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Abstract

It is shown that for elliptically distributed bivariate random vectors,

the riskiness and dependence strength of random portfolios, in the

sense of the univariate convex and bivariate concordance stochastic

orders respectively, can be simply characterised in terms of the vector’s

Σ-matrix.
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1 Introduction

Elliptical probability distributions have gained prominence in recent years

as effective tools for multivariate modelling in risk management. Elliptical

distributions, introduced by Kelker (1970) and further discussed by Fang

et al. (1987) constitute generalisations of the multivariate normal family,

which allow for the presence of heavy tails and asymptotic tail dependence.

The importance of elliptical distributions for risk management and actuarial

science has been highlighted by Embrechts et al. (2002), while the applica-

tion of elliptical distributions in insurance was further studied by Landsman

and Valdez (2002).

Stochastic orders (Shaked and Shanthikumar (1994), Dhaene and Goovaerts

(1996), Müller and Stoyan (2002)) provide methods of comparing random

variables and vectors. It is shown in the present paper that, among two ellip-

tically distributed risks with equal means, the one with the higher variance

(or the higher value of the diagonal elements of the Σ-matrix if the variances

do not exist) is the riskiest in the stop-loss and convex order senses. This im-

plies that for elliptically distributed random variables the variance presents

a comprehensive means for quantifying risk, and is consistent with economic

concepts such as utility theory and second order stochastic dominance.

Furthermore the effect of correlation on bivariate elliptical distributions

is examined. It is shown that for two bivariate random vectors, belonging

to the same elliptical family, the ordering of their correlation coefficients (or

corresponding quantities if the covariance matrix does not exist), is equiva-

lent to their being ordered in the concordance order sense. This is equivalent
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to saying that a bivariate elliptical cumulative distribution is increasing in

the correlation coefficient. Moreover it is shown that the riskiness (in the

stop-loss and convex order senses) of a portfolio of two elliptically distributed

risks increases in the (generalised) correlation coefficient, which forms a

stronger version of a result obtained by Dhaene and Goovaerts (1996).

2 Elliptical distributions

In this section the class of elliptical distributions is briefly discussed. Let Ψn

be a class of functions ψ(t) : [0,∞) 7→ R such that the function ψ(
∑n

i=1
t2i ) is

an n−dimensional characteristic function (Fang et al., 1987). It then follows

that Ψn ⊂ Ψn−1 · ·· ⊂ Ψ1.

Definition 1. Consider an n−dimensional random vector X = (X1, X2, ..., Xn)T .

The random vector X has a multivariate elliptical distribution, denoted by

X ∼ En(µ,Σ,ψ), if its characteristic function can be expressed as

ϕX (t) = exp(itTµ)ψ

(

1

2
tTΣt

)

(1)

for some column-vector µ, n × n positive-definite matrix Σ, and for some

function ψ(t) ∈ Ψn, which is called the characteristic generator.

Besides the multivariate normal family, obtained by ψ(t) = e−t, ex-

amples of elliptical distributions are the multivariate t, logistic, symmetric

stable, and exponential power families.

The mean vector and covariance matrix of X does not necessarily exist;

there are in fact elliptical families with infinite means and variances (Lands-

man and Valdez, 2003). It can be shown that if the mean exists, then for
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X ∼ En (µ,Σ, ψ) it is E (X) = µ. If the covariance matrix also exists, it

equals Cov (X) = −ψ′ (0)Σ. The characteristic generator can be chosen

such that ψ′ (0) = −1 so that the covariance becomes Cov (X) = Σ.

An important property of elliptical distributions is that linear trans-

formations of elliptically distributed vectors are also elliptical, with the

same characteristic generator. Specifically, from (1) it follows that if X ∼

En (µ,Σ, ψ), A is a m × n dimensional matrix of rank m ≤ n, and b is an

m dimensional vector, then

AX + b ∼ Em

(

Aµ+ b,AΣAT , ψ
)

. (2)

A direct consequence of (2) is that any marginal distribution of X is also

elliptical with the same characteristic generator, that is, if the diagonal ele-

ments of Σ are σ2
1, σ

2
2, ..., σ

2
n, then for k = 1, 2, ..., n it is Xk ∼ E1

(

µk,σ
2
k, ψ

)

.

Finally, let A ∈ R
n×n be a matrix such that AAT = Σ . Then for

vector X the following stochastic stochastic representation holds (Fang et

al., 1987, (2.12)):

X
d
= µ+ r · A · U, (3)

where r ≥ 0 is a random variable and U is uniformly distributed on the unit

hypersphere uTu = 1, u ∈ R
n.

3 Stop-loss and convex orders

Consider a set of random variables or risks X . The partial stop-loss order

on elements of the set of risks X provides a natural way of comparing the

riskiness of probability distributions:
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Definition 2. For random variables X,Y ∈ X , we say that X is smaller

than Y in stop-loss order and write X ≤
sl
Y , whenever

E[(X − d)+] ≤ E[(Y − d)+], ∀d ∈ (−∞,∞). (4)

In insurance terms (2) is interpreted as a comparison of the stop-loss

premiums of risks for any given retention (Dhaene and Goovaerts, 1996). If

the random variables X,Y have equal means, stop-loss order corresponds to

the notion of second order stochastic dominance, well-known in economics

(Müller and Stoyan, 2002). For such variables the convex order can addi-

tionally be defined.

Definition 3. For random variables X,Y ∈ X with equal means, we say

that X is smaller than Y in convex order and write X ≤
cx
Y , whenever

E[v(X)] ≤ E[v(Y )], (5)

for all convex functions v such that the expectations exist.

Convex ordering of two random variables constitutes a strong statement

on the comparison of their variability. There is a close relationship between

the stop-loss and convex orders (Shaked and Shanthikumar, 1994):

Lemma 1. E[X] = E[Y ] and X ≤
sl
Y ⇔ X ≤

cx
Y.

Now, simple characterisations of the stop-loss and convex orders in terms

of elements of the Σ matrix are obtained.

Theorem 1. Consider (X,Y ) ∼ E2(µ,Σ,ψ) with a finite vector of means

µ = (µX , µY ). Define X ′ = X − µX , Y
′ = Y − µY . Then

σ2
X ≤ σ2

Y ⇐⇒ X ′ ≤
sl
Y ′, (6)
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where σ2
X and σ2

Y are the corresponding diagonal elements of the matrix Σ.

Proof. From (2) it trivially follows that

X ′ d
=
σX

σY

Y ′. (7)

Direct application of Theorem 1.15.8 in Müller (2002), yields (6).

From Theorem 1, the following corollary can be easily obtained:

Corollary 1. If µX = µY , σ2
X ≤ σ2

Y ⇐⇒ X ′ ≤
cx
Y ′

Proof: Follows directly from the fact that X − µ ≤
sl
Y − µ ⇐⇒ X ≤

sl
Y and

Lemma 1. �

4 Concordance order and portfolio risk

Let
d
= signify equality in distribution. Consider risks X1

d
= Y1 and X2

d
=

Y2 with probability distributions F1, F2 respectively. The random vectors

(X1, X2) and (Y1, Y2) are then different only in the way that their elements

depend on each other. The Frechet Space R2(F1, F2) is defined as the space

of two-dimensional random vectors with fixed marginals F1 and F2 (see

(Dhaene and Goovaerts, 1996)). Elements of R2(F1, F2) can be compared

in terms of their dependence structure via the partial concordance order :

Definition 4. Consider the random vectors (X1, X2), (Y1, Y2) ∈ R2(F1, F2)

with joint distributions FX and FY respectively. We say that (X1, X2) is

less concordant than (Y1, Y2) and write (X1, X2) ≤
conc

(Y1, Y2), whenever

FX(x1, x2) ≤ FY(x1, x2), ∀x1, x2. (8)
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Concordance order can also be understood via the following result (Dhaene

and Goovaerts (1996), Müller and Stoyan (2002)):

Lemma 2. Consider random vectors (X1, X2), (Y1, Y2) ∈ R2(F1, F2). Then:

(X1, X2) ≤
conc

(Y1, Y2) ⇔ Cov(h1(X1), h2(X2)) ≤ Cov(h1(Y1), h2(Y2)) (9)

for all increasing functions h1, h2 such that the covariances exist.

It is now shown that for bivariate elliptically distributed random vectors

the concordance ordering is equivalent to the ordering of correlation coeffi-

cients. We note that a similar result has been proved just for the normal

family by Müller and Stoyan (2002). To cater for cases where the covariance

matrix does not exist, a generalised correlation coefficient for a bivariate

elliptically distributed vector X ∼ E2(µ,Σ, ψ), with Σ = {σij} is defined as

ρX =
σ12√
σ11σ22

. (10)

Of course, ρX coincides with the usual (Pearson) correlation coefficient if

covariance matrix exists.

Lemma 3. Consider the random vector Y = (Y1, Y2), defined by Y = A·U,

where U is uniformly distributed on the unit circle, and

A =





1 0

ρ
√

1 − ρ2



 . (11)

Then FY(s, t; ρ) = P(Y1 ≤ s, Y2 ≤ t) in increasing in ρ.

Proof. It is

P(Y1 ≤ s, Y2 ≤ t) = P(U1 ≤ s, ρU1 +
√

1 − ρ2U2 ≤ t)

= P(cos Φ ≤ s, ρ cos Φ +
√

1 − ρ2 sinΦ ≤ t),
(12)
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where Φ is uniformly distributed in [0, 2π].

To evaluate the above joint probabilities we can set cos Φ = x, sinΦ = y

and solve the system of inequalities:

x ≤ s, ρx+
√

1 − ρ2y ≤ t, x2 + y2 = 1. (13)

Consider first the case that t > 0, ρ ∈ (0, 1). Then the situation is as

depicted in figure 1. The solution of (13 ) consists of all points on the unit

circle that are below the line y = (t − ρx)/
√

1 − ρ2 and to the left of the

line x = s. This means that

P(cos Φ ≤ s, ρ cosΦ +
√

1 − ρ2 sin Φ ≤ t) = P(Φ ≤ φ), (14)

where φ is the angle indicated in the figure.

The inequality ρx+
√

1 − ρ2y ≤ t restricts the solution to the part of the

circle below and to the left of line ZE, corresponding to the arc defined by

angle ψ, as indicated in the figure. From elementary geometry we calculate:

(

ZE
2

)2
= 1 − (∆O)2

(∆O)2 = ((OA)−2 + (OB)−2)−1 =
(

ρ2

t2
+ 1−ρ2

t2

)

−1

= t2
(15)

Hence the length (ZE) and therefore the angle ψ does not depend on ρ.

Now consider the inequality x ≤ s. If s < −1 then the solution of (13)

is the empty set and P(Y1 ≤ s, Y2 ≤ t) = 0 which does not depend on ρ.

If s ≥ −1 but is such that point H is to the right of E, then φ = ψ, the

inequality x ≤ s is redundant, and

P(Y1 ≤ s, Y2 ≤ t) = P(Φ ≤ ψ) =
ψ

2π
, (16)

which is invariant to changes in ρ. If, on the other hand, s ≥ −1 such that

H is to the left of E, an infinitesimal increase in ρ will tend to decrease
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(OA) = t/ρ and to increase (OB) = t/
√

1 − ρ2. Consequently point E

will move slightly to the left, while Z will move slightly to the right. The

infinitesimal movement of E will have no effect on φ since E will remain

to the right of H. On the other hand, the movement of Z to the right will

increase φ. Hence

P(Y1 ≤ s, Y2 ≤ t) = P(Φ ≤ φ) =
φ

2π
, (17)

also increases in ρ.

The situations (ρ > 0, t < 0), (ρ < 0, t > 0) and (ρ < 0, t < 0) can be

dealt with in a similar way. The cases were t = 0, ρ = 0, ρ = ±1 are also

simple.

Lemma 3 can now be extended to the more general class of bivariate

elliptical distributions.

Theorem 2. 1 Consider bivariate elliptically distributed vector X ∼ E2(µ,Σ, ψ),

with generalised correlation coefficient ρ and joint cumulative distribution

function FX(x1, x2; ρ). Then FX(x1, x2; ρ) is increasing in ρ.

Proof. It is enough to prove the theorem for Σ of the form:

Σ =





1 ρ

ρ 1



 , ρ ∈ [−1, 1] (18)

and µ1 = µ2 = 0. Then by (3), vector X can be represented as X
d
= r ·A ·U,

where U is uniformly distributed on the unit circle, r ≥ 0, A as in (11).

1After the reviewing process, Prof Abram Kagan informed us that this result, as well as

a multivariate version, can also be obtained from Theorem 5.1 in Das Gupta et al (1972).

We are very grateful to Prof Kagan for pointing this out.
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Figure 1: Geometrical proof of Lemma 3.
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Denote Y = A · U. Now write:

FX(x1, x2; ρ) = P(r · Y1 ≤ x1, r · Y2 ≤ x2)

= E [P (r · Y1 ≤ x1, r · Y2 ≤ x2|r)]

= E
[

FY

(

x1

r
, x2

r
; ρ

)

1r>0

]

+A(x1, x2)

(19)

where A(x1, x2) = 0 if x1 < 0 or x2 < 0 and A(x1, x2) = P(r = 0) otherwise,

and the last equality follows from the independence of r and Y. By Lemma

3, FY(y1, y2; ρ) is increasing in ρ. Hence, so is FX(x1, x2; ρ)

From Theorem 2 it immediately follows:

Corollary 2. Consider bivariate elliptically distributed vectors X ∼ E2(µ,ΣX, ψ),

Y ∼ E2(µ,ΣY, ψ), with σX

11 = σY

11, σ
X

22 = σY

22 and generalised correlation

coefficients ρX, ρY. Then:

ρX ≤ ρY ⇐⇒ X ≤
conc

Y (20)

Remark 1: It is apparent from Lemma 2 that concordance order is invariant

under monotone transformations of the random variables considered. This

implies that concordance order relates only to the random vectors’ copulas.

Copulas are joint distributions with uniform marginals, which summarise

the dependence structure of random vectors (Nelsen, 1999). Random vec-

tors with the same copulas as elliptically distributed ones, such as the ‘meta-

elliptical’ family considered by Fang and Fang (2002), can be obtained by

applying monotone transforms on the elements of elliptical vectors. Conse-

quently, Theorem 2 generalises to the case of two bivariate random vectors

with the same marginals, which are monotone transforms of elliptical vectors

that belong to the same family, but have different Σ-matrices.
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Remark 2: It is noted that, in the two dimensional case, concordance

order is equivalent to the supermodular order (Müller, 2002). Hence, in

higher dimensions, the supermodular order can be viewed as a generalisation

the concordance order. Monotonicity results for the supermodular order,

along the lines of Theorem 2 and Corollary 2, have been obtained in higher

dimensions for special cases of elliptical distributions; see Müller (2001) for

the case of multivariate normal distributions and Ding and Zhang (2004) for

Kotz-type distributions. It remains an interesting open problem whether the

results obtained here generalise to the multivariate elliptical distributions of

arbitrary dimension.

Dhaene and Goovaerts (1996) showed that a portfolio consisting of two

positive random variables becomes more risky in the stop-loss order sense,

as the two risks become more concordant. A stronger version of that result

can be obtained for elliptically distributed risks:

Theorem 3. Consider X ∼ E2(µ, ΣX, ψ), Y ∼ E2(µ,ΣY, ψ), with σX

11 =

σY

11, σ
X

22 = σY

22 and respective generalised correlation coefficients ρX, ρY.

Then, ρX ≤ ρY ⇐⇒ X1 +X2 ≤
sl
Y1 + Y2.

Proof. By Theorem 1 and property (2) of elliptical distributions we have:

X1 +X2 ≤
sl
Y1 + Y2 ⇐⇒ σX

11 + σX

22 + 2σX

12 ≤ σY

11 + σY

22 + 2σY

12, (21)

which is equivalent to ρX ≤ ρY.
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