in this section. A useful characterisation of positive

dependence is positive quadrant dependence (PQD). Two risks X, Y are PQD whenever:

P(X ≤ x and Y ≤ y) ≥ P(X ≤ x)P(Y ≤ y), ∀x, y ∈ R (22)

Essentially two risks being PQD means that their probability of assuming low (or high)

values simultaneously is higher than it would be, were they independent. The negative

analogue of PQD is negative quadrant dependence (NQD):

P(X ≤ x and Y ≤ y) ≤ P(X ≤ x)P(Y ≤ y), ∀x, y ∈ R (23)

Finally, comonotonicity is defined as the strongest possible form of positive dependence.

Two random variables X, Y are called comonotonic if there is a random variable U and
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non-decreasing functions g, h such that:

X = g(U), Y = h(U) (24)

We now return to the issue of defining suitable aggregation properties for risk mea-

sures. Few would disagree with the claim that if the positions X and Y are negatively

related, then to some extent the one risk is a hedge for the other and, if X and Y are

pooled, this fact should be acknowledged with a reduction in risk capital. Thus, a risk

measure should be subadditive for NQD risks :

Subadditivity for NQD risks: If X, Y are NQD, then ρ(X + Y ) ≤ ρ(X) + ρ(Y )

Opinions are divided as to what should happen when positive dependence occurs. On

the one hand one could argue (as Dhaene et al. (2003) do extensively) that aggregating

positively dependent risks actually increases the riskiness of the portfolio and that this

should induce higher capital requirements. Thus, in addition to subadditivity for NQD

risks we could require:

Superadditivity for PQD risks: If X, Y are PQD, then ρ(X + Y ) ≥ ρ(X) + ρ(Y )

and

Additivity for independent risks: If X, Y are independent, then ρ(X+Y ) = ρ(X)+

ρ(Y ).

A different school of thought, represented by Wang et al. (1997) and Artzner et al.

(1999) holds that risk measures should be subadditive for any dependence structure:

Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for any X,Y ∈ X

The argument for subadditivity is that even positively dependent risks provide some

diversification, so there is no reason that capital requirements should be increased. From

a regulatory perspective Artzner et al. (1999) argue that there should be no incentives

for investors to split their portfolios, which would be the result of superadditive risk

measurement.

In a subadditive risk measure, positive dependence can be acknowledged by requiring

that for comonotonic risks it becomes additive:
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Additivity for comonotonic risks: IfX, Y are comonotonic, then ρ(X+Y ) = ρ(X)+

ρ(Y ).

That is equivalent to saying that, since perfect positive dependence means that pooling

X and Y does not produce any diversification, there is no reason for the risk measure to

be subadditive.

Artzner et al. (1999) proposed the further requirement of positive homogeneity on a

risk measure:

Positive Homogeneity: If a ∈ R+ then ρ(aX) = aρ(X)

The interpretation that they gave for this property was the fairly uncontroversial state-

ment that a change in units of measurement (e.g. currency) should not result in a change

in capital requirements. However, positive homogeneity can also be understood in a dif-

ferent way: that changes in the size of an agent’s portfolio, given that its composition

is unchanged, should only effect a proportional change in capital requirements. Such an

assertion has not been without critics, see for example Föllmer and Schied (2002a) and

Dhaene et al. (2003). The criticism can be summarised in the observation that positive

homogeneity does not account for liquidity risk. Positive homogeneity does not acknowl-

edge that very large portfolios of risks might produce very high losses that in turn can

make it difficult for the holder of the portfolio to raise enough cash in order to meet his

obligations. Note that positive homogeneity is consistent with comonotonic additivity,

while being contradictory to superadditivity for PQD risks.

A relaxation of positive homogeneity and subadditivity has been proposed by Föllmer

and Schied (2002a), who replaced both properties with the requirement for convexity :

Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for all X,Y ∈ X , λ ∈ [0, 1]

Convexity has the interpretation of reduction in risk brought about by diversification,

while not implying the insensitivity to risk aggregation and liquidity risk brought about

by the combination of subadditivity and positive homogeneity.

We conclude with some terminology. Risk measures that satisfy monotonicity, trans-

lation invariance, subadditivity and positive homogeneity are called coherent (Artzner et
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al., 1999). If additivity for comonotonic risks is added to these properties we end up with

a specific sub-class of coherent risk measures, called distortion premium principles (Wang

(1996), Wang et al. (1997)). On the other hand risk measures satisfying monotonicity,

translation invariance and convexity are called convex (Föllmer and Schied, 2002a). Fi-

nally, risk measures that are additive for independent risks are called additive (Gerber,

1974).

4 Risk measures induced by theories of choice

4.1 Risk measures and indifference arguments

Risk measures provide in some sense an ordering of portfolios with random payoffs, in

terms of their riskiness. In this section we will be concerned with the way in which such

an ordering can be associated with the preference orderings stemming from theories of

choice that were discussed previously. In other words, given a risk measure ρ we are

interested in preference functionals V such that:

ρ(X) ≤ ρ(Y )⇔ V (X) ≥ V (Y ), ∀X,Y ∈ X (25)

A relation such as the above emerges when producing risk measures from preference

functionals, via indifference arguments. Such a process can be simply explained through

the example of pricing and insurance contract. In an insurance context an interpretation

of risk measures is as premium calculation mechanisms. The premium Π(X) that an

insurer asks for insuring a liability −X, should be equal to the capital ρ(−X) that

the insurer has then to reserve in order to remain insolvent.1 Consider now an insurer

with initial surplus (cash) w, who insures a liability −X. The insurer’s preferences are

described by a preference functional V : X 7→ R, such as the ones encountered in section

2. The premium Π(X) that the insurer will charge, can be determined via an indifference

1This is of course a simplified version of reality. We are not concerned here with the more realistic

case where the insurer invests the premium in, say, stocks, thus achieving a higher return but being

exposed to new sources of risk.
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argument, i.e. it should be the sum for which it is indifferent to the insurer whether

to go ahead with the contract or not. Such indifference can be formalised by requiring

that evaluations of the preference functional before and after the contract yield the same

result:

V (w) = V (w −X +Π(X)) (26)

The premium Π(X) will then be obtained as a solution to the above equation. As

discussed above, a risk measure can then be defined as:

ρ(X) = Π(−X) ∀X ∈ X (27)

From now on, whenever the relationship (27) holds, we will call Π the premium cal-

culation principle associated with the risk measure ρ and vice versa. The minus sign

essentially comes from the fact that in premium calculation positive outcomes are gen-

erally considered to be losses, while in the more general framework of risk measurement

positive values of the portfolio denote gains.

In sections 4.2, 4.3 and 4.4 we show how classes of premium principles (and the

associated risk measures), satisfying alternative sets of properties, can be derived from

the economic theories of choice discussed earlier. The comparison between these premium

principles is summarised in the Appendix B.

4.2 Risk measures derived from expected utility

4.2.1 Zero-utility premium calculation

In this section we consider agents whose preferences conform to the the theory of expected

utility discussed in section 2.3. Consider an insurer with a utility function u and initial

surplus w, who prices a liability −X. The indifference argument (26) now becomes:

u(w) = E[u(w −X +Πu(X))] (28)

If w is set to zero, the above equation becomes:

u(0) = E[u(−X +Πu(X))] (29)
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The premium calculation principle Πu() that emerges as the solution of (29, is called

the principle of zero utility (Bühlmann, 1970). Note that the zero-utility principle is

monotonic and translation invariant, as a direct result of equation (29). Moreover, all

zero-utility principles associated with concave utility functions are consistent with the

ordering of risks according to second stochastic dominance, as discussed in section 2.3.

Equation (29) has in general no analytical solution. However in the special case of a

quadratic utility function (10), a solution does exist:

Πuq
(X) = E[X] + c−

√

c2 − σ2(X), (30)

which for small values of the variance σ2(X) ¿ c can be approximated by (Bühlmann,

1970):

Πuq
(X) ' E[X] +

σ2

2c
. (31)

This premium calculation principle is termed the variance principle.

4.2.2 The exponential premium principle

A very interesting premium principle emerges when the utility function is of the exponen-

tial type (11). Then equation (28) yields the following solution (the exponential utility

function’s constant risk aversion makes the initial surplus irrelevant and we do not need

to set it to zero):

Πuexp
(X) =

1

a
lnE[eaX ], a ∈ (0,∞) (32)

(where it is understood that for a = 0 the premium principle reduces to the net premium,

Πuexp|a=0(X) = E[X]). This premium calculation mechanism is called the exponential

premium principle and has been proposed by several authors, see for example Gerber

(1974), Bühlmann (1985). The risk measure associated with the exponential premium

principle is:

ρuexp
(X) =

1

a
lnE[e−aX ] (33)

Some important properties of the exponential premium principle and the associated

risk measure are (Gerber (1974), Dhaene et al. (2003)):
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• Monotonicity

• Translation invariance

• Subadditivity for negatively related (NQD) risks

• Additive for independent risks

• Superadditivity for positively related (PQD) risks

The last two properties imply that the aggregation of positively dependent investment

positions increases the risk of the portfolio superlinearly. Note that this implies that the

premium principle and associated risk measure is not positively homogenous. Thus the

exponential premium principle is sensitive to the liquidity risk and aggregation issues

discussed in section 3.3. These properties are a direct result of the association with

expected utility theory, since an increase in the scale of losses would lead to a steeper

than linear reduction in utility. We also note that the exponential premium principle

(with the net premium as a special case) is the only zero-utility premium principle that

is additive for independent risks (Gerber, 1974).

We consider, however, the properties of the exponential principle as being excessively

strict, as far as relatively small portfolios are concerned. The superadditivity for positively

related risks is present even for very small portfolios, where liquidity risk and aggregation

are not of primary importance. Furthermore, for small portfolios the exponential principle

will approximately equal the net premium and thus no safety loading will be produced.

4.2.3 Exponential premium principle and ruin theory

An alternative interpretation of the exponential premium principle can be given in terms

of ruin theory, see for example Bühlmann (1985). Consider an insurer with an initial

surplus S0. Each year t the insurer is exposed to stochastic insurance losses Xt and has

a premium income ct. Thus the insurer’s surplus process is:

St = St−1 + ct −Xt, t = 1, 2, ... (34)
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Assume now that the annual total claimsXt, t = 1, 2, ... are identically and independently

distributed. Denote as X a random variable with the same distribution as Xt. Let the

premium ct be given by premium principle Π, i.e. ct = Π(Xt). Since the liabilities Xt

have same distribution each year, each year’s premium will also be the same, so that

ct = c = Π(X).

Ruin is defined as St becoming negative at some time t > 0. Denote the probability of

ruin as ψ. The question posed now is: given the premium calculation principle Π, what

is the probability of ruin? A similar question is: can we control the probability of ruin

by choosing an appropriate risk measure? Assuming that X has exponentially bounded

tails, the probability of ruin, ψ, is bounded by:

ψ ≤ e−λS0 , (35)

where λ is called the ‘adjustment coefficient’ and is the solution of the equation:

eλc = E[eλX ], (36)

which in turn yields:

c =
1

λ
lnE[eλX ] (37)

Thus, calculating premium by the exponential principle with a risk aversion coefficient

of λ, introduces an upper bound of e−λS0 on the probability of ruin. It can be seen that

the higher λ is, the lower the probability of ruin. This relation can be interpreted as a

specific upper bound on the probability of ruin implying a risk aversion parameter for

the insurer and vice versa. It is also important that the probability of ruin depends on

the initial surplus; the lower that is, the more likely ruin becomes.

4.3 Risk measures derived from the dual theory of choice

4.3.1 The distortion premium principle

Here we repeat the indifference argument of section 4.1 for the case that preferences

are modelled by the dual theory of choice under risk that was discussed in 2.4. Thus,
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risk aversion is induced by an increasing convex probability distortion function h and

the resulting preference functional is of the form (12). The indifference argument (26)

becomes:

Hh(w) = Hh(w −X +Πh(X)) (38)

This equation can be explicitly solved for the premium Πh:

Πh(X) = −Hh(−X) = −

{
∫ 0

−∞

(h(S−X(x))− 1)dx+

∫ ∞

0

h(S−X(x))dx

}

(39)

and the corresponding risk measure is:

ρh(X) = −Hh(X) = −

{
∫ 0

−∞

(h(SX(x))− 1)dx+

∫ ∞

0

h(SX(x))dx

}

(40)

We can rewrite equation (39) in the simpler form:

Πh(X) =

∫ 0

−∞

(g(SX(x))− 1)dx+

∫ ∞

0

g(SX(x))dx, (41)

where g(s) = 1−h(1−s) is called the conjugate distortion function of h. When the liability

X is strictly positive, we end up with only the second term in the above equation, which

was introduced in the context of insurance pricing by Denneberg (1990) and Wang (1996)

and is often known as the distortion premium principle.

It can be shown (Denneberg (1990), Wang et al. (1997)) that, whenever h is convex

(equivalently g is concave), the distortion premium principle satisfies the following five

key properties:

• Monotonicity

• Translation invariance

• Positive homogeneity

• Subadditivity

• Additivity for comonotonic risks

The first four of these properties ensure that the distortion principle is a coherent risk

measure in the sense of Artzner et al. (1999), while comonotonic additivity is a desirable
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attribute for a subadditive risk measure, as already discussed in 3.3. Furthermore, it

can be shown that every premium principle (risk measure) that satisfies the five proper-

ties above can be represented as a distortion premium principle, subject to a technical

condition (Wang et al., 1997).

Note that because of its association with the dual theory of choice, the distortion

premium principle is also consistent with second stochastic dominance. The association

with the dual theory is also the reason behind the property of positive homogeneity. It

was seen in section 2.4 that the under the dual theory the agents are risk neutral with

respect to the absolute size of potential losses or gains, since the distortion function affects

only the probabilities of adverse events. Thus, positive homogeneity is a consequence of

the linearity in wealth that the dual theory implies. This makes the distortion principle

insensitive to liquidity risk and risk aggregation.

4.3.2 Probability distortion and sets of measures

We conclude with another representation of distortion premium principles, via sets of

probability measures. A probability measure Q : F 7→ R is a real-valued set function

defined on the collection (σ-algebra) of events F that assigns a probability to each of

those events. Denote as P the ‘real-world’ or ‘actuarial’ probability measure and as

EQ[X] the expected value of X with respect to the measure Q. Then the distortion

premium principle (39) and the corresponding risk measure can be written as:

Πh(X) = sup
Q∈Qg

EQ[X] = − inf
Q∈Qh

EQ[−X] (42)

and

ρh(X) = sup
Q∈Qg

EQ[−X] = − inf
Q∈Qh

EQ[X], (43)

where the sets of probability measures Qg, Qh are defined as:

Qg = {Q : Q(A) ≤ g(P(A)), ∀A ∈ F}

Qh = {Q : Q(A) ≥ h(P(A)), ∀A ∈ F}
(44)

The representation (42) can be interpreted as the expected loss EQ[X] of X, under the

‘worst possible’ measure in Qg. The measures Q are sometimes called ‘generalised scenar-
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ios’ (Artzner et al., 1999). Thus the distortion premium principle can be re-interpreted as

a ‘worst-scenario’ approach to calculating expected loss, over the appropriate set of risk

adjusted test probabilities. On the other hand, we can consider the presence of a set of

probability measures as a way of quantifying uncertainty with respect to the distribution

function of the underlying risk (Schmeidler, 1989). The extent of such uncertainty is

determined by the concavity of g (convexity of h) through which the set of measures Qg

(Qh) is defined.

4.4 Generalised expected utility and convex measures of risk

It is an obvious step to now synthesize the two approaches for producing risk measures

that were shown in the previous two sections. We assume that an agent’s preferences are

summarised by both a concave utility u and a convex distortion h. Thus the indifference

argument (26) takes the form:

Vu,h(w) = Vu,h(w −X +Πu,h(X)) (45)

As the premium principle Πu,h emerges from generalised expected utility, it inherits

properties both from expected utility and the dual theory of choice. It is thus easily

understood that, as discussed by Luan (2001), in the case of a linear utility function the

distortion principle is obtained as a special case, while, in the case of a linear probability

distortion (and w = 0) Πu,h reduces to the zero-utility principle. In general, the properties

of Πu,h will lie somewhere in between those of these two extreme cases, however its

precise behaviour is difficult to pin down. It is in general difficult to determine at which

point the utility or the distortion function will have the most influence (Quiggin, 1993).

One important property is that it is consistent with second order stochastic dominance,

whenever u is concave and h is convex (Quiggin, 1993). A very useful characterisation

has been given by Föllmer and Schied (2002b), who have shown in a slightly different

context, that risk measures emerging from indifference arguments such as (45) are in

fact convex measures of risk. Thus the premium principle Πu,h and the associated risk

measure ρu,h(X) = Πu,h(−X) are monotonic, translation invariant and convex.
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5 A distortion-exponential premium principle

In this section we propose a premium principle (and the corresponding risk measure),

which is obtained as a special case of the risk measures considered in section 4.4 when an

exponential utility function is used. This premium principle is mathematically tractable,

while having quite interesting properties, and we call it the distortion-exponential prin-

ciple.

5.1 Definition

Reconsider equation (45), with an exponential utility function, uexp, and an arbitrary dis-

tortion function h. As seen in section 4.2, calculations involving exponential utilities are

much easier and tend to yield explicit solutions. Then the premium principle Πuexp,h(X),

which we may call the distortion-exponential principle becomes:

Πuexp,h(X) =
1

a
ln

{
∫ 0

−∞

(g(SeaX (x))− 1)dx+

∫ ∞

0

g(SeaX (x))dx

}

, (46)

where g(s) = 1− h(1− s) is the (concave) conjugate distortion function. The associated

risk measure can be defined by Πuexp,h(−X).

We note that the distortion-exponential principle can be concisely represented via the

set of probability measures Qg (44):

Πuexp,h(X) =
1

a
ln

{

sup
Q∈Qg

EQ[e
aX ]

}

(47)

Now we can rewrite the above equation as:

Πuexp,H(X) = sup
Q∈Qg

{

1

a
lnEQ[e

aX ]

}

= sup
Q∈Qg

Πuexp
(X) (48)

Thus the distortion-exponential principle is interpreted as an exponential premium prin-

ciple, evaluated with respect to the worst-case probability measure in Qg. If we interpret

the set of scenarios Qg as quantifying the uncertainty regarding the probability distri-

bution of a portfolio X, the above representation can be viewed as being derived from

the ruin problem discussed in section 4.2. Thus, the distortion-exponential principle pro-

vides a mechanism for controlling the probability of ruin, in the presence of distributional

uncertainty, modelled via distorted probabilities.
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5.2 Properties

As the distortion-exponential principle emerges from generalised expected utility, it inher-

its properties both from the exponential premium principle and risk measures based on

distorted probabilities. Thus, the properties of this composite risk measure will lie some-

where between these two extremes of economic behaviour. As discussed in the previous

section, the distortion-exponential principle and the associated risk measure satisfy:

• Monotonicity

• Translation invariance

• Convexity

It is easily seen that the exponential and distortion principles obtained in the previous

two sections are special cases of this more general premium principle. Thus, if we let the

utility function become linear (i.e. let the risk aversion coefficient tend to zero), then

convexity breaks down into positive homogeneity and subadditivity, and we obtain a

coherent risk measure. On the other hand, if the distortion function is linear, convexity

reaches its other extreme and can be substituted by additivity for independent risks,

subadditivity for NQD risks and superadditivity for PQD ones.

5.3 Comparison of the distortion-exponential to the distortion

and exponential principles

In the case that neither the utility nor the distortion function is linear, whether the

properties of the proposed risk measure are closer to the exponential or the distortion

principle will to some extent depend on the underlying risks that are examined. Consider

an insurance liability with loss ratio X ≥ 0, and an insurance company holding λ units

of the liability, i.e. being exposed to risk λX. Note that the effect of the exponential

function in (46), will then depend on the product aλ. When λ is small in relation to

a, then the aggregate effect is that the exponential term will be very similar to a linear

one. Thus, we can claim that for small portfolios, the distortion-exponential principle
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becomes asymptotically equivalent to the corresponding distortion principle and inherits

its properties. Thus, for small portfolios, the distortion-exponential principle will be

positively homogenous and subadditive. However, for higher values of λ the exponential

term grows and we would expect the effect of the utility function to become prevalent.

5.3.1 Sensitivity to portfolio size

The main criticism against positive homogeneity is that it disregards liquidity risk. How-

ever for small portfolios liquidity risk can be negligible, hence it is reasonable to require

that for such portfolios the risk measure becomes approximately invariant to the scale of

potential losses. The influence of the exponential utility function on the risk assessment

of portfolios with variable sizes is illustrated in figures 1 and 2. We assume X is Gamma

distributed with mean equal to 1 and variance equal to 0.2. First we consider the case of

a linear distortion function and an exponential utility with risk aversion ra = 0.5 · 10−6.

The corresponding risk assessment of λX for 0 < λ ≤ 5 · 106, given by the exponential

premium principle is shown in figure 1, along with the expected loss (net premium) of

λX. It can be seen that for small values of λ the two lines are almost indistinguishable,

while when λ becomes comparable to 1/a, the line representing risk assessment with

the exponential premium principle starts to diverge. Thus, risk aversion only starts to

‘kick-in’ when the size of the portfolio is such that a potential loss becomes a significant

threat to the liability holder’s solvency. For small values of λ the line corresponding to

the exponential premium principle is approximately straight, which can be interpreted

as (approximate) positive homogeneity (scale invariance) at that level. However, the fact

that for small λ the exponential principle gives the same values as the net premium is

something that one could disagree with, as it implies that for small portfolios no safety

loading is necessary.

This weakness is rectified if we use instead of the exponential premium the distortion-

exponential principle, where an exponential distortion function, with uncertainty aversion

ua = 4, is used. In figure 2 the behaviour of the distortion-exponential principle with

respect to portfolio size is depicted, along with risk assessments produced with the corre-
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sponding distortion principle and expected loss. It can be seen that for small portfolios

the risk given by distortion-exponential principle is asymptotically the same as the one

calculated with the distortion principle, thus it is again approximately positively ho-

mogenous. On the other hand positive homogeneity does not imply here the absence of

a safety loading, as is seen by the different slopes of the straight lines corresponding to

the distortion principle and the expected loss. A safety loading even for small portfo-

lios is the result of the uncertainty aversion introduced by the distortion function, while,

when the exponential utility’s non-linear effect becomes significant, an additional loading

is present, resulting from the sensitivity to very high potential losses. Thus, with the

distortion-exponential principle we get the best of both worlds: positive homogeneity for

small portfolios, a proportional safety loading for all portfolio sizes, plus a non-linear

loading for large portfolios that pose an increased liquidity risk.

5.3.2 Sensitivity to risk aggregation

We now turn our attention to the issue of risk aggregation. As discussed previously, the

distortion principle is insensitive to risk aggregation issues, as it is always subadditive.

On the other hand, it can be argued that the exponential premium principle is over-

sensitive to risk aggregation since it is superadditive for all PQD risk, even for small

ones, and thus makes no acknowledgement of the possible diversification implicit in risk

pooling (in fact using the exponential principle would create an incentive to split even

the smallest portfolio of positively related risks). Consider two random liabilities, X and

Y . Given a premium principle Π, we define the relative saving from pooling, γ(X,Y ), as

the proportional reduction in premium (risk capital) when X and Y are pooled:

γ(X,Y ) =
Π(X) + Π(Y )− Π(X + Y )

Π(X) + Π(Y )
(49)

If X and Y are positively related (PQD to be more precise), for a distortion principle

γ(X,Y ) will always be positive, due to subadditivity, and for an exponential principle

it will be always negative, due to superadditivity. As discussed before, neither of those

two extremes is satisfactory, since the former disregards risk aggregation, while the latter
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does not acknowledge diversification.

Again, the distortion-exponential principle occupies the middle ground and provides

an answer that is in our view satisfactory. Let X and Y be Gamma distributed, both

with mean 0.5 and variance 0.05, and positively dependent with correlation 0.5 (in this

example we use a Gaussian copula (Joe, 1997) to model dependence). In figure 3 we

plot γ(λX, λY ) as a function of λ for the distortion principle, the exponential principle,

and the distortion-exponential principle. It can be seen that, as expected, the savings

from pooling are always positive for the distortion principle and always negative for the

exponential principle. For the distortion-exponential principle the savings are positive

for small λ and negative for large ones; the point that the line crosses the x-axis is the

one when the dangers from risk aggregation become more significant than the benefits

from risk pooling.

Overall, the properties of the risk measure that we introduced in this paper lie between

those of the exponential and distortion premium principles. For small portfolios it behaves

like a coherent risk measure, while for larger ones, where liquidity risk and risk aggregation

become significant, the exponential function progressively introduces superlinearity and

superadditivity in the risk assessment. The definition of what a large portfolio is will

depend on the specific situation and preferences of its holder and can be controlled by

modifying the risk aversion parameter of the exponential function.

6 Conclusions

In this paper we discussed alternative theories of choice and the properties of risk

measures that are associated with those theories. Our purpose has been to show that

these two complementary perspectives of the problem of risk measurement illuminate

each other. Thus risk measures resulting from expected utility theory are sensitive to the

relative scale of potential losses, which is a direct result of the non-linearity of the utility

function. We focused on the case of exponential utility functions, as the resulting risk

measures, called exponential premium principles, are characterised by a transparent set
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of properties, while also having an interesting interpretation in terms the classical ruin

problem. The exponential premium principle has been shown to be particularly sensitive

to risk aggregation. On the other hand, coherent risk measures derived from the dual

theory of choice, called distortion principles, have been shown to be insensitive to risk

aggregation, as they are subadditive for all risks. However, for small portfolios of risks,

where liquidity and aggregation issues are less prevalent, distortion principles both ap-

ply a proportional safety loading and acknowledge diversification, which the exponential

principle fails to do.

Thus we see that the two complementary theories of choice, expected utility and the

dual theory, induce classes of risk measures that have complementary sets properties,

none of which are completely satisfactory. These arguments imply that a desirable set

of properties of a risk measure would lie somewhere in between those of coherent risk

measures, on the one side, and the exponential principle, on the other. Our discussion

thus contributes to the criticism of coherent risk measures initiated by Föllmer and Schied

(2002a, 2002b) and Dhaene et al. (2003). Generalised utility theory, which combines

expected utility and the dual theory, gives rise to a different class of convex measures of

risk. Using again an exponential utility function, we obtain a risk measure (which we term

the distortion-exponential principle) with properties that we believe are satisfactory. This

risk measure behaves approximately as a coherent risk measure for smaller portfolios of

risks, while for larger portfolios the risk aversion induced by the utility function becomes

prevalent and the sensitivity to liquidity and risk aggregation issues gradually increases.

That this increase is gradual is in our view a very positive feature, as the alternative

would be to define a cut-off point in portfolio size, whose relative arbitrariness could

create anomalies in risk management policy.

We observe that the theory of choice which arguably gives the most complete char-

acterisation of agent preferences, generalised expected utility, also induces risk measures

with what we believe to be the best properties. This indicates that the association of risk

measures with economic theories has been a productive approach and constitutes more

than a theoretical exercise. We must however note that, even though generalised expected
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utility improves on the von Neumann-Morgenstern utility theory, it is also sometimes vi-

olated in practice (Fennema and Wakker (1996), Georgantzis et al. (2002)). A question

then arises as to whether, in the presence of these violations, our analysis retains its

validity. Economic theories of choice strive to give mathematical descriptions of rational-

ity, but what happens when individual decision makers do not conform with prescribed

notions of what a rational act is? We believe that such contradictions do not invalidate

the usefulness of the theoretical tools that we used. At the level of policy making one

is actually in the position to consciously decide as to what a rational decision is; the

operation of risk measures is by definition normative rather than descriptive. Regulation

tries to strike a balance between how market players should act and how they are actually

likely to act and we believe that risk measures derived from generalised expected utility

get this balance about right. On the other hand, decisions violating economic theories

of choice do not necessarily imply irrationality, but are often due to other factors, which

cannot be easily quantified. It is not the function of a risk measure to negate these

factors; an economic decision should not depend exclusively on the value returned by a

mathematical model. However, the presence of a risk measure provides decision-makers

with one additional conceptual tool, serving a specific purpose. It is then a matter of best

practice to choose this tool carefully and justify that choice via economic arguments.

The preceding discussion does not suggest how the risk measures that we propose

should be calibrated. Calibration would of course depend of the context in which the

risk measure will be used. If it is used as regulatory requirement imposed on the market,

the uncertainty aversion of the distortion function could be indicated by a regulator.

Recall that the distortion function can be interpreted as a mechanism for producing

probabilistic scenarios. This bears some similarity with the Value-at-Risk methodology

currently employed in banking regulation. On the other hand, if the risk measure is

used internally by a financial entity (bank, insurance company, corporation), the decision

would depend on the risk manager’s view. Regarding the calibration of the (exponential)

utility function, the classical insurer’s ruin problem discussed earlier in the paper, without

being necessarily valid in a general risk management context, provides some insight. It
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was seen that the risk aversion parameter depends on the initial surplus of the insurer, as

well as the maximum acceptable probability of ruin. As our motivation for employing an

exponential utility function was related to the issue of how to treat large portfolios, it is

reasonable to expect the definition of what amounts to a large portfolio to be dependent on

the financial size of its holder. The implication is that the calibration of the risk measure

is a company-specific issue. We do not consider this as a weakness of the proposed

methodology. Different market players have different characteristics and priorities, and

the mathematical tools they use should be flexible enough to cater for this simple fact.

Furthermore, the imposition by a regulator of a single risk measure on the whole market

has been criticised in the literature (Danielson et al., 2001) as a source of systemic risk,

as the use by all market agents of the same risk measure would result in similar risk

management strategies. This would in turn increase the homogeneity of market decision

makers and increase the probability of a systemic crisis.
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Bühlmann, H. (1970), Mathematical Methods in Risk Theory. Springer, Berlin.
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A Theories of choice under risk: Axiomatic

characterisations

For each theory of choice discussed in the paper, the corresponding preference func-

tional can be derived from a set of axioms. In this section we briefly present such ax-

iomatisations, without going into great mathematical detail and the precise conditions

under which the representation theorems hold. It is significant that the sets of axioms

characterising alternative theories of choice differ with respect to the way they deal with

aggregation of risks. It is thus no coincidence that the risk measures induced by these

theories also have different properties relating to the risk assessment of sums of risks (i.e.

superadditivity, subadditivity, convexity). Note that alternative axiomatisations are pos-

sible, especially in the case of generalised expected utility. Here we follow the treatment

by Puppe (1991). We also find the discussions by Yaari (1987) and Schmeidler (1989)

very useful.

Let X be a set of random variables on a probability space (Ω,F ,P). The decumulative

distribution function SX(x) of X ∈ X is defined by SX(x) = P(X > x). Denote as D

the set of decumulative distributions of elements in X . Let all elements in X take values

in a compact interval M ⊂ R, so that M is the support of distributions in D. We also

assume that D is endowed with the topology of weak convergence.

Assume a binary preference operator ‘º’ defined on D, with ‘Â’ being its asymmetric

part (strict preference) and ‘∼’ its symmetric part (indifference). The relation ‘º’ is called

complete if, ∀F,G ∈ D, F º G or G º F holds. The relation ‘º’ is called transitive

if F º G and G º H imply F º H, ∀F,G,H ∈ D. ‘º’ is called a weak order if it is

complete and transitive.

A real valued functional V : D 7→ R is a representation of ‘º’ if for all F,G ∈ D:

F º G⇔ V (F ) ≥ V (G)

Consider the following axioms on ‘º’:
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Weak Order The relation ‘º’ is a weak order, i.e. preferences are complete and transi-

tive.

Continuity ∀F ∈ D the sets {G ∈ D : G º F} and {G ∈ D : F º G} are closed in the

topology of weak convergence.

Monotonicity ∀F,G ∈ D, F Â G whenever F dominates G in first order stochastic

dominance, i.e. F (x) ≥ G(x) ∀x ∈ R (and the inequality is strict for at least one

x).

Independence ∀F,G,H ∈ D and a ∈ [0, 1], F º G implies aF + (1− a)H º aG+ (1−

a)H.

Then the expected utility theorem can be stated as follows:

Theorem 1 (Expected Utility). Let ‘º’ be a binary operator on D. If and only if

‘º’ satisfies the Weak Order, Continuity, Monotonicity and Independence axioms, there

exists a strictly increasing real valued function u such that ‘º’ can be represented by the

expected utility functional:

V (X) =

∫

M

u(x)d(1− SX(x)) = E[u(X)]

Moreover the utility function u is unique up to affine transformations.

Note that the Independence axiom is responsible for the linearity in probabilities of the

expected utility functional. Furthermore, Independence has been found to be frequently

violated in practice. Yaari’s (1987) dual theory of choice, emerges by modifying the

Independence axiom. Let SX ⊕ SY denote the decumulative distribution function of

X + Y . Consider now the following axiom:

Dual Independence ∀F,G,H ∈ D and a ∈ [0, 1], F º G implies aF ⊕ (1 − a)H º

aG⊕ (1− a)H.

The following result holds:
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Theorem 2 (Yaari). Let ‘º’ be a binary operator on D. If and only if ‘º’ satisfies

the Weak Order, Continuity, Monotonicity and Dual Independence axioms, there exists

a unique continuous and strictly increasing function h : [0, 1] 7→ [0, 1] such that ‘º’ can

be represented by the functional:

V (X) =

∫

M∩R
−

(h(SX(x))− 1)dx+

∫

M∩R+

h(SX(x))dx

Dual Independence is responsible for the linearity in payoffs observed in the dual

theory of choice. In order to obtain a generalised utility functional depending on both

a utility and a distortion function, the Independence axiom has to be weakened and

not just modified. There are several ways of doing this and some additional conditions

are needed so we will not state a theorem for that case. Sets of alternative axioms are

discussed in Puppe (1991), while a very interesting approach is that of Schmeidler (1989).

He substituted Independence with:

Comonotonic Independence For all pairwise comonotonic F,G,H ∈ D and a ∈ (0, 1),

F º G implies aF + (1− a)H º aG+ (1− a)H.

The resulting preference functional is an expected utility under a non-additive probability

measure (Denneberg, 1994), which under some technical conditions can be represented

as a distorted probability.



B Summary of theories of choice and resulting risk measures

Economic theory Expected Utility Dual Theory of Choice Generalised Expected Utility

Nonlinear distortion of: wealth (u(x)) probability (h(P) = 1− g(1− P)) wealth and probability

Preference functional U(X) =
∫ +∞

−∞
u(x)dFX(x) H(X) =

∫ 0

−∞
(h(SX(x))− 1)dx Vu,h(X) =

∫ 0

−∞
(h(Su(X)(x))− 1)dx

+
∫∞

0
h(SX(x))dx +

∫∞

0
h(Su(X)(x))dx

Separability axiom Independence Dual independence Comonotonic independence

Exponential Distortion Distortion-Exponential

Premium principle Πuexp
(X) = 1

a
lnE[eaX ] Πh(X) =

∫ 0

−∞
(g(SX(x))− 1)dx Πuexp,h(X) = 1

a
ln{
∫ 0

−∞
(g(SeaX (x))− 1)dx

(using exponential utility) +
∫∞

0
g(SX(x))dx +

∫∞

0
g(SeaX (x))dx}

Premium as function superlinear linear linear for small portfolios

of portfolio size superlinear for large portfolios

Risk loading zero for small portfolios positive and constant positive for small portfolios

and increases with size and increases with size

subadditive for NQD subadditive for all risks convex

Sensitivity to aggregation additive for independent additive for comonotonic risks (subadditive for small risks,

superadditive for PQD risks superadditive for large PQD risks)
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Figure 1: Effect of portfolio size on risk assessment with the exponential premium prin-

ciple.
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Figure 2: Comparison of the effect of portfolio size on risk assessment, for the distortion

and distortion-exponential premium principles.
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Figure 3: Comparison of savings from pooling positively correlated liabilities, with the

distortion, exponential and distortion-exponential premium principles.


