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To split or not to split: Capital allocation

with convex risk measures

Andreas Tsanakas∗

October 31, 2007

Abstract

Convex risk measures were introduced by Deprez and Gerber (1985).

Here the problem of allocating risk capital to subportfolios is addressed,

when aggregate capital is calculated by a convex risk measure. The

Aumann-Shapley value is proposed as an appropriate allocation mech-

anism. Distortion-exponential measures are discussed extensively and

explicit capital allocation formulas are obtained for the case that the

risk measure belongs to this family. Finally the implications of capital

allocation with a convex risk measure for the stability of portfolios are

discussed.

Keywords: Convex measures of risk, capital allocation, Aumann-Shapley

value, inf-convolution.

1 Introduction

The formal study of risk measures has been an important part actuarial

research since the 1970s (e.g. Bühlmann (1970), Gerber (1974), Goovaerts

(1984)). In an actuarial context, risk measures were originally associated
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with the calculation of insurance premia. The emergence of risk-based reg-

ulatory regimes in banking and insurance motivated a renewed interest in

risk measures, this time as functionals that give the required level of safely

invested risk capital that the holder of a risky portfolio has to hold (Artzner

et al, 1999).

A particular focus has often been placed on alternative sets of properties

or axioms for risk measures, that are considered desirable in a particular

context. For example, the properties of positive homogeneity and subaddi-

tivity have often been considered as appropriate (e.g. Wang, 1996)). These

properties, partly characterising coherent measures of risk (Artzner et al.,

1999), ensure that proportional increases in risk exposures only yield a pro-

portional increase in risk capital and that the pooling of portfolios always

reduces risk capital requirements due to diversification.

Given aggregate risk capital requirements, capital can be allocated down

to subportfolios e.g. for performance measurement purposes (Tasche, 2004).

If the risk measure is positive homogenous and subadditive, allocations based

on marginal costs produce allocated capital amounts that are smaller than

the respective risk capital levels corresponding to the subportfolios on a

stand-alone basis (Aubin, 1981). This argument is motivated by game theory

and implies that such allocations produce no incentives for the fragmentation

of portfolios (Denault, 2001).

A weaker requirement on risk measures than positive homogeneity /

subadditivity is convexity, proposed by Deprez and Gerber (1985), who in-

troduce convex risk measures and study them in the context of optimal risk

exchanges. While convexity still acknowledges diversification, risk capital

is no more scale-independent – in fact it is increasing per unit of exposure.

Moreover, it is possible that for some portfolios pooling increases aggregate

risk. Convex risk measures were introduced in the mathematical finance

literature by Föllmer and Schied (2002) and Frittelli and Rosazza Gianin

(2002) and spurred a lively research area including dynamic generalisations

(Detlefsen and Scandolo, 2005).

While there are some studies of capital allocation using convex risk mea-

sures (see e.g. Dhaene et al. (2003) and, in a finance setting, Filipović
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and Kupper (2006)), most of current research on convex risk measures is

not in that context. Instead, they are often considered as utility-like deci-

sion functionals in risk exchange situations (Barrieu and El Karoui (2005),

Jouini et al. (2007)) or tools for pricing in incomplete markets (Klöppel and

Schweizer, 2007).

Risk capital allocation with convex risk measures poses a number of

challenges which the present contribution aims to address:

a) As convex risk measures are generally not positive homogenous, it is

no more possible to use marginal costs as a capital allocation mecha-

nism. This is because additivity of marginal risk contributions to the

aggregate is guaranteed by Euler’s theorem for positive homogenous

functions, which does not hold in the more general case.

b) The convex risk measures typically proposed in the literature have

properties that are difficult to reconcile with risk management prior-

ities. For example the popular exponential or entropic risk measure

(Gerber (1974), Föllmer and Schied (2002)) becomes superadditive

for positively dependent risks. This implies that savings in risk cap-

ital can only achieved when pooling negatively correlated positions,

which a very strict requirement.

c) The game theoretical argument for capital allocation is more difficult

to make. According to the properties of convex risk measures, it can

be desirable to split a portfolio. What this implies for potential capital

allocation methods is unclear.

These three issues are addressed as follows. In Section 2, a brief review

of risk measures and capital allocation is given. The Aumann-Shapley value

(Aumann and Shapley, 1974), originating in cooperative game theory, is

proposed as an appropriate capital allocation mechanism. The Aumann-

Shapley allocation can be viewed as a genaralisation of marginal costs that

is applicable even when the risk measure is not homogenous.

In Section 3, a convex risk measure with a flexible set of properties is

discussed. The risk measure is derived as a combination of the convex (non-

homogenous) exponential (Gerber (1974), Föllmer and Schied (2002)) and
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coherent distortion (Wang (1996), Acerbi (2002)) risk measures, which are

obtained as special cases. This risk measure allows the introduction of some

sensitivity to the scale of potential losses, without being excessively penal

on risk aggregation.

Based on the work of Carlier and Dana (2003) a condition for the

(Gateaux) differentiability of the risk measure is established. This allows

the derivation of explicit capital allocation formulas for the Aumann-Shapley

value. It is also shown that in the more general case where the risk measure

is not differentiable, the use of a particular subgradient yields a capital al-

location mechanism essentially identical to the Aumann-Shapley allocation,

which is thus generalised.

In Section 4 conditions are examined under which the Aumann-Shapley

allocation produces incentives for the splitting of portfolios. If such split-

ting turns out to be beneficial in the sense of savings in aggregate capital,

the question arises as to how the portfolio should be optimally restructured.

By transferring the results in Barrieu and El Karoui (2005) to the present

context, it is demonstrated that using a (non-homogenous) convex risk mea-

sure for capital allocation produces an incentive for infinite fragmentation

of portfolios. This clarifies some of the difficulties for using convex risk

measures in a risk management context. It is argued that the rather uncom-

fortable issue of portfolio fragmentation can be addressed by posing some

cost-induced constraints to the extent that portfolios can be split.

2 Capital allocation for convex risk measures

2.1 Risk measures

Let us fix a probability space (Ω,F ,P) and a set of liabilities X defined

thereon. Elements of X are bounded and are interpreted as the random

losses from financial portfolios at a fixed future date. In particular an out-

come of a random variable X ∈ X will be a considered a loss if X(ω) > 0. It

is moreover assumed that all payments are discounted by the risk free rate.

A risk measure is defined as a function ρ : X 7→ R. ρ(X) can be taken to

represent the level of safely invested economic or risk capital that the owner
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of X has to hold in order to make the portfolio X − ρ(X) acceptable to e.g.

a regulator or rating agency (Artzner et al., 1999).Several axiomatic charac-

terisations of risk measures have been proposed in the literature, along with

corresponding representation results. Risk measures satisfying a convexity

property where introduced and discussed in detail by Deprez and Gerber

(1985), while more recently, convex measures of risk have been defined ax-

iomatically by Frittelli and Rosazza Giannin (2002), Föllmer and Schied

(2002).

Definition 1. A convex measure of risk is a risk measure ρ satisfying the

following set of properties:

• Monotonicity: X1 ≥ X2 =⇒ ρ(X1) ≥ ρ(X2);

• Translation invariance: ρ(X + a) = ρ(X) + a, a ∈ R;

• Convexity: ρ(λX1+(1−λ)X2) ≤ λρ(X1)+(1−λ)ρ(X2), λ ∈ [0, 1], X1, X2 ∈

X .

Besides characterising diversification, convexity implies that the function

f(a) = ρ(aX)/a is an increasing one for a > 0 (e.g. Deprez and Gerber,

1985). This can be interpreted as the capital requirements per unit of ex-

posure being increasing in portfolio size, thus inducing a penalty for the

aggregation of large risks.

Such sensitivity to risk aggregation vanishes in the case of coherent mea-

sures of risk, introduced by Artzner et al. (1999).

Definition 2. A coherent measure of risk is a convex measure of risk ρ

satisfying the additional property

• Positive homogeneity: ρ(aX) = aρ(X), a > 0.

It is noted that convexity and positive homogeneity imply the property

of

• Subbaditivity: ρ(X1 +X2) ≤ ρ(X1) + ρ(X2).X1, X2 ∈ X .

Subadditivity is an altogether stronger requirement on diversification than

convexity, implying that the merging of portfolios always yields a reduction

in aggregate risk.
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2.2 Aumann-Shapley allocations

Consider now the portfolio X =
∑n

j Xj . It is sometimes of interest, e.g.

for performance management purposes, to allocate the aggregate capital

requirement K = ρ(X) to the subportfolios Xj , j = 1, . . . , n. Thus the

capital allocation problem can be defined as a search for a vector of real

numbers (K1, . . . ,Kn) such that
∑n

j=1Kj = K.

We consider here a broader definition of the capital allocation problem:

Capital allocation problem: For fixed X ∈ X , and risk measure ρ find

a linear functional ψρ(·;X) : X 7→ R, termed a capital allocation rule such

that ψρ(X;X) = ρ(X)

By the presumed linearity of ψρ(·;X) it directly follows that
∑n

j=1 ψρ(Xj ;X) =

ρ(X), so that one can set Ki = ψρ(Xi;X). Moreover, the allocated capital

amounts calculated by ψρ(·;X) add up to ρ(X) for any random variables

Xj ∈ X such that
∑n

j=1Xj = X. This makes the capital allocated to a

risk independent of the way that the aggregate portfolio is partitioned into

subportfolios.

In order to construct an appropriate ψρ(·;X) for capital allocation one

has to also require that ψρ(Xi;X) does in some way reflect the risk that

Xi adds to the aggregate portfolio X. Marginal-cost-type allocation mech-

anisms address this by considering the sensitivity of aggregate risk to small

changes in the exposure to particular subportfolios. This is formalised via

the concept of Gateaux derivatives:

Definition 3. If for risk measure ρ and fixed X ∈ X the limit

Dρ(Y ;X) = lim
t→0

ρ(X + tY ) − ρ(X)

t

i) exists for all Y ∈ X and

ii) the mapping Y 7→ Dρ(Y ;X) is a linear bounded functional,

then ρ is Gateaux differentiable at X and Dρ(Y ;X) is the Gateaux deriva-

tive of ρ at X in the direction of Y .

It is easily seen that for fixed X, a risk measure ρ that is Gateaux

differentiable at γX, γ ∈ [0, 1] and satisfies ρ(0) = 0 can be recovered from
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its derivative by (Deprez and Gerber, 1985)

ρ(X) =

∫ 1

0
Dρ(X; γX)dγ. (1)

This simple fact motivates the definition of a capital allocation rule.

Definition 4. For aggregate portfolio X ∈ X and a risk measure ρ that

is Gateaux differentiable at γX, γ ∈ [0, 1], the Aumann-Shapley capital

allocation rule ψASρ is defined by

ψASρ(Y ;X) =

∫ 1

0
Dρ(Y ; γX)dγ. (2)

This capital allocation mechanism takes its name from the concept of

the Aumann-Shapley (1974) value, which has given rise to cost allocation

mechanisms similar to equation (2) in the operational research literature,

e.g. Billera and Heath (1982), Mirman and Tauman (1982). Capital allo-

cations derived from the Aumann-Shapley value were discussed in the risk

management literature by Denault (2001) who mainly deals with the spe-

cial case of coherent risk measures, which is also the focus of Kalkbrenner

(2005).

Remark 1: In the case of coherent risk measures, the positive homogeneity

implies that

ρ(X) = Dρ(X;X), ψASρ(Y ;X) = Dρ(Y ;X), (3)

hence capital allocation reduces to marginal costs. This capital allocation

mechanism has been derived by Tasche (2004) from the perspective of per-

formance measurement and been known as the Euler principle; the term

refers to Euler’s theorem for homogenous functions, which guarantees the

additivity of marginal costs to the aggregate).�

Remark 2: Consider risk measures defined by

ρ(X) = E[Xζ(X)], E[ζ(X)] = 1 (4)

where ζ is an increasing function (Dhaene et al. (2005), Furman and Zitikis

(2007)). This construction can be used to define many well known classes
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of risk measures, e.g. Esscher measures (Goovaerts et al, 1984) and spectral

measures (Wang (1996), Acerbi (2002)). If the function ζ is differentiable

then it is a simple exercise to show that the Aumann-Shapley allocation rule

is:

ψASρ(Y ;X) = E[Y ζ(X)]. (5)

Hence, if the risk measure is defined as an expected loss subject to a re-

weighting of possible outcomes, then the capital allocated to any subportfolio

Y equals the expected loss Y , subject to weighting induced by the aggregate

risk. This representation is particularly helpful, when implementing capital

allocations via Monte-Carlo simulation.�

3 Distortion-exponential risk measures

3.1 Preliminaries

Before discussing the risk measure that this section deals with, some prelim-

inary material on Choquet integrals (see e.g. Denneberg (1994), Carlier and

Dana (2003)) and dependence between random variables (see e.g. Müller

and Stoyan, 2002) is presented.

3.1.1 Choquet integrals with respect to distorted probabilities

Consider an increasing distortion function g : [0, 1] 7→ [0, 1]. Then the set

function g(P) : F 7→ [0, 1] is called a distorted probability. Distorted prob-

abilities are special cases of capacities. Integrals with respect to distorted

(rather than the usual, additive) probabilities can be defined as follows.

Definition 5. The Choquet integral of X ∈ X with respect to the distorted

probability g(P) is defined by

Eg(X) = −

∫ 0

−∞

(1 − g(P(X > t)))dt+

∫ ∞

0
g(P(X > t))dt. (6)

Denote by FX the cumulative distribution function of random variable

X and by F−1
X the quantile function:

F−1
X (p) = inf{x ∈ R : FX(p) ≥ p}. (7)
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Also denote by UX a random variable that is uniform on [0, 1] and satisfies

F−1
X (UX) = X (if FX is strictly increasing it obviously is UX = FX(X)). The

next result collects some important results, which can be found in Carlier

and Dana (2003).

Theorem 1. Assume the distortion function g is concave.

i)

Eg(X) = supQ∈QEQ(X)

Q = {Q is a probability measure such that Q(A) ≤ g(Q(A)),∀A ∈ F}

(8)

ii) If in addition g is differentiable

Eg(X) =

∫ 1

0
F−1

X (t)g′(1 − t)dt (9)

iii) For differentiable g, the probability measure defined by dQ
dP

= g′(1−UX)

is a maximiser in expression (8) such that

Eg(X) = EQ(X) = E(X · g′(1 − UX)) (10)

3.1.2 Dependence between random variables

Comprehensive treatments of the concepts in this section can be found in

Müller and Stoyan (2002) and (for the case of non-negative variables) Dhaene

and Goovaerts (1996).

Consider the set A := A(F1, F2) of bivariate random vectors (X1, X2)

with fixed cumulative probability distributions F1, F2. Thus the elements of

A are only distinguished from each other with respect to their dependence

structure. A partial order on A can be defined.

Definition 6. The random vector (Y1, Y2) ∈ A with joint cumulative dis-

tribution FY is more concordant than (X1, X2) ∈ A with joint cumulative

distribution FX , denoted by

(X1, X2) �c (Y1, Y2), (11)
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if

FX(x1, x2) ≤ FY (x1, x2) (12)

for all x1, x2 in the domains of F1, F2.

A further characterisation of the concordance order is via the following

result.

Lemma 1.

(X1, X2) �c (Y1, Y2) ⇔ E(h1(X1)h2(X2)) ≤ E(h1(Y1)h2(Y2)), (13)

for all increasing functions h1, h2 such that the expectations exist.

The concepts of comonotonic and countermonotonic random variables

are now introduced (see e.g. Dhaene et al, 2002).

Definition 7. i) Two random variables X1, X2 are called comonotonic

if there is random variable Z such that X1 = h1(Z), X2 = h2(Z) for

increasing functions h1, h2.

ii) Two random variables X1, X2 are called countermonotonic if there is

random variable Z such that X1 = h1(Z), X2 = h2(Z) for increasing

h1 and decreasing h2.

An example of comonotonic variables areX,UX as defined before. Comono-

tonicity (countermonotonicity) forms the strongest form of positive (nega-

tive) dependence between two random variables with fixed marginal dis-

tributions, corresponding to the Frechet-Hoeffding upper (lower) bound of

their joint distribution. This has the following implications.

Lemma 2. Consider random vectors (X1, X2) ∈ A, (Xc
1, X

c
2) ∈ A comono-

tonic, and (X−c
1 , X−c

2 ) ∈ A countermonotonic. Then

i)

(X−c
1 , X−c

2 ) �c (X1, X2) �c (Xc
1, X

c
2) (14)

ii)

E(h1(X
−c
1 )h2(X

−c
2 )) ≤ E(h1(X1)h2(X2)) ≤ E(h1(X

c
1)h2(X

c
2)) (15)
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Finally, a weaker form of positive (negative) dependence than co(counter)-

monotonicity is defined.

Definition 8. Consider independent random vectors (XI
1 , X

I
2 ) ∈ A. Then

(X1, X2) ∈ A is called positive (negative) quadrant dependent if

(XI
1 , X

I
2 ) �c (�c)(X1, X2). (16)

3.2 Definition and properties of the risk measure

A flexible class of convex risk measures is now discussed.

Definition 9. For a ≥ 0 and concave, differentiable distortion function g,

the distortion-exponential risk measure ρg,a is defined by

ρg,a(X) =
1

a
lnEg

(

eaX
)

, a > 0 (17)

ρg,a(X) = Eg (X) , a = 0. (18)

The convexity of the risk measure ρg,a is now established.

Proposition 1. The risk measure ρg,a is a convex measure of risk.

Proof. Translation invariance: ρg,a(X + b) = ρg,a(X) + b follows directly

from the definition of the risk measure.

Monotonicity: Let Fi be the cdf of Xi and F−1
i its quantile function.

ThenX1 ≤ X2 =⇒ F−1
1 (p) ≤ F−1

2 (p), p ∈ [0, 1] =⇒
∫ 1
0 exp(aF−1

1 (p))g′(1−

p)dp ≤
∫ 1
0 exp(aF−1

2 (p))g′(1−p)dp, from which, in view of Theorem 1ii) the

result follows.

Convexity: Consider dQ
dP

= g′(1−UZ) where Z = λX1 +(1−λ)X2. Then

ρg,a(Z) = 1
a

lnEQ(eaZ)

≤ λ 1
a

lnEQ(eaX1) + (1 − λ) 1
a

lnEQ(eaX2)

= λ 1
a

lnE(eaX1g′(1 − UZ)) + (1 − λ) 1
a

lnE(eaX2g′(1 − UZ))

≤ λ 1
a

lnE(eaX1g′(1 − UX1)) + (1 − λ) 1
a

lnE(eaX2g′(1 − UX2))

= λρg,a(X1) + (1 − λ)ρg,a(X1)

(19)

where the first inequality follows from the convexity of the functional ρ(X) =
1
a
EQ(eaX) (proved in Deprez and Gerber (1985)) and the second from Lemma

2ii).
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The risk measure ρg,a has two well known special cases:

• For a = 0 we get the distortion or spectral risk measure (Wang (1996),

Acerbi (2002))

ρg(X) = E
(

X · g′(1 − UX)
)

. (20)

This is known to be a coherent measure of risk, which follows directly

from the positive homogeneity of ρg (note that for a ≥ 0, UaX = UX).

• For g(t) = t, we get the exponential risk measure (termed originally

the exponential premium principle by Gerber (1974))

ρa(X) =
1

a
lnE

(

eaX
)

, (21)

which is known to be a convex risk measure (see e.g. Föllmer and

Schied (2002), where it is referred to as the entropic risk measure).

While the exponential risk measure is convex, its aggregation properties

can be considered too extreme, since for any positive quadrant dependent

X1, X2, it can be easily shown that ρa(X1 +X2) ≥ ρa(X1) + ρa(X2). This

means there is no diversification benefit for even weakly positively dependent

risks, which is a rather harsh requirement. For the risk measure ρg,a this

effect is moderated, as the aggregation of positively dependent risks will

produce a diversification benefit, as long as a (or the risk X1 +X2 itself) is

small enough, as seen by lima→0 ρg,a(X1+X2) = ρg,0(X1+X2) ≤ ρg,0(X1)+

ρg,0(X2).

For extreme cases of dependence between X1, X2, the aggregation prop-

erties of ρg,a can be easily characterised.

Lemma 3. i) For comonotonic random variables Xc
1, X

c
2,

ρg,a(X
c
1 +Xc

2) ≥ ρg,a(X
c
1) + ρg,a(X

c
2).

i) For countermonotonic random variables X−c
1 , X−c

2 ,

ρg,a(X
−c
1 +X−c

2 ) ≤ ρg,a(X
−c
1 ) + ρg,a(X

−c
2 ).

Proof. First we note that the properties of comonotonicity and counter-

monotonicity are not affected by performing the change of probability mea-

sure dQ
dP

= g′(1 − UX1+X2). Second, the exponential risk measure ρa is
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superadditive for comonotonic and subadditive for countermonotonic risk,

as these are extreme cases of Positive and Negative Quadrant Dependence

respectively.

For proof of part i) we note that for comonotonic Xc
1, X

c
2, UXc

1
= UXc

2
=

UXc

1+Xc

2
. Hence

ρg,a(X
c
1 +Xc

2) = 1
a

lnE(ea(Xc

1+Xc

2)g′(1 − UXc

1+Xc

2
))

≥ 1
a

lnE(eaXc

1g′(1 − UXc

1+Xc

2
)) + 1

a
lnE(eaXc

2g′(1 − UXc

1+Xc

2
))

= 1
a

lnE(eaXc

1g′(1 − UXc

1
)) + 1

a
lnE(eaXc

2g′(1 − UXc

2
))

= ρg,a(X
c
1) + ρg,a(X

c
2).

(22)

For proof of part ii), we consider countermonotonic X−c
1 , X−c

2

ρg,a(X
−c
1 +X−c

2 ) = 1
a

lnE(ea(X−c

1 +X−c

2 )g′(1 − UX−c

1 +X−c

2
))

≤ 1
a

lnE(eaX−c

1 g′(1 − UX−c

1 +X−c

2
)) + 1

a
lnE(eaX−c

2 g′(1 − UX−c

1 +X−c

2
))

≤ 1
a

lnE(eaX−c

1 g′(1 − UX−c

1
)) + 1

a
lnE(eaX−c

2 g′(1 − UX−c

2
))

= ρg,a(X
−c
1 ) + ρg,a(X

−c
2 ).

(23)

Remark 3: The risk measure ρg,a was introduced in a slightly different

context by Tsanakas and Desli (2003), who derived using indifference argu-

ments in the context of rank-dependent expected utility theory (e.g. Quig-

gin, 1982), with an exponential utility function u(x) = 1
a
(1−exp(−ax)) and

a distortion function h(t) = 1 − g(1 − t), which considers the preference

functionals of the form U(W ) = Eh(u(W )). Then it can be easily shown

that ρg,a(X) is the solution of the equation U(ρg,a(X) −X) = 0. For such

a perspective see Tsanakas and Desli (2003) and also the review Denuit et

al. (2006). �

3.3 Differentiability and capital allocation

Here we derive Aumann-Shapley allocations for the convex risk measure ρg,a

introduced in Section 3.2. For this, conditions under which the risk measure

is Gateaux differentiable need to be stated. Differentiability of quantiles has
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been studied by Tasche (2004) and of Choquet integrals by Carlier and Dana

(2003) and Marinacci and Montrucchio (2004). For distortion-exponential

risk measures, the following result holds.

Proposition 2. For concave and differentiable g, the risk measure ρg,a is

Gateaux differentiable at X ∈ X , if and only if F−1
X is strictly increasing.

Then the Gateaux derivative is

Dρg,a(Y ;X) =
E

(

Y eaXg′(1 − UX)
)

E (eaXg′(1 − UX))
, (24)

where UX = FX(X). Moroever, if g(t) = t, the condition on F−1
X is not

necessary.

Proof. By Corollaries 2 and 3 in Carlier and Dana (2003), we have that the

Choquet integrals Eg(X), Eg(e
aX) are differentiable with Gateaux deriva-

tives E(Y g′(1 − FX(X)), E(aY eaXg′(1 − FX(X)) respectively (note that

due to the monotonicity of F−1
X we have UX = FX(X)). This produces the

required result in the case a = 0. For a > 0 the result follows simply by

taking the derivative

∂

∂t
ρg,a(X + tY )

∣

∣

∣

∣

t=0

=
∂
∂t
Eg(e

a(X+tY )
∣

∣

t=0

aEg(eaX)
=
E(aY eaXg′(1 − FX(X)))

aE(eaXg′(1 − FX(X)))
.

(25)

The special case g(t) = t is considered by Deprez and Gerber (1985) when

dealing with the exponential risk measure.

Aumann-Shapley allocations are now readily derived.

Corollary 1. For aggregate portfolio X with strictly increasing F−1
X and

risk measure ρg,a with concave, differentiable g, the Aumann-Shapley capital

allocation rule is given by

ψASρg,a(Y ;X) =

∫ 1

0

E
(

Y eγaXg′(1 − FX(X))
)

E (eγaXg′(1 − FX(X)))
dγ. (26)

Corollary 2. For aggregate portfolio X with strictly increasing F−1
X and

risk measure ρg with concave, differentiable g, the Aumann-Shapley capital

allocation rule is given by

ψASρg(Y ;X) = E
(

Y g′(1 − FX(X))
)

. (27)
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Corollary 3. For aggregate portfolio X and risk measure ρa, the Aumann-

Shapley capital allocation rule is given by

ψASρa(Y ;X) =

∫ 1

0

E
(

Y eγaX
)

E (eγaX)
dγ. (28)

It is noted that Corollary 2 was derived in Tsanakas and Barnett (2003),

while Corollary 3 could be seen as exploiting the representation of the

exponential risk measure as a ‘mixture of Esscher measures’ (Gerber and

Goovaerts, 1981).

The question now arises as to how to allocate capital using risk measure

ρg,a in the more general case that F−1
X . In particular, will a capital allocation

rule similar to (26) be still meaningful in that context? We start with the

observation that even when the risk measure is not Gateaux differentiable

at X, the derivative in the direction of X itself (or a variable which is

comonotonic to X) does exist.

Lemma 4. For concave and differentiable g and comonotonic X,Y the func-

tion t 7→ ρg,a(X + tY ) is differentiable at t = 0. For a > 0 the derivative

equals
∂

∂t
ρ(X + tY )

∣

∣

∣

∣

t=0

=
E

(

Y eaXg′(1 − UX)
)

E (eaXg′(1 − UX))
(29)

and for a = 0
∂

∂t
ρ(X + tY )

∣

∣

∣

∣

t=0

= E
(

Y g′(1 − UX)
)

. (30)

Proof. Observe that for comonotonic X,Y , X,X + tY are comonotonic as

well, implying UX = UX+tY . Hence

∂
∂t
ρ(X + tY )

∣

∣

t=0
= limt→0

1
a
E(ea(X+tY )g′(1−UX+tY ))− 1

a
E(eaXg′(1−UX))

t

= limt→0

1
a
E(ea(X+tY )g′(1−UX))− 1

a
E(eaXg′(1−UX))

t

=
E(Y eaXg′(1−UX))
E(eaXg′(1−UX))

(31)

The proof for a = 0 is similar.

Furthermore it can be shown that even when the risk measure is not

Gateaux differentiable, expression (24) corresponds to a subgradient of ρg,a.
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Recall that a linear functional Y 7→ D∗ρ(Y ;X) is a subgradient of a convex

risk measure ρ at X if for all Y ∈ X :

ρ(X + Y ) − ρ(X) ≥ D∗ρ(Y ;X) (32)

Proposition 3. Expression (24) in Proposition 2 corresponds to a subgra-

dient of ρg,a at X, regardless of whether F−1
X is strictly increasing.

Proof. Consider

ρ(X + Y ) − ρ(X) = 1
a
E

(

ea(X+Y )g′(1 − UX+Y )
)

− 1
a
E

(

eaXg′(1 − UX)
)

≥ 1
a
E

(

ea(X+Y )g′(1 − UX)
)

− 1
a
E

(

eaXg′(1 − UX)
)

(33)

by Lemma 2. Observe now that
E(Y eaXg′(1−UX))
E(eaXg′(1−UX))

is the Gateaux derivative

of the differentiable exponential risk measure at X, under the change of

measure dQ
dP

= g′(1 − UX). Hence, by the convexity of the exponential risk

measure

1

a
E

(

ea(X+Y )g′(1 − UX)
)

−
1

a
E

(

eaXg′(1 − UX)
)

≥
E

(

Y eaXg′(1 − UX)
)

E (eaXg′(1 − UX))
,

(34)

which completes the proof.

Consider now the capital allocation rule

ψAS∗ρg,a(Y ;X) =

∫ 1

0

E
(

Y eγaXg′(1 − UX)
)

E (eγaXg′(1 − UX))
dγ, (35)

where the particular subgradient of ρg,a discussed above is being used to

construct the linear functional ψAS∗ρg,a(·;X). Given that in the case of non-

differentiable ρg,a there will be a multitude of subgradients, the particular

choice is motivated by observing that from Lemma 4 we have that

ρa,g(X) =

∫ 1

0

E
(

XeγaXg′(1 − UX)
)

E (eγaXg′(1 − UX))
dγ. (36)

Therefore, defining a capital allocation rule by (35) will satisfy the require-

ment ψAS∗ρg,a(X;X) = ρg,a(X).
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3.4 Small a

One can consider the risk measure ρg,a in (17) as a modification of coherent

risk measure ρg, with an “add-on” for scale-dependence, represented by the

risk aversion parameter a. As coherent, rather than convex, risk measures

are the norm in risk management, it makes sense to ask what happens when

a small value is chosen for a.

Assume for simplicity that ρg,a is Gateaux differentiable at a fixed X and

denote dQ
dP

= g′(1 − UX). Then, we can use the first terms of the cumulant

expansion to write ρg,a in terms of the first three central moments under Q:

ρg,a(X) =
1

a
EQ

(

eaX
)

≈ EQ(X)+
a

2
EQ

(

(X − EQ(X))2
)

+
a2

6
EQ

(

(X − EQ(X))3
)

.

(37)

It is then simple to show that the Aumann-Shapley allocation is given

by a weighted sum of expectation, covariance and co-skewness under Q:

ψAS(Y ;X) ≈ EQ(Y ) + a
2EQ ((Y − EQ(Y ))(X − EQ(X)))

+a2

6 EQ

(

(Y − EQ(Y ))(X − EQ(X))2
)

.
(38)

4 Splitting portfolios

4.1 Incentives produced by allocation

Given aggregate portfolio X and risk measure ρ it is of interest to charac-

terise situations where ψASρ(Y ;X) ≤ ρ(Y ) for some subportfolio Y . If such

a relation holds, and assuming that allocated risk capital carries a cost, the

allocation does not give an incentive to split Y from the aggregate portfolio

X, as since the this would yield a increase in the level of capital required

to support Y . This relates to the game-theoretical concept of the core, for

a detailed discussion of which in a risk management context see Denault

(2001) and, in association with Choquet integrals, Carlier and Dana (2003).

If the risk measure is positive homogenous and subadditive, the inequal-

ity ψASρ(Y ;X) ≤ ρ(Y ) always holds, as shown by Aubin (1981). Thus, the

Aumann-Shapley allocation (reduced to marginal costs) is consistent with

the requirement induced by subadditivity that it is never optimal to split a

portfolio.
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In the more general setting of convex risk measures, characterisation of

the incentives produced by the Aumann-Shapley capital allocation rule is

less straightforward. In the sequel some rather strong conditions on the risk

measure and on Y that are sufficient for ψASρ(Y ;X) ≤ ρ(Y ) are presented.

For simplicity of exposition, for the rest of this section assume that ρ is

Gateaux differentiable at X.

First we observe that even if the risk measure is not generally subad-

ditive, a form of subadditivity with respect to the particular risks X,Y is

sufficient for no incentives for splitting to be induced by the allocation.

Lemma 5. Consider convex risk measure ρ and X,Y ∈ X . Assume that

for each γ ∈ [0, 1] there exists tγ ∈ (0, 1] such that

ρ(γX + tγY ) ≤ ρ(γX) + ρ(tγY ). (39)

Then

ψASρ(Y ;X) ≤ ρ(Y ). (40)

Proof. We observe that

Dρ(Y, γX) =
1

tγ
Dρ(tγY, γX) ≤

1

tγ
(ρ(γX + tγY ) − ρ(γX)) ≤

1

tγ
ρ(tγY ) ≤ ρ(Y )

(41)

where the first and third inequalities are due to the convexity of ρ and the

second one is due to the stated subadditivity assumption. Hence it follows

that

Dρ(Y ; γX) ≤ ρ(Y ) =⇒

∫ 1

0
Dρ(Y ; γX)dγ ≤

∫ 1

0
ρ(Y )dγ, (42)

which yields the required result.

Lemma 5 yields the obvious corollary:

Corollary 4. For a coherent risk measure ρ and any X,Y ∈ X ,

ψASρ(Y ;X) ≤ ρ(Y ). (43)

Example 1. Consider distortion measure ρg(X) = E(X · g′(1 − UX)).

Then by Corollary 4 and the subadditivity of the risk measure we have

ψASρg(Y ;X) ≤ ρg(Y ) for all X,Y ∈ X .
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A special case takes place when the risk measure is additive over sub-

portfolios. In that case the aggregation and diversification effects cancel each

other out in the portfolio and the holder should be indifferent as to whether

he should split the portfolio or not. The capital allocation should recognise

this by allocating to each subporfolio the amount equal to its stand-alone

risk (note that this is a form of the additivity over games property in game

theory, see for example Billera and Heath (1982)). The following lemma is

simple to derive.

Lemma 6. Consider convex risk measure ρ and X1, X2 ∈ X . Assume that

for all γ1, γ2 ∈ [0, 1] there it is

ρ(γ1X1 + γ2X2) = ρ(γ1X1) + ρ(γ2X2). (44)

Then

ψASρ(Xi;X1 +X2) = ρ(Xi), i = 1, 2. (45)

Example 2. Consider ρa(X) = 1
a
E

(

eaX
)

and X1, X2 stochastically inde-

pendent. Then the condition of Lemma 6 is satisfied and we have:

ψASρ(Xi;X1+X2) =

∫ 1

0

E
(

Xie
a(X1+X2)

)

E
(

ea(X1+X2)
) dγ =

∫ 1

0

E
(

Xie
aXi

)

E (eaXi)
dγ = ρa(Xi)

(46)

Example 3. Consider ρg(X) = E (Xg′(1 − UX)) and X1, X2 comonotonic.

Then the condition of Lemma 6 is again satisfied and noting that UX1 =

UX2 = UX1+X2 we have:

ψASρ(Xi;X1 +X2) = E(Xi ·g
′(1−UX1+X2)) = E(Xi ·g

′(1−UXi
)) = ρg(Xi)

(47)

An alternative rather strong sufficient condition for the lack of incentives

to split is that the random variables X,Y be independent. If we set X =
∑

j Xj , Y = Xi, that is, Xi is a subportfolio of X, independence implies that

Xi is in some way hedged by other instruments in X.

Lemma 7. Consider convex risk measure ρ, such that ρ(X) ≥ E(X),∀X ∈

X . If X,Y ∈ X are independent under P, then

ψAS∗(Y ;X) ≤ ρ(Y ). (48)
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Proof. By the Riesz Representation Theorem we can write the linear func-

tional ψASρ(Y ;X) = E(Y · ζX), where the density ζX , E(ζX) = 1 only

depends on X. Thus independence of X,Y gives

ψASρ(Y ;X) = E(Y · ζX) = E(Y )E(ζX) = E(Y ) ≤ ρ(Y ). (49)

4.2 Optimal splitting

Section 4.1 showed that there are situations where capital allocation may

give incentives for the splitting of portfolios. Arguably one should then have

to examine the potential benefits of actually (and optimally) proceeding with

such splitting. This is a problem which has been addressed in the different

context of optimal risk exchanges, by several authors, including Deprez and

Gerber (1985), Barrieu and El Karoui (2005), and Jouini et al. (2007).

Assume that the holder of portfolio X is able to split it into two parts,

X1, X2 (which are not defined in advance in terms of line-of-business etc). By

‘splitting’ we mean separation so that no cross-subsidy between X1, X2 can

take place, for example by creating distinct legal entities possibly operating

in different markets. Consider now convex risk measures ρ1, ρ2 representing

the capital requirements that portfolios X1, X2 attract. Then the optimal

split of X is obtained by minimising the quantity ρ1(X1)+ρ2(X2) such that

X1+X2 = X. Formally this corresponds to the infimal convolution of ρ1, ρ2,

denoted by ρ1�ρ2 and defined by:

ρ1�ρ2(X) = inf
X2∈X

{ρ1(X −X2) + ρ2(X2)}. (50)

If the holder of X is able to split the risk as described above, then

ρ1�ρ2(X) is the ‘real’ risk measure that he uses as it represents the amount

of risk capital that he needs to provide, after optimising the structure of his

portfolio.

Consider the case that ρ1 = ρ2 = ρg, that is, both risk measures are

equal and coherent. Then, by subadditivity of ρg it is obvious that

ρg�ρg(X) = ρg(X), (51)
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reflecting the requirement that portfolios are not split. In the more general

case of convex risk measures the following characterisation holds (Barrieu

and El Karoui, 2005).

Proposition 4. The infimal convolution of convex risk measures ρ1, ρ2

ρ1�ρ2(X) = inf
X2∈X

{ρ1(X −X2) + ρ2(X2)}, (52)

is itself a convex measure or risk.

More can be said if the risk measures ρ1, ρ2 belong to the same family

of dilated risk measures, that is, if they can be written as

ρi(X) =
1

ai
ρ0(aiX), i = 1, 2, (53)

for some convex risk measure ρ0 and positive risk aversion parameters a1, a2.

For example, the distortion-exponential risk measures studied in Section 3

are a family of dilated risk measures for a fixed distortion function g as:

ρg,a(X) =
1

a
ρg,1(aX). (54)

Then the following result holds (Barrieu and El Karoui, 2005)

Proposition 5. Consider the family of dilated convex risk measures ρa, a >

0. Then:

i) For all a1, a2 > 0,

ρa1�ρa2(X) = inf
X2∈X

{ρa1(X −X2) + ρa2(X2)} = ρa(X), (55)

where a = (a−1
1 + a−1

2 )−1.

ii) The optimal portfolio split is given by

X∗
1 = X −X∗

2 =
1
a1

1
a1

+ 1
a2

X, X∗
2 =

1
a2

1
a1

+ 1
a2

X. (56)

21



Hence the infimal convolution is in the same family of dilated risk mea-

sures, but with a risk aversion parameter smaller than that of each of the

original risk measures. Moreover the optimal split is a proportional one,

with the risk retained in each portfolio inversely proportional to the corre-

sponding risk aversion parameter.

Even after optimally splitting the aggregate portfolio into risks X∗
1 , X

∗
2 ,

capital can still be allocated to any subportfolio by the Aumann-Shapley

value. For example for distortion exponential risk measures ρg,a1 , ρg,a2 , we

have by Proposition 5 that ρg,a1�ρg,a2(X) = ρg,a(X) and hence we obtain

ψASρg,a(Y ;X) =

∫ 1

0

E
(

Y eγaXg′(1 − UX)
)

E (eγaXg′(1 − UX))
dγ, (57)

for a = (a−1
1 + a−1

2 )−1. In particular if we consider allocating capital to the

portfolios X∗
1 , X

∗
2 , it is simple to show that

ψASρg,a(X
∗
i ;X) = ρg,ai

(X∗
i ), i = 1, 2, (58)

meaning the capital allocation and risk allocation (splitting) processes are

consistent.

Remark 4: Many of the concepts presented in Sections 4.2 and 4.3 appear

in a rather different setting in Aumann and Shapley (1974). Very loosely

speaking, in a market with an infinity of (infinitely small) traders, they define

the maximal utility that each group of traders can achieve by trading with

each other. They then proceed to show that this utility is a superadditive

function, meaning that it is always optimal for traders to take part in an

exchange.

4.3 When to stop splitting?

In Section 4.2 the case where it is optimal to split the aggregate portfo-

lio in two parts was examined. The question then naturally arises as to

whether this optimisation process removes any incentives for further split-

ting the portfolio. More generally, into how many fragments must one split

a portfolio before splitting does no more produce a saving in aggregate risk

capital?
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For simplicity assume here that the capital for each portfolio is calculated

by using the same convex measure of risk ρ (in fact considering a family of

dilated risk measures changes little in the subsequent discussion). Then,

optimal splitting of X into n sub-portfolios follows from the solution of

�
n
j=1ρ(X) = inf

X1,...,Xn

{ρ(X1) + · · · + ρ(Xn) :
n

∑

j=1

Xj = X}. (59)

By Proposition 5 it is

�
n
j=1ρ(X) = nρ

(

1

n
X

)

. (60)

By the convexity of ρ it then follows that �
n
j=1ρ(X) is decreasing in n > 0.

Hence, regardless how much the portfolio has been split it is always optimal to

split a bit further. In fact an optimal structure, corresponding to �
n
j=1ρ(X)

becoming subadditive (coherent) is achieved for n → ∞ (Barrieu and El

Karoui, 2005).

This particular argument demonstrates some difficulties in the use of con-

vex risk measures in risk management. In the case of distortion-exponential

measures, using the coherent measure ρg,a=0 creates a stable portfolio. How-

ever the introduction of even a slight dependence on the the scale of losses,

by using ρg,a even with an arbitrarily small a, produces an incentive for

infinite fragmentation of portfolios. Note that this still happens when we

start with a particular pair of sub-portfolios (e.g. business lines) X1, X2

such that X1 + X2 = X and ρ(X) ≤ ρ(X1) + ρ(X1). That is, even if the

initial configuration of the portfolio is such that benefits from pooling risks

occur, once splitting without any constraints is allowed, fragmentation of

the portfolio is inevitable.

One way to address this somewhat counterintuitive situation is to in-

troduce some frictions that would impede the splitting of portfolios. For

example, assume that holding each separate portfolio incurs a fixed cost

that is equal to c. Then, assuming again the use of a single convex risk

measure, the portfolio X will be split in n parts equal to X/n until the cost

of maintaining n separate portfolios exceeds the saving in aggregate risk
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capital. I.e. n is the largest integer such that

(n− 1)ρ

(

X

n− 1

)

+ (n− 1)c ≥ nρ

(

X

n

)

+ nc (61)

Assuming a small a and using the first 2 terms of the approximation (37)

yields

n(n− 1) ≤
1

2

aV arQ(X)

c
. (62)

Hence the maximum number of separate portfolios that X is split into is

increasing in the risk aversion parameter a and the variability of X as cap-

tured by V arQ(X), while being decreasing in the cost of setting up a new

portfolio.

A different way of limiting the fragmentation of portfolios is to consider

a number of sub-portfolios X1, . . . , Xn,
∑n

j=1Xj = X that are impossible

to split into smaller parts. In this case the framework is that of atomic co-

operative games, which is discussed in a cost allocation context by Lemaire

(1984) and Denault (2001). Several solution concepts (allocations) can then

be obtained, for example by attempting to maximise the savings from coop-

eration (pooling) that each possible combination of subportfolios makes, as

formalised by the nucleolus and least core of the game (Schmeidler, 1969).

Examining such models is beyond the scope of this paper.

5 Conclusion

It was demonstrated that in the case of convex risk measures, capital can be

allocated by the Aumann-Shapley value, which is viewed as a generalisation

of marginal costs. It was also argued that there exist convex risk measures

that are flexible enough to be useful in a risk management context, such as

the risk measure ρg,a studied extensively in this paper.

It was shown that the use of a convex risk measure can give an incentive

for the infinite fragmentation of portfolios. This demonstrates that penalis-

ing the scale of losses by dropping the homogeneity requirement of coherent

risk measures has very strong (possibly undisirable) consequences. Hence

the use of convex risk measures in capital allocation can be considered prob-

lematic at quite a fundamental level. A possible way to resolve this issue

24



is to introduce some constraints to the extent that portfolios can be split,

e.g. by associating a cost with each separate portfolio. Embedding these

arguments to a realistic framework remains a subject for further research.
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