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Abstract

Several recent studies advocate the use of nonparametric estimators of daily price vari-

ability that exploit intraday information. This paper compares four such estimators, realised

volatility, realised range, realised power variation and realised bipower variation, by examining

their in-sample distributional properties and out-of-sample forecast ranking when the object

of interest is the conventional conditional variance. The analysis is based on a 7-year sample of

transaction prices for 14 NYSE stocks. The forecast race is conducted in a GARCH framework

and relies on several loss functions. The realized range fares relatively well in the in-sample �t

analysis, for instance, regarding the extent to which it brings normality in returns. However,

overall the realised power variation provides the most accurate 1-day-ahead forecasts. Fore-

cast combination of all four intraday measures produces the smallest forecast errors in about

half of the sampled stocks. A market conditions analysis reveals that the additional use of

intraday data on day t� 1 to forecast volatility on day t is most advantageous when day t is
a low volume or an up-market day. The results have implications for value-at-risk analysis.
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1 Introduction

Over the past decade there has been an enormous interest among academics and practitioners in

modeling and forecasting the conditional variance of stock market returns. Volatility is a crucial

concept for portfolio management, option pricing and �nancial market regulation, inter alios. One

problematic issue is that, unlike prices or returns, the volatility process is unobserved even ex

post. In a seminal paper, Andersen and Bollerslev (1998) focus on the problem of how the choice

of proxy for the latent population measure of volatility can a¤ect the quantitative assessment of

volatility forecasting models. They illustrate that if the squared daily returns are used as proxy

for the day�s variance in the forecast evaluation, GARCH models do have very poor forecasting

properties whereas using the sum of intraday squared returns which employs more information,

the GARCH forecasts turn out to be far more accurate.1 The rationale behind this is that the

squared return is an extremely noisy (albeit unbiased) estimator of ex post volatility.

One related empirical question is how to obtain better daily volatility forecasts using intraday

data. The literature branches in two broad directions. Several studies extend the daily GARCH

model to incorporate the intraday information as an additional regressor. Instances include as

augmentation variable the daily high-low price range (Parkinson, 1980; Taylor, 1987), the number

of intraday price changes (Laux and Ng, 1993), daily trading volume (Bessembinder and Seguin,

1993), and the standard deviation of intraday returns (Taylor and Xu, 1997). Another group of

studies focus on di¤erent ways of modeling directly the intraday data as a way of providing better

out-of-sample forecasts of daily volatility. Two instances are Martens (2001) who models the

intraday returns directly using GARCH models and Koopman et al. (2005) who compare daily

GARCH models with ARFIMA and Unobserved Components models �tted to a realised volatility

1A risk measure developed in recent years is Value-at-Risk (VaR), a quantile of the conditional distribution of
returns given past information, which gives the worst expected loss. According to the 2008 European Investment
Practices Survey, the majority of asset managers use parametric VaR approaches derived from traditional location-
scale models such as ARMA-GARCH which means that VaR calculations are based on forecasts of the old measure
of investment risk, the conditional volatility. There is a close relation between GARCH(1,1) and the exponentially-
weighted-average (of squared returns) historical volatility advocated by J.P. Morgan�s Riskmetrics for daily and
monthly VaR estimation. If normality is assumed, VaR adds no extra information over the old volatility measure.
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measure based on the sum of 5-minute squared returns.

Aside from forecasting issues, much emphasis has been given in recent years to the use of

nonparametric estimators of daily volatility that exploit intraday prices. The theoretical prop-

erties of these estimators have been investigated using advanced and novel asymptotic theory in

stochastics and econometrics. For instance, the realised variance has been thoroughly studied by

Barndor¤-Nielsen and Shephard (BN-S, 2002a, 2002b). The sum of intraday high-low price ranges

or realised range has been scrutinized by Christensen and Podolskij (2005) and Martens and van

Dijk (2006). Two other intraday volatility estimators, introduced by BN-S (2004a, 2004b), are

the realised power variation, based on summing powers of the intraday absolute returns, and the

realised bipower variation, the sum of products of consecutive intraday absolute returns.

The paper complements the literature in several directions. First, it investigates the relative

merit of the above nonparametric (intraday) volatility estimators from two perspectives. On the

one hand, their in-sample distributional properties are compared, for instance, by gauging their

e¢ ciency, persistence and whether they can normalize the daily returns. In the Mixture of Distri-

butions Hypothesis (MDH) literature, which builds on the tenet that volatility and trading volume

are jointly driven by the latent information �ow, the performance of volatility measures is typically

assessed by the extent to which they bring return normality. On the other hand, we compare their

ability to enhance the out-of-sample daily GARCH forecasts. For completeness, another updating

variable is the daily volume computed by summing the number of shares traded over all intraday

intervals. Following a large body of recent literature, the forecast race is based on 1-day-ahead

predictions and the latent conditional variance is proxied by the 5-min realised variance.2

Second, given that market microstructure issues bedevil the above intraday volatility estimators

in di¤erent ways, the paper addresses the question of whether forecast combining is fruitful. For this

purpose, a rolling-window approach is adopted that allows for time-varying combination weights.

2Although regulators and fund managers might be mostly interested in longer horizons, derivative traders are
interested in daily losses. One-day-ahead volatility forecasts are, for instance, relevant for VaR measurement since
banks may wish to update their estimates of potential loss on a daily basis to determine capital requirements.
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Third, an important question that has not been addressed as yet is whether the importance of

updating daily conditional volatility (GARCH) models with intraday data depends on market

conditions. This paper compares the forecast value of the four intraday volatility estimators during

up- versus down-market days, and low- versus high-volume days. Finally, the study contributes to

the existing literature by analysing 14 individual NYSE stocks whereas most related studies focus

on FX data or stock market indices.

The sample spans 7 years of trading data over 02/01/97 to 31/12/03. The statistical properties

of four nonparametric volatility estimators of daily price variation alongside the squared returns

and the GARCH volatility are assessed according to criteria motivated by the MDH. The realised

power variation and realised range are the top performers. Next, rolling out-of-sample forecasts

are generated with a GARCH model augmented with either of the lagged nonparametric volatility

measures or volume. Di¤erent forecast accuracy criteria are used which include asymmetric loss

functions and the Mincer-Zarnowitz levels regression. Pairwise comparisons of forecast accuracy

are conducted via the Diebold-Mariano (1995) test in the case of non-nested models and by the

Harvey et al. (1998) encompassing test for nested models. The results reveal signi�cant forecast

gains from using intraday price information but not trading volume. GARCH updated with realised

power variation is in the lead, followed closely by the realised range, and with realised bipower

variation at the other extreme. Finally, a joint forecast comparison is performed using Hansen

(2005) superior predictive ability test. For most stocks, the realised power variation is not beaten

by any of the alterantive models. Combining the predictive information of the competing GARCH-

augmented models is worthwhile. Finally, exploiting intraday returns at t� 1 to forecast next day

volatility is most fruitful when t� 1 is a low-volume or up-market day.

The rest of the paper is organized as follows. Section 2 provides a review of the large literature

on intraday volatility measuring which is by no means exhaustive. Section 3 presents the variable

de�nitions and forecasting framework. Section 4 discusses the results and Section 5 concludes.
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2 Background literature

The GARCH modeling framework introduced by Engle (1982) is still widely used to analyse the

dynamics of daily return variation in all areas of �nance by academics and practitioners alike.

Several studies have documented that out-of sample regressions of squared returns on GARCH

forecasts produce low R2 statistics below 10% (see, inter alios, Franses and van Dijk, 1996, and

Brooks, 1998). However, Andersen and Bollerslev (1998) for FX data and Blair et al. (2001)

for stock indexes show that GARCH forecasts, when compared with the sum of intraday squared

returns as the conditional volatility proxy are far more accurate with an R2 of about 50%.

A weakness of GARCH models though is that the future variance of returns is cast as a poly-

nomial of current and past squared returns. If on day t�1 the return is zero, the squared return at

t�1 will also equal zero ignoring any within-day price �uctuations. One way forward is to augment

the GARCH equation with variables that carry predictive power for future volatility. Lamoureux

and Lastrapes (1990), Najand and Yung (1991), and Bessembinder and Seguin (1993) include con-

temporaneous volume in GARCH models and document an improvement in the in-sample �t. A

problem with this approach is that volume cannot be assumed to be exogenous since, according

to the MDH, volume and volatility are simultaneously in�uenced by the latent information arrival

process. Brooks (1998) and Donaldson and Kamstra (2004) show that augmenting GARCH with

lagged volume leads to no improvement in forecast performance. However, Donaldson and Kam-

stra (2004) show for the S&P100 index that trading volume has a switching role in forecasting. If

volume on day t� 1 is low relative to the recent past, then one-day-ahead ARCH forecasts are at

least as e¤ective as option implied volatilities (VIX). Conversely, if volume at t � 1 is high, the

best volatility forecast for day t can be obtained by placing more weight on market expectations.

With the increasing availability of high frequency data the research focus has shifted towards

exploiting nonparametric estimators of daily volatility based on intraday returns. A large number

of papers advocate the realised variance (RV) for the modeling and prediction of volatility of
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FX returns (Taylor and Xu, 1997; Andersen and Bollerslev, 1998) and equity returns (Andersen,

Bollerslev, Diebold and Ebens, ABDE, 2001). Luu and Martens (2002) �nd support for the

assumptions underlying the MDH model when RV is used instead of daily squared returns. Pong et

al. (2004) compare the forecasting ability of short memory (ARMA) and long memory (ARFIMA)

models of RV, and the implied volatilities from OTC foreign currency options for horizons ranging

from one day to 3 months. The models provide more accurate forecasts than the implied volatilities

for short (one-day and one-week) horizons and this is attributed to the use of intraday returns rather

than to the long memory speci�cation. At the one- and 3-month horizons, the models of RV do

not provide incremental information that is not already incorporated in the implied volatilities.

Using an equity price index and two currencies, Galbraith and Kisinbay (2002) �nd that forecasts

from AR �tted to daily RV outperform the forecasts from GARCH for a 1-day horizon whereas at

30 days the two methods become indistinguishable.

For the S&P100 index, Koopman et al. (2005) generate one-day-ahead forecasts from ARFIMA

and Unobserved Components models �tted to RV, and from stochastic volatility (SV) and GARCH

models �tted to daily returns and augmented with lagged RV and implied volatility.3 Long

memory models seem to provide the most accurate forecasts. Engle and Gallo (2006) develop

a multiplicative-error model which combines several daily volatility indicators (absolute returns,

squared high-low range and RV) and show that it forecasts quite well 1-month-ahead the VIX.

A second group of empirical studies advocate di¤erent nonparametric volatility estimators as an

alternative or complement to the popular RV. Ghysels et al. (2006) introduce the MIDAS (MIxed

DAta Sampling) regression approach and compare several daily volatility estimators based on

FX data sampled at di¤erent intraday frequencies. They �nd that realised power variation (RPV)

outperforms RV and that (intra-)daily absolute returns outperform, respectively, the corresponding

squared returns. Using Yen/US$ and DM/US$ rates and the Spyder Exchange-Trade Fund that

represents ownership in the S&P500 index, Liu and Maheu (2005) �t HAR-log and ARFIMA

3 In the ARCH class of models, the expected volatility is parameterized as a function of past returns only. In
contrast, the parameterized expectations in the SV class of models explicitly rely on latent state variables.
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models to RV and augment them with lagged RPV and realized bipower variation. Only with

RPV they �nd robust improvements in the 1-day-ahead forecasts of FX rates and the S&P500.

For DM/US$ rates, the S&P500 and the 30-year US T-bond yield, Andersen et al. (2007) document

that only the continuous part of the return process carries predictive power for future volatility.

3 Methodology

3.1 Population measures of volatility

In most of the volatility forecasting literature, the population measure of volatility is the conditional

variance. Let rt denote the daily stock return, its conditional variance is denoted var(rtjFt�1) � �2t

where Ft�1 is the sigma �eld containing all relevant information up to time t� 1, which naturally

refers to rt�j ; j > 1 but it may also include other variables: It is assumed that E(rtjFt�1) �

Et�1(rt) = 0 such that �2t = Et�1(r
2
t ) is the object of interest.

But there are other possible population measures of variance. To de�ne them, let the price

process belong to the class of semimartingales with jumps. The dynamics of the log price change

in continuous time can be characterized by the stochastic di¤erential equation

dp(t) = �(t)dt+ s(t)dW (t) + k(t)dq(t) 0 � t � T (1)

where �(t) denotes the drift term, s(t) is the instantaneous or spot volatility process which is

assumed to be stationary and independent of the standard Brownian motion W (t), dq(t) is a

counting process with dq(t) = 1 if a jump occurs at time t and k(t) is the jump size. Equation (1)

embodies the intuitive idea that there are two types of randomness driving the stock returns. One

is a Brownian motion generating the continuous sample path and small movements and the other

consists of large but infrequent (discrete) jumps.

The quadratic variation (QV) or notional variability of the return process is de�ned as

QVt =

Z t

t�1
s2(u)du+

X
t�1<j�t

k2(j) = IVt + Jt (2)
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where the �rst term is called integrated variance (IVt) and corresponds to the continuous part of

the log price process and the second term (Jt) re�ects the contribution of the discrete jumps.4 In

a recent paper, BN-S (2004a) de�ne the integrated power variation (IPV) of order z as

IPVt(z) =

Z t

t�1
sz(u)du; 0 < z � 2 (3)

which for z = 2 becomes the integrated variance.

In this paper, the population measure of interest is the conditional variance due to its prevalence

in applied and theoretical forecasting work in the past two decades. Andersen et al. (2002) argue

instead in favour of QV as the relevant notion of variability. However, both population measures

of volatility are closely related since the conditional variance of future returns is the conditional

expectation of QV as shown in BN-S (2002b). This result provides further theoretical underpinning

for the widespread use in empirical �nance of GARCH models.

3.2 Daily GARCH models and intraday updating variables

Let the conditional mean and conditional variance of daily returns be captured, respectively, by

and ARMA(p; q) and GARCH(r; s) equation5

rt = �0 +

pX
i=1

�irt�i +

qX
j=1

�jut�j + ut; utjFt�1 � iid(0; ht) (4a)

ht = ! +
rX
i=1

�iu
2
t�1 +

sX
j=1

�jht�j (4b)

where rt are the daily returns and u2t are the squared whitened returns: The lag orders of the

(conditional) mean and variance equations will be appropriately selected so as to remove all the

4Most modern �nance theory is based on semimartingales. If the return process is a semimartingale, then it
has an associated QVt process. The latter plays a central role in the option pricing literature. In particular, in
the absence of jumps, QVt equals the IVt highlighted in the stochastic volatility models �rst proposed by Hull
and White (1987) as an alternative to the classical Black-Scholes formulae for option pricing. However, there is an
increasing body of empirical work in �nance which concludes that continuous-time models must incorporate jumps
or discontinuities in order to provide a satisfactory characterization of the daily return process.

5We do not consider asymmetric GARCH models because the asymmetric relation between price movements and
volatility (e.g. rationalized as �leverage e¤ect�) has been shown to be rather weak or absent in individual stock price
series as compared to broad stock price index series (see, for instance, Kim and Kon, 1994; Tauchen et al., 1996).

8



return autocorrelation and volatility clustering. The Ljung-Box and ARCH LM tests, respectively,

will be used for these purposes. The degree of volatility persistence is given by � = ��i +��j .

The selected GARCH model for each stock is then augmented as follows

ht = ! +
rX
i=1

�iu
2
t�1 +

sX
j=1

�jht�j + 
vt�1 (5)

where vt�1 is a nonparametric estimator based on intraday prices at day t� 1: In our case vt�1 is

the realised variance (RV), realised range (RR), realised power variation (RPV), realised bipower

variation (BPV) or trading volume (VOL). For this purpose, the time dimension is discretized and

the daily time interval is divided into M equally-spaced subintervals of length �. The price at the

start of the jth intraday interval is computed as the average of the closing and opening prices of

intervals j � 1 and j; respectively. The jth intraday return (on day t) is computed as

rt;j = 100

�
log(pct;j) + log(p

o
t;j+1)

2
�
log(pct;j�1) + log(p

o
t;j)

2

�
; j = 2; :::;M � 1 (6)

where each trading day [9:30am-4:00pm] amounts to a duration of M � � = 390min, and pct;j

(pot;j) is the closing (opening) price of the jth intraday interval: For instance, j = 2 corresponds

to 9:35am-9:40am. The extreme-interval returns are rt;1 = 100
�
log(pct;1)+log(p

o
t;2)

2 � log(pot;1)
�
and

rt;M = 100
�
log(pct;M )�

log(pct;M�1)+log(p
o
t;M )

2

�
. For � = 5min; we have M = 78 intraday returns

and one overnight return. However, a few trading days consist of M < 78 due to delayed openings

and/or early closings of the NYSE. Overnight returns are not included due to the fact that the

weight such a return should deserve is somewhat arbitrary as Hansen and Lunde (2006b) and Engle

et al. (2006) argue. The usual logarithmic (or continuously compounded) daily returns used to

estimate GARCH models amount to the aggregated intraday returns, rt =
PM

j=1 rt;j = log(
pct;M
pot;1

):

The most popular estimator, the realised variance, de�ned as the sum of intraday returns

RVt =
MX
j=1

r2t;j ; t = 1; 2; :::; T (7)

converges in probability to the quadratic variation (RVt p�! QVt) under suitable conditions as the

intraday sampling frequency increases (M ! 1) and so RV is a consistent estimator of QV (see

ABDE, 2001; BN-S, 2002a,b). If M = 1; then RV becomes the noisy daily squared return (r2t ):
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The realised range estimator introduced by Christensen and Podolskij (2005) is a generalization

of the range estimator of Parkinson (1980) and de�ned as

RRt =
1

4 log 2

24 MX
j=1

100�
�
log(pht;j)� log(plt;j)

�235 t = 1; 2; :::; T (8)

where log(pht;j) and log(log p
l
t;j) are the high and low prices of the jth interval, and the scaling

factor 4 log 2 is a bias-correction for market microstructure e¤ects given by the second moment of

the range of a Brownian motion Bt; that is, E(s2B) = 4 log 2 where sB = sup0�t;s�1(Bt �Bs).

BN-S (2002a) and Christensen and Podolskij (2005) show that RR is a more e¢ cient estimator

than RV. In an ideal world without market frictions (no bid-ask bounce, discontinuous trading or

jumps) the asymptotic variance of the RR estimator is 0:4
R t
t�1 �(u)

4du; where the integral is called

integrated quarticity, which is 5 times smaller than the variance of RV at 2
R t
t�1 �(u)

4du. Hence,

theoretically the RR estimator is more e¢ cient than other variance estimators based on squared

returns. Christensen and Podolskij (2005) and Martens and van Dijk (2006) show that, in the

absence of jumps, asM !1 the realised range converges in probability to the quadratic variation

(RRt p�! QVt). This results does not hold, however, in a jump-difussion setting; Theorem 1 in

Christensen-Podolskij establishes that with jumps, RR is not a consistent estimator of QV. For

a DGP without jumps, Martens and van Dijk (2006) accommodate the bid-ask bounce in Monte

Carlo simulations to show that: i) both RR and RV are upward biased but the former su¤ers

more; ii) infrequent trading induces a downward bias in RR but not in RV.

Another estimator introduced by BN-S (2004a), the realised power variation of order z, is

RPVt(z) = �
�1
z �1�z=2

MX
j=1

jrt;j jz ; 0 < z < 2; t = 1; 2; :::; T (9)

where

�z = E j�j
z
= 2z=2

�( 12 (z + 1)

�( 12 )
, � s N(0; 1)

which for z = 1 becomes the realised absolute variation. BN-S (2004a) demonstrate its consistency

by showing that asM !1; it converges in probability to the integrated power variation, RPVt(z)
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p�! IPVt(z); and so it is robust to jumps. Liu and Maheu (2005) study the 1-day-ahead forecasting

properties of (9) for orders z = f0:25; 0:5; :::; 1:75g and �nd that 0:5; 1; and 1:5 yield the lowest

RMSE. Absolute return measures are more persistent than the squared counterparts so RPV could

outperform RV in forecasting �nancial risk. Also RPV may provide better predictions than RV

when the sample period contains large jumps. Further discussion on the RPV estimator can be

found in Ghysels et al. (2006) and Forsberg and Ghysels (2007).

In a similar fashion, BN-S (2004a) de�ne the realised bipower variation estimator as

RBPt = �
�2
1

MX
j=2

jrt;j j jrt;j�1j (10)

where �1 = E(j�j) =
p
2=
p
� w 0:79788 and � s N(0; 1): BN-S (2004a) show that as RBP

converges in probability to the integrated variance (RBPt p�! IVt) and so it is also immune to

jumps. The result that RVt �RBPt p�! Jt where Jt is the jump component in (2) is exploited by

BN-S (2006) alongside the joint asymptotic distribution of the two estimators (under the null of a

continuous sample path) to develop a non-parametric test for jumps.

The asymptotics (as M !1) of these nonparametric volatility estimators were derived under

suitable theoretical conditions such as no market microstructure noise. Unfortunately, in real-world

settings the semimartingale property of prices breaks down at ultra-high frequencies because the

in�uence of market microstructure factors such as bid-ask bounce (Ross, 1984), screen �ghting

(Zhou, 1996), price discreteness and irregular trading become overwhelming. This means that, in

practice, intraday measures of volatility calculated at very high frequencies become biased.6

As noted, we adopt � = 5 and the motivation for this choice is twofold. First, a 5-minute grid is

short enough for the daily volatility dynamics to be picked up with reasonable accuracy and long

enough for the adverse e¤ects of market microstructure frictions not to be overwhelming.7 Second,
6Several methods, mostly nonparametric, have been proposed to account for microstructure bias. Martens and

Van Dijk (2006) suggest a bid-ask bias correction for the RR estimator, eq.(8), by scaling it with the ratio of
the average level of the daily range and the average level of the RR over the previous q trading days. Adding
autocovariances to the RV estimator, eq.(7), has been suggested as a way of mitigating bid-ask bounce biases
(Barndorf-Nielsen et al., 2004; Hansen and Lunde, 2006b). Jungbacker and Koopman (2005) develop a parametric
model-based approach that accounts for microstructure noise and intra-daily seasonality.

7ABDE (2001), BN-S (2002a,b), Taylor and Xu (1997) and Fleming and Paye (2006), inter alios, advocate this
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it will enable meaningful comparisons with previous studies, most of which are based on 5-min

data. Nevertheless, we check how sensitive the main results are to using 15- and 30-min grids.

Finally, the daily volume (V OL) measure adopted is the total number of shares traded each

day computed as V OLt =
PM

j=1 volt;j , where volt;j is the number of shares traded over the jth

interval. This is the measure of volume used in Lamoureux and Lastrapes (1990).

3.3 Forecast evaluation and market conditions

The sample size is divided into an estimation period (T � T1) of �xed length 1261 days, and a

holdout or evaluation period (T1) of 500 days. Hence, each model is estimated over an initial

window, denoted [1; t]; and a 1-day-ahead ex post volatility forecast is generated. The window is

rolled forward one day to [2; t+ 1] to obtain the second forecast and so forth until 500 iterations.

The population volatility measure (�2t ) is the conditional variance and its proxy (~�
2
t ) for forecast

evaluation is the 5-min realized variance because it is an asymptotically conditionally unbiased

estimator of the conditional variance � a further appealing property of the realized variance is

that it converges in probability to the QV which plays a central role in the option pricing literature.

The precision of model m forecasts, fht;mgT1t=1, is gauged through several loss functions:

Mean absolute error MAE = 1
T1

PT1
t=1

��~�2t � ht;m��
Mean squared error MSE = 1

T1

PT1
t=1(~�

2
t � ht;m)2

Heteroskedasticity-adjusted MAE HMAE = 1
T1

PT1
t=1

��1� ~��2t ht;m
��

Heteroskedasticity-adjusted MSE HMSE = 1
T1

PT1
t=1(1� ~�

�2
t ht;m)

2

Adjusted mean absolute percentage error AMAPE = 1
T1

PT1
t=1

��� ~�2t�ht;m~�2t+ht;m

���
Theil-U Theil-U =

PT1
t=1(~�

2
t � ht;m)2=

PT1
t=1(~�

2
t � h2t;N )2

Mean mixed error (U) MME(U) = 1
#U

P
IU � e2t;m + 1

#O

P
IO � jet;mj

Mean mixed error (O) MME(O) = 1
#U

P
IU � jet;mj+ 1

#O

P
IO � e2t;m

Logarithmic loss LL = 1
T1

PT1
t=1(ln ~�

2
t � lnht;m)2

Gaussian maximum likelihood error GMLE = 1
T1

PT1
t=1

�
lnht;m + ~�

2
th
�1
t;m

�
In the MME(U) and MME(O) criteria, et;m = ~�

2
t � ht;m denotes the forecast error for model m.

#U is the number of underpredictions and IU = 1 if et;m < 0; likewise for #O and IO:

grid also because daily returns standardized by 5-min realised volatility are approximately normal. In the forecasting
literature, studies that use 1-, 5-, 15- and 30-min data report mixed results but overall they also tend to favour the
5-min sampling (Martens and van Dijk, 2006; Pong et al., 2004; Ghysels et al., 2006; Galbraith and Kisinbay, 2002).
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MAE, MSE, HMAE, HMSE, AMAPE and Theil-U belong to the family of symmetric loss

functions, in the sense that they equally penalize over- and under-predictions. The most widely

adopted, MSE, proposed by Bollerslev et al. (1994) is based on a quadratic loss function and so it

is particularly good where large forecast errors are disproportionately more worrisome than smaller

errors. MAE is less sensitive to severe mispredictions than MSE whereas AMAPE, proposed by

Makridakis (1993), is an interesting alternative in percentage. The heteroskedasticity-adjusted

version of MSE and MAE, introduced by Bollerslev and Ghysels (1996), is used by Martens (2001)

and Koopman et al. (2005) inter alios.8 Theil-U is calculated as the ratio of MSE for the model

at hand to the MSE of the naive model, typically a random-walk type model, ht;N = ~�2t�1:

A number of asymmetric loss functions have been employed in the volatility literature. Exam-

ples include the two mean mixed error statistics proposed by Brailsford and Fa¤ (1996), MME(U)

and MME(O), the logarithmic loss (LL) introduced by Pagan and Schwert (1990) and the Gaussian

maximum likelihood error (GMLE) of Bollerslev et al. (1994) which corresponds to the loss func-

tion implied by a Gaussian likelihood. MME(U), LL and GMLE penalize under-predictions more

heavily than over-predictions whereas MME(O) does the opposite. For instance, in option pricing it

is well established that the higher the volatility the higher the value of the call option so the under-

prediction (overprediction) of volatility is unattractive for the seller (buyer). In addition, we also

utilize the R2 of Mincer-Zarnowitz level regressions (MZ-R2), also called unbiasedness-regressions

in the literature, a measure of the informational content of the volatility forecasts.9 ;10

8The HMAE can also be referred to as mean absolute percentage error (MAPE) since it can be rewritten as

HMAE = 1
T1

PT1
t=1

�����2t��̂2t;m�2t

���� : Likewise, the HMSE is the mean squared percentage error (MSPE).
9The MZ levels regression is ~�2t = a + bht;m + et; t = 1; :::; T1: Hence, ht will be unbiased for the true variance

�2t if a = 0, b = 1 and E(et) = 0: The R2 from this regression (called MZ-R2) re�ects the variance but not the
bias-squared component of MSE, that is, it corrects for bias.
10Hansen and Lunde (2006a) study the distortion in model ranking from replacing E[L(�2t ; ht;m] by E[L(~�

2
t ; ht;m]:

It is called objective bias to distinguish it from the sampling error, due to estimating E[L(~�2t ; ht;m] by a sample
average, which vanishes as T1 increases. Taking the conditional variance as the latent volatility, �2t , they derive
a set of conditions under which the empirical model ranking obtained under L(~�2t ; ht;m) is consistent for the true
model ranking under L(�2t ; ht;m): The conditions are met by MSE, GMLE and the levels MZ-R

2: For a range of loss
functions, Patton (2006) derives analytically the objective bias using the daily high-low range, daily square return
and 5- and 30-min RV as conditional volatility proxies. They illustrate that the more precise the proxy, the less
relevant the objective bias; in particular, the objective-bias, if any, is very small for the 5-min RV proxy.
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The statistical signi�cance of di¤erences in forecast accuracy is assessed by means of the

Diebold-Mariano (1995) test statistic for non-nested models and the Harvey et al. (1998) en-

compassing test for nested models. In the former, the null hypothesis is that of equal predic-

tive accuracy of models A and B, that is, H0 : E(Lt;A) � E(Lt;B) = 0; against the alternative

HA : E(Lt;A)� E(Lt;B) 6= 0: The DM test statistic is

DM =
�dq

V̂ (dt)=T1

p�!N(0; 1);

where �d = 1
T1

PT1
t=1(dt � �d); dt is the loss di¤erential and V̂ (dt) is a heteroskedasticiy and au-

tocorrelation robust (HAC) estimator of the asymptotic variance of dt.11 The DM test can be

employed under a variety of loss functions. For instance, dMAE
t = j~�2t � ht;Aj � j~�2t � ht;B j and

dMZ-R
2

t =
(ûAt )

2�(ûBt )
2

T�11

P
(~�2t���2)2

where ûAt are the residuals of a regression of ~�
2
t on ht;A; likewise for û

B
t :

Let A denote a model which is nested in a larger model B. For nested models, the DM statistic

is non-normal resulting in undersized tests with low power. In this paper, we deploy the Harvey

et al. (1998) encompassing t-test (ENC-T) developed in the context of the MSE loss di¤erential.

Inferences are based on the critical values tabulated by Clark and McCracken (2001) for (�; k2) =

(0:4; 1) where � = T1
T�T1 and k2 is the number of excess parameters in model B. H0 is as in the

DM test, meaning here that the additional parameters in B do not help prediction (equal MSE)

and HA is that B has smaller MSE than A. Essentially, the ENC-T test statistic is a t-statistic for

the covariance between Lt;A and Lt;A � Lt;B as follows

ENC � T = (T1 � 1)1=2
�Cq

T�11
P
(Ct � �C)2

where Ct = (Lt;A � Lt;B)� Lt;A = (~�2t � ht;A)2 � (~�2t � ht;A)� (~�2t � ht;B):

When several forecasting models are compared through pairwise tests, data mining (snooping)

may hinder the signi�cance of the outcome. In contrast to the DM test of equal predictive ability,
11The DM statistic does not converge to a standard normal if the evaluation period grows at the same rate as the

estimation period because the e¤ect of parameter estimation error does not vanish; a HAC estimator that captures
the contribution of parameter uncertainty is then required. However, the distortion from ignoring the latter depends
on � = T1

T�T1
and it gets larger, the larger � is. In our analysis � = 0:4 which is not considered large and also the

number of parameters to be estimated is relatively small so we do not account for parameter uncertainty.
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the test of superior predictive ability (SPA) proposed by Hansen (2005) involves a composite

hypothesis, thereby being less prone to data mining. The SPA test is designed to address the

hypothesisH0 :�any alternative forecast is not better than the benchmark�and it requires bootstrap

critical values. Like the DM test, the SPA test can be conducted for any loss function.12

A motivation for combining forecasts from di¤erent models is that they are likely to capture

distinct subtle aspects of the true volatility process, and the relative prominence of such aspects may

vary over time. The four nonparametric volatility estimators considered su¤er to di¤erent extents

from market microstructure bias. Hence, it may pay to combine their information content while

allowing for their relative role (weight) to time-vary through a rolling estimation approach (�xed

window size at 1261 days) as follows. The combining weights for the tth forecast, �̂0(t); :::; �̂4(t);

t = 1; :::; T1 (T1 = 500) are obtained by regressing the volatility proxy on the in-sample GARCH-

RV, GARCH-RR, GARCH-RPV and GARCH-RBP �tted variances over the relevant window

[t� 1� (1260); t� 1]. The tth out-of-sample combined forecast is then computed as

ht;C = �̂0(t) + �̂1(t)ht;RV + �̂2(t)ht;RR + �̂3(t)ht;RPV + �̂4(t)ht;RBP ; t = 1; :::; 500

where ht;RV denotes the tth out-of-sample forecast from the GARCH-RV model and so forth.

To the best of our knowledge, the issue of di¤erent market conditions or regime-switching in

the context of volatility forecasting using intraday data has not been addressed. We compare the

value-added of intraday information for one-day-ahead volatility forecasting during �up-market�

(U) versus �down-market�(D) days, and �high-volume�(H) versus �low-volume�(L) days. For this

purpose, we classify and average the forecast errors into those incurred during up-(high-) or down-

market (low-volume) days. Our de�nition of up/down market days is a short-term one based on

the moving average of the daily return over the most recent 5-day window. Since the goal is to

forecast the volatility on day t, the switching variable is a one-day-lagged (t-1) indicator function

St�1 =

(
1 if 1

5

P5
i=1 rt�i > 0 (Up-market day)

0 else (Down-market day)
(11)

12The SPA test is implemented in OxMetrics 5 using Peter Hansen�s code which we gratefully acknowledge. We
focus the analysis on the two prede�ned loss functions in the code, MSE and MAE.

15



which equals 1, signifying a positive direction of the market if the moving average of the daily

returns over the most recent 5-day period is positive.

For the high- versus low-volume days comparison the short-term indicator function is

Vt�1 =

(
1 if V OLt�1 >

1
5

P5
t=1 V OLt�1�i (High-volume day)

0 else (Low-volume day)
(12)

Two questions are asked: (a) Does the ranking of intraday augmentation measures di¤er over

market conditions?, (b) Do the bene�ts from exploiting intraday data di¤er over market conditions?

4 Empirical Results

4.1 Data and distributional properties

The transaction price and number-of-shares traded data is from Tick Data.13 The observations

pertain to 14 stocks traded on the NYSE and span the period 02/01/97 to 31/12/03, a total of

1761 days. The stocks are American Express (AXP), AT&T (ATT), Boeing (BA), Caterpillar

(CAT), DELL, General Electric (GE), General Motors (GM), JP Morgan (JP), KO (Coca-Cola),

McDonald (MCD), Microsoft (MSFT), Procter & Gamble (PG), WAL-MART (WMT) and IBM.

Table 1 shows the distributional properties of daily returns and trading volume. For all stocks,

the returns are non-normally distributed, particularly, in the form of excess kurtosis.14

[Table 1 around here]

The Ljung-Box (LB) statistic suggests no autocorrelation in daily returns for many stocks � the

exceptions are ATT, DELL, GM, IBM PG, and WMT returns. By using mean volume as measure

of trading activity, stocks can be ranked from more to less active as: MSFT, DELL, GE, IBM,

JPM, WMT, AXP, MCD, KO, BA, GM, PG, ATT and CAT. Trading volume is stationary as

borne out by the ADF test and the Robinson d statistic but the latter suggests long memory in

13www.tickdata.com provides high frequency data on a commercial basis for equity and commodity markets.
14Due to space constraints, an extensive collection of our empirical results are given in an Appendix which can

be downloaded from http://www.cass.city.ac.uk/faculty/a.fuertes.
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volume.15 DELL�s volume is the most persistent whereas the smallest persistence is shown by

BA�s volume. The assumption that volume follows a lognormal distribution was �rst advocated in

Clark�s (1973) MDH model and is still widely used. The Kolmogorov-Smirnov (KS) test suggests

volume log-normality for half of the sampled stocks: BA, CAT, GE, GM, JPM, KO and MCD.16

Table 2 reports summary statistics for �ve distinct daily volatility estimators.

[Table 2 around here]

In line with the MDH theory, studies by Clark (1973), Tauchen and Pitts (1983), Richardson and

Smith (1994) and Andersen and Bollerslev (1997a,b) document several interesting stylized facts

about the unobserved, latent information �ow driving the volatility process. These include small

variation relative to its mean, lognormality, high persistence, correlation with volume and bringing

normality in returns. We adopt these stylized facts as in-sample criteria to compare the estimators.

RV and RBP have approximately the same mean (e.g. for IBM, the mean RV and RBP are,

respectively, 3.572 and 3.340). The mean of RR is generally smaller than that of RV with two

exceptions only (DELL and MSFT). This is in line with the �ndings in Martens and van Dijk

(2006) which illustrate that infrequent trading induces a downward bias in the RR, while it does

not a¤ect RV. The mean of RPV(for z = 1:5) is slightly higher than those of the other intraday-

estimated volatility measures. But RPV is not in the same units as the other three measures,

so any comparison of their moments has to be interpreted with caution.17 Relative to its mean,

RPV has generally the lowest dispersion (standard deviation) which suggests that it is the least

15A fractional integration parameter 0 < d < 0:5 characterizes stationarity with long memory so that the auto-
correlation function decays at a hyperbolic rate rather than exponentially as in short-memory (d = 0) processes.
16 In contrast with the JB test that focuses on the skewness and kurtosis only, the KS test compares the cumulative

distributions of the input data and the �tted distribution and so it has been shown to be more powerful that the
JB test. The KS statistic is computed as KS = max(D+; D�) with D+ = max( t

T
� F (V OLt)) and D� =

min( t
T
� F (V OLt)); t = 1; ::; T where F (�) is the �tted lognormal distribution.

17The order chosen for the RPV is z = 1:5 throughout the paper. Building on the results in Liu and Maheu (2005),
to make this choice we compare RPV(0.5), RPV(1) and RPV(1.5) according to their distributional properties, in-
sample model-�t and out-of-sample forecasting properties. Firstly, daily returns standardized by RPV (z = 0:5)

become normal at the 10%, 5% or 1% level in none of the stocks, 7 stocks (z = 1), and 9 stocks (z = 1:5). Second, the
model �t of GARCH-RPV is clearly superior, according to the loglikelihood, AIC and SBC, for z = 1:5 also. Third,
for the majority of stocks according to virtually all loss functions considered, the forecast errors of GARCH-RPV
are smaller for z = 1:5. Detailed results can be found in Appendix Tables A and B.
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noisy in the present context followed by RR. At the other extreme, the crude squared return has

a StDev/Mean ratio about �ve times larger than RPV.

The ADF test suggests that all �ve unconditional volatility measures are stationary. But the

degree of persistence (Robinson d) of the intraday-estimated measures is substantially higher than

that of daily squared returns. RPV and RR are the most persistent (followed by RV and then

RBP) and so they may provide a better signal for future volatility. All measures show positive

skewness and large kurtosis with squared returns having the largest kurtosis. The KS test suggests

that lognormality for the intraday measures but not for daily squared returns. This is in line with

ABDE (2001) and ABDL (2001), inter alios, who show that the lognormal distribution provides a

good �t for realised volatility. Figure 1 plots for the least traded (CAT) and most traded (MSFT)

stock the di¤erent volatility estimators alongside volume (scaled by 107).

[Figure 1 around here]

Normality of returns is an assumption that underlies many �nancial theories, for instance, the

Black-Scholes option pricing model and some VaR approaches. But daily stock returns are clearly

non-normal. Several studies have recovered normality by subordinating returns to the ��nancial

clock�using RV as standardization variable (ABDE, 2001; ABDL, 2001; BN-S, 2002a; Bandi and

Russell, 2006; and Areal and Taylor, 2001). On this basis, they conclude that RV re�ects well

the information �ow to the market.18 We standardize the daily returns by the various uncondi-

18Daily returns are non-normal because information is available to traders at a varying rate so the price process
evolves at di¤erent rates during identical time intervals. When no information is available, trading is slow, and the
price evolves slowly. When new information arrives, trading is brisk and the price process evolves much faster. The
upshot is that the number of individual random e¤ects added together to give the daily price change (return) is
non-constant, rendering the Central Limit Theorem inapplicable. The theoretical motivation for expecting returns
to be normal when standardized by volume starts from Clark (1973) and Monroe (1978). Clark argues that returns
are non-normal when sampled at intervals which are equidistant in calendar time but are normal in the time scale
of the latent trading activity (called ��nancial time�), that is, when computed over intervals with equivalent trading
activity. Clark further shows that trading volume can be taken as an instrument for the true operational time
or �imperfect clock�measuring the speed of evolution of the price change process. By standardizing returns with
volume, in e¤ect, the returns �clock� is subordinated to that of volume. Monroe provides further justi�cation by
showing that any semi-martingale can be written as a time-changed Brownian motion. Monroe�s result in essence
tells us that there exists a time-�ltration mechanism that can restore return normality. Andersen et al. (2005) show
that using high-frequency data for the construction of the proxy for the ��nancial time�(they sample at intervals of
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tional (intraday) and conditional (GARCH) volatility measures and analyze the extent to which

standardized returns become normal. Table 3 sets out the results.

[Table 3 around here]

The �ndings are consistent with the literature where it has been documented that historical

GARCH (and SV) models do not adequately capture all the leptokurtosis in daily returns. The

standardization by GARCH mitigates but does not eliminate all the factors that induce non-

normality.19 RR is the most successful in bringing normality (for all stocks except MSFT) followed

by RPV, RBP and RV. The lognormality of the intraday-estimated variability measures together

with their ability to bring normality of standardized returns provides support for Clark�s (1973)

contention that asset returns follow a normal-lognormal mixture in the context of cotton futures.

In the MDH literature, volume is taken as a proxy for the latent trading activity process (Clark,

1973). The MDH posits that volume and volatility are positively correlated because they are simul-

taneously in�uenced by the rate of news arrival. The extent of this correlation provides a further

ranking for the volatility measures � Appendix C reports, for each stock, the pairwise correlations

among volume and the nonparametric and GARCH volatility measures. The correlation of volume

with each of the volatilities is positive but the nonparametric measures show higher correlation

with volume than GARCH. The highest correlation occurs with RR and RPV at 43.4% and 42.04%,

respectively, on average across stocks. The correlation between the four intraday measures is high

(above 90%) but drops to about 50% between the intraday measures and GARCH.

To sum up, in the context of the MDH stylised facts, RPV and RR emerge as superior intraday-

estimated measures of the daily price variation given that they display the longest memory, the

smallest standard deviation relative to their mean, and the highest correlation with volume. RR

fares slightly better than RPV, however, in bringing returns normality.

equivalent QV) will appproximately time-scale returns and render them i.i.d. Gaussian. Their approach deviates
from the MDH literature in that there is no trading activity proxy involved.
19The GARCH model used, �tted to the daily returns, is a GARCH(1,1) for most stocks. However, in some cases

higher orders are needed to absorb all the volatility clustering. The models are described in Section 4.2.
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4.2 Model estimates and in-sample model �t ranking

The estimation results by QML over the entire sample for the least traded (CAT) and most traded

(MSFT) stocks are presented in Table 4, and for the remaining stocks in Appendix Table D.

[Table 4 around here]

For all stocks, the lagged intraday volatility (vt�1) is strongly signi�cant at the 1% level but, in

line with the literature, lagged volume is insigni�cant with the exception of CAT, DELL, KO and

MSFT � the signi�cance of lagged volume in a GARCH equation would provide support for a

simple MDH version (Luu and Martens, 2002). A uniform result across stocks is that the inclusion

of an intraday volatility measure in the GARCH equation results in a substantial reduction in

volatility persistence which, according to the MDH argument, suggests that they capture well the

news arrival process � the MDH posits that the volatility clustering is partly explained by time

dependence in the public information �ow. Moreover, the intraday-estimated volatilities turn the

ARCH coe¢ cients from strongly signi�cant at the 1% level to either insigni�cant or marginally

signi�cant at the 10% level. This suggests that the predictive information on future daily volatility

contained in RV, RR, RPV or RBP encompasses the information in daily squared returns.

In order to assess in-sample model �t, the log-likelihood (lnL), AIC and SBC values can be

compared across models for a given stock since they all refer to the same dependent variable.

The lnL of the GARCH models augmented by each of the four intraday volatilities are greater

than those of GARCH for all stocks. But this is not the case for many stocks with the volume

measure. Second, the GARCH models augmented with intraday volatility measures rank top also

according to the AIC and SBC. For the least traded (CAT) stock, the dynamics of daily returns

seems to be best captured by the GARCH-RPV model as suggested by the lnL (largest) and AIC

(smallest) values. The model ranking according to lnL, AIC and SBC is GARCH-RPV, GARCH-

RV, GARCH-RBP, GARCH-RR, GARCH-VOL and GARCH.
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The volatility dynamics of the most traded (MSFT) stock is best captured by GARCH-RR

according to the lnL and AIC. However, as for CAT, the least improvement is brought by GARCH-

VOL with a relatively small increase in lnL and a fall in the AIC. Furthermore, according to SBC,

the baseline GARCH is superior to GARCH-VOL. The model-�t ranking based on lnL and AIC

is GARCH-RR, GARCH-RPV, GARCH-RV, GARCH-RBP, GARCH-VOL and GARCH and the

only change in this ranking according to the SBC is in the relative �t of the last two models. The

ranking for the other stocks (see Appendix D) suggests that overall the GARCH-RPV provides the

best �t in 8 out of 14 stocks, and GARCH-RR, GARCH-RV and GARCH-RBP in 2 stocks each.

4.3 Out-of-sample forecast ranking

Figure 2 provides a bar-chart summary of the forecast �horse race�. The bar length is the proportion

of stocks for which a given model provides the most accurate forecasts.

[Figure 2 around here]

The RPV estimator brings the largest forecast gains for most stocks and loss functions, e.g. HMSE,

MME(O) and LL are smallest for GARCH-RPV in 71.4%, 71.4% and 64.3% of the stocks, respec-

tively. GARCH-RPV is the top performer according to (virtually) all forecast criteria in seven

stocks: AXP, CAT, GE, IBM, JPM, ATT and WMT. Appendix E and F provide further details.

The forecast error measures and the MZ-R2 are set out in Table 5. For each stock, the last row

reports the improvement that the best augmented-GARCH brings versus the GARCH.

[Table 5 around here]

For all stocks and loss functions, the inclusion of a lagged intraday volatility measure in the

GARCH equation notably improves the forecasts. In particular, for some stocks the MZ-R2 of

the best augmented-GARCH more than trebles that of GARCH. For instance, for the least traded

CAT stock, the MZ-R2 of GARCH is 13.99% whereas that of the best forecasts, GARCH-RPV,

is 43.64%. The forecast enhancement of GARCH-RV versus GARCH is in line with the �ndings
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in Martens (2001) and Koopman et al. (2005) for FX rates and the S&P100 index, respectively,

and with Grané and Veiga (2007) for four DJIA stocks, American Express, Coca-Cola, Disney and

Pitzer. Adding lagged trading volume to GARCH does not bring forecast gains which is consistent

with the results in Brooks (1998) and Donaldson and Kamstra (2004) for stock market indexes.

The ENC-T test based on the MSE for the comparison of GARCH and best augmented-GARCH

(nested models) suggests that forecast improvement is signi�cant at the 1% level throughout.

Moreover, there tend to be signi�cant di¤erences in forecast accuracy between the alternative

augmented-GARCH (non-nested) models as suggested by the DM test for most loss functions.

Considering the 11 loss functions and the 14 stocks, a total of 154 pairwise combinations, in 55%

of them the GARCH-RPV model is the top forecaster, followed by GARCH-RR (19%), GARCH-

RV (14%) and GARCH-RBP (12%).20 For the least traded (CAT) stock, GARCH-RPV leads

for virtually all loss functions followed by GARCH-RV. Exceptions are the asymmetric MME(U)

and MME(O) for which the minimum loss is achieved by GARCH-RV but is closely followed by

GARCH-RPV. GARCH-VOL is ranked last. For the most traded (MSFT) stock, according to

virtually all loss functions, the best forecasts are those from the GARCH-RR model followed by

GARCH-RPV. The HMSE loss is an exception with a minimum that corresponds to GARCH-RPV.

DELL and MSFT show similar behavior in the sense that, virtually according to all loss func-

tions, the GARCH-RR provides the best forecasts. This is in contrast with the earlier �nding that

DELL and MSFT are the two stocks for which the RR measure has most di¢ culty in bringing

return normality (c.f. Table 3). This suggests that whether or not a given intraday volatility mea-

sure brings normality in daily returns may not necessarily tell us much regarding its forecasting

power. Moreover, for the MSFT stock, RR is not lognormally distributed at the 5% level whereas

RPV, RBP and RV are. Likewise for CAT stock, although RPV emerges as top forecaster, it is

not lognormally distributed whereas RV, RR and RBP are. For IBM, unanimously across all loss

20Using 30-minute DM/US$ and Yen/US$ data, Martens (2001) shows that extending the daily GARCH model
with the sum of intraday squared returns leads to similar improvement as modeling the intraday returns directly.
Hence, our results indirectly suggest that extending the daily model with RPV is superior to the latter also.
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functions, RPV is the best forecaster although, interestingly, it fails to bring normality in daily

returns (c.f. Table 3). Moreover, for IBM the highest persistence is shown by RR (d = 0:403)

followed by RPV (d = 0:394). Therefore, when scrutinizing the individual stocks, some mismatch

is observed between the ranking from forecast and MDH-related criteria.21

Patton (2006) and Hansen and Lunde (2006a) show theoretically and via simulation that many

criteria used in the literature are inconsistent when the evaluation is based on a volatility proxy

(i.e. ~�2t instead of �
2
t ) so they may favour an inferior model with a probability that converges to

one asymptotically as the holdout sample (T1) increases. Exceptions are MSE, GMLE and the

levels MZ-R2. Patton shows that the more e¢ cient (less noisy) the proxy, the smaller the degree

of distortion in the ranking which depends also on the sampling frequency. Across various loss

functions, he shows analytically that when 5-min RV is used as proxy almost all of the objective

bias disappears. Interestingly, the model rankings are quite similar across loss functions in Table

5 but they become rather more unstable when the crude daily r2t is used as volatility proxy (see

Appendix H). For instance, for AXP virtually all loss functions chose the same (GARCH-RPV)

model as best when the sum of 5-min squared returns is the volatility proxy in Table 5 whereas four

models (GARCH, GARCH-RV, GARCH-RV and GARCH-RBP) emerge as best from one criteria

or another when r2t is used as proxy in Appendix H. Reassuringly, in a majority of cases the MSE,

GMLE and the MZ-R2 criteria tend to point to the same best model when the two di¤erent proxies

are used � illustrative examples are AXP and MSFT for which GARCH-RPV and GARCH-RR,

respectively, are selected according to all three criteria irrespective of the proxy.

21We investigated whether the forecast ranking of the nonparametric volatility estimators changes when they are
based on 15- and 30-min data. Appendix G reports the results for the two least-traded (CAT, ATT) and the two
most-traded stocks (MSFT, DELL). The top forecaster remains the RPV. As expected, the forecast losses (like-for-
like models) rise as the sampling frequency decreases, in line with the results in Pong et al. (2004) for FX rates
using 5- and 30-min frequencies. Futhermore, the value-added of the nonparametric volatilities is larger at the 5-min
than at the 15- and 30-min. For instance, for CAT the forecast error reduction from GARCH to GARCH-RPV is
53.88%, 43.53% and 37.78%, respectively, at the 5-, 15- and 30-min frequencies. These �ndings corroborate that
the 5-min sampling is more useful than 15- and 30-min from the viewpoint of predicting future daily volatility. The
forecast comparison is conducted by proxying the forecast target (the conditional variance) by either the sum of
5-min squared returns or the sum of 15- (or 30-) min squared returns. The main �nding is that the forecast errors
of like-for-like models increase when the sampling frequency of the proxy decreases.

23



Table 5 also reports the average losses of the combined forecasts using the time-varying weight-

ing approach described in Section 3.3 (denoted COMBINED). We also considered an equal-weights

combining scheme (denoted COMB-EQW). Notwithstanding the high correlation between the GARCH-

RV, GARCH-RR, GARCH-RPV and GARCH-RBP forecasts being combined (ine¢ ciency of weight

estimates), overall across stocks and loss functions the varying-weights approach gives better re-

sults than the equal-weights approach and so only the former are reported. It is tempting to

attribute this to the fact that the regression-based combining approach accounts for bias through

the intercept �̂0(t): But the bias corrected MZ-R2 is only higher with the equal-weights approach

for half of the stocks and there is evidence of forecast bias for all but 2 stocks (see Appendix I).22

The COMBINED model yields the smallest forecast error with virtually all loss functions for 4

stocks (CAT, DELL, GM and MSFT) and the gains relative to the best augmented-GARCH can

be as much as 51%. For instance, the HMSE of the best augmented-GARCH is reduced by 45%

for DELL, 51% for GM and 44% for MSFT. For 4 other stocks (AXP, GE, IBM and ATT) the

COMBINED model is in the lead for at least half of the loss functions. The ENC-T test suggests that

the MSE from COMBINED is signi�cantly smaller than that from the best augmented-GARCH in

6 stocks. Hence, jointly exploiting the information from all four intraday measures can be fruitful

which indirectly corroborates that they are a¤ected di¤erently by microstructure noise.

The results of the SPA test are set out in Table 6. The null hypothesis is that the GARCH-RPV

model which was found to be in the lead for most stocks and across most forecast accuracy metrics

(hence, taken as benchmark) is not worse than any of the alternative models. These are GARCH,

GARCH-RV, GARCH-RR, GARCH-RBP, GARCH-VOL, COMBINED and COMB-EQW.

[Table 6 around here]

The SPA test p-values suggest that, for eight stocks, GARCH-RPV is not outperformed by any of

the seven alternative models in terms of both the MSE and MAE losses. For four further stocks
22Appendix H further illustrates that: (a) the GARCH-RV, GARCH-RR, GARCH-RPV and GARCH-RBP fore-

casts su¤er from upward (if any) biases, particularly the latter three, whereas GARCH-VOL is downward biased, (b)
the equal-weight forecasts are upward biased but the estimated-weights combined forecasts are generally unbiased.
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(CAT, DELL, GM, MSFT), GARCH-RPV is signi�cantly beaten by the COMBINED model. For two

stocks (ATT and IBM) the evidence is mixed with MSE and MAE favouring GARCH-RPV and the

COMBINED model, respectively. The last column of the table summarises the SPA test results:

GARCH-RPV signi�cantly emerges most often as the model with superior predictive ability.

Tables 7 and 8 report the HMSE, AMAPE and LL criteria, respectively, for up- and down-

market days, high- and low-volume days as de�ned in (11) and (12).23 For each stock, the last row

(Bene�t %) reports the forecast error reduction that the best augmented-GARCH brings relative

to GARCH. Italics are used to signify the regime in which the largest reduction is achieved.

[Table 7 around here]

The ranking of the augmented-GARCH models is virtually identical in both regimes and GARCH-

RPV ranks top for most stocks. The forecast losses tend to be smaller for down-market days.

This suggests that the daily stock volatility at day t is relatively more di¢ cult to forecast when

t � 1 is an up-market day. In the light of this �nding, it is not surprising to see that the largest

bene�ts from exploiting intraday data in order to generate a day t volatility forecast tend to occur

when t� 1 represents an up-market day. For instance, for DELL the percentage reduction in the

GARCH forecast errors is 5.59 (HMSE), 5.75 (AMAPE) and 10.30 (LL) over down-market days

whereas it increases, respectively, to 37.90, 14.42 and 27.51 over up-market days.

Table 8 suggests that the forecast ranking is almost identical over high- and low-volume days

with the GARCH-RPV model having the smallest forecast errors.

[Table 8 around here]

Generally, the losses tend to be somewhat smaller in the high-volume regime suggesting that the

conditional volatility on day t appears to be less forecastable if there was low volume on day t� 1;
23Since one goal is to compare the forecast errors across market conditions, and down-market (high volume) days

tend to be more volatile than up-market (low volume) days, measures such as MSE and GMLE can be misleading
for this purpose. Unit-free measures such as the HMSE, AMAPE, LL and Theil-U will be more informative. The
unreported (for space constaints) HMAE and Theil-U give similar results.
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exceptions are IBM, MCD, MSFT and ATT. Consistent with the latter, the largest reduction

in forecast errors from using intraday data (bene�t %) is obtained for the low-volume days. For

instance, for DELL the reduction in the GARCH forecast error by including RPV is 8.38% (HMSE),

3.76% (AMAPE) and 9.38% (LL) in the high-volume regime whereas it increases, respectively, to

39.68, 16.31 and 29.46 in the low-volume days. Another interesting case is GM (and to some extent

BA) for which there is no forecast error reduction in high-volume days, but the reduction is 12.13%

(HMSE), 3.68% (AMAPE) and 6.61% (LL) in low-volume days.

The upshot is that 1-day-ahead the conditional volatility is easier to forecast when the stock is

underperforming (t � 1 is a down-market day) and when trading volume is relatively high (t � 1

is a high-volume day). Table 9 reports the average return, volatility and volume for days t � 1

and t over di¤erent market conditions. As expected, the volatility is higher in down-market and

high-volume days. Our �ndings are in line with the view that high volatility and volume arise

largely from news arrival: when t� 1 is a high volatility (volume) day more public information is

available which, in turn, helps to forecast volatility at t.24 The same rationale applies if t� 1 is a

down market day, because trading volume (and volatility) is higher in down versus up days. This

e¤ect is exacerbated because, as Admati and P�eiderer (1988) show, trades from both informed

and discretionary liquidity traders come in clusters, with both groups preferring to trade during

�thick� markets. This clustering of trades, when trading activity is already high, triggers the

release of even more information. Moreover, high trading activity may to some extent mitigate

the microstructure noise (e.g. infrequent-trading e¤ects) and this could also explain why the

augmented-GARCH models tend to produce better forecasts during high volume (volatility) days.

[Table 9 around here]

Table 9 also reports the average correlation between the �true�volatility on days t� 1 and t. The

stronger correlations for down-market and high-volume days are in line with the �nding of smaller
24Using �rm-speci�c announcements data, Kalev et al. (2002) show that public information �ows drive volatility

and volume simultaneously, in line with the MDH. But the observed volume may also partly re�ect liquidity pressures
or the �game�played by strategic traders with heterogenous information and the revision of dispersed beliefs.

26



forecast errors during such market conditions. Hence, the use of intraday data is more crucial

when markets are relatively tranquil (low volatility), that is, on up-market and low-volume days.

5 Conclusions

How to forecast daily volatility is a challenging question because, unlike prices and volume, volatil-

ity is not directly observable. A recent literature focuses on exploiting the intraday variation

and proposes several nonparametric estimators called realised variance, range, power variation

and bipower variation. This paper compares these estimators on the basis both of their distribu-

tional properties and their ability to forecast one-day-ahead the conditional variance of returns. A

GARCH framework is adopted as platform to compare their incremental predictive content which

is not to suggest that GARCH is the �best�framework for volatility prediction. For completeness,

a volume measure of intraday trading activity is also included in the horse race.

The popular realized variance estimator is dominated by the realised power variation and the

realised range. The realized range fares relatively well in the in-sample distributional analysis

regarding the extent to which it brings normality in standardized returns. However, overall across

stocks and loss functions the realised power variation appears to be the top performer for short

term forecasts of one day. This means that, among the four nonparametric volatility estimators,

the lattter enhances the GARCH forecasting ability the most. A rationale for this �nding is that

the realized power variation is not only immune to jumps, like the realized bipower variation, but it

is also the most persistent and less noisy. Nevertheless, forecast combining appears worthwhile for

about half of the stocks which indirectly corroborates that the four intraday-estimated volatility

measures are impacted by microstructure noise in di¤erent ways. The additional use of intraday

data on day t�1 to forecast volatility on day t is more advantageous when t�1 is an up-market or

low volume day relative to the recent past. Since daily volatility forecasts are key inputs for VaR

analysis, our �ndings may have important practical implications for this area of risk management.
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Fig. 1 Time series plots for daily volatility and volume
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Fig. 2. Summary of forecast competition for the 14 individual NYSE stocks.

The �gure plots the frequency that each model had the smallest out-of-sample loss in terms of several

loss functions and the R2 of the levels Mincer-Zarnowitz regression.
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Table 6. Hansen�s Superior Predictive Ability (SPA) test

Benchmark model: GARCH-RPV
Alternative models SPA

Stock Loss Best Performing p-val Most Signi�cant p-val p-val Superior
ATT MAE COMBINED 0.0060 COMBINED 0.0060 0.0060 COMBINED

MSE COMB-EQW 0.8990 COMBINED 0.7780 0.9970 GARCH-RPV

AXP MAE COMBINED 0.0200 COMBINED 0.0200 0.0200 COMBINED
MSE COMBINED 0.1520 COMBINED 0.1520 0.2350 GARCH-RPV

BA MAE GARCH-RV 0.2340 GARCH-RV 0.2340 0.3780 GARCH-RPV
MSE COMB-EQW 0.1710 COMB-EQW 0.1710 0.3350 GARCH-RPV

CAT MAE COMBINED 0.0000 COMBINED 0.0000 0.0000 COMBINED
MSE COMBINED 0.0010 COMBINED 0.0010 0.0020 COMBINED

DELL MAE COMBINED 0.0000 COMBINED 0.0000 0.0000 COMBINED
MSE COMBINED 0.0000 COMBINED 0.0000 0.0000 COMBINED

GE MAE COMBINED 0.8890 COMBINED 0.8890 0.8900 GARCH-RPV
MSE COMBINED 0.0880 COMBINED 0.0880 0.1590 GARCH-RPV

GM MAE COMBINED 0.0000 COMBINED 0.0000 0.0000 COMBINED
MSE COMBINED 0.0000 COMBINED 0.0000 0.0000 COMBINED

IBM MAE COMBINED 0.0230 COMBINED 0.0230 0.0230 COMBINED
MSE COMBINED 0.1030 COMBINED 0.1030 0.1960 GARCH-RPV

JPM MAE COMB-EQW 0.9510 GARCH-RBP 0.9020 0.9240 GARCH-RPV
MSE COMBINED 0.1840 COMBINED 0.1840 0.3240 GARCH-RPV

KO MAE GARCH-RV 0.0750 GARCH-RV 0.0750 0.1170 GARCH-RPV
MSE COMB-EQW 0.1810 COMB-EQW 0.1810 0.5020 GARCH-RPV

MCD MAE COMB-EQW 0.9400 COMBINED 0.9030 0.9960 GARCH-RPV
MSE GARCH-RR 0.4180 GARCH-RR 0.4180 0.9740 GARCH-RPV

MSFT MAE COMBINED 0.0000 COMBINED 0.0000 0.0000 COMBINED
MSE COMBINED 0.0060 COMBINED 0.0060 0.0090 COMBINED

PG MAE GARCH-RV 0.1320 GARCH-RV 0.1320 0.2780 GARCH-RPV
MSE GARCH-RPB 0.2610 GARCH-RPB 0.2610 0.6160 GARCH-RPV

WMT MAE GARCH-RPB 0.8070 GARCH-RPB 0.8070 0.8260 GARCH-RPV
MSE GARCH-RPB 0.3830 GARCH-RPB 0.3830 0.7950 GARCH-RPV

The table presents the consistent SPA test p-values for H0: �any alternative model is not better than the
benchmark�based on B=1000 bootstrap replications and q=0.5 time-dependence parameter for the block
bootstrap length. Best performer is the alternative model with minimum loss. Most signi�cant is the alter-
native model giving the highest t -statistic in the pairwise comparisons with the benchmark. The p-values
of the pairwise comparisons (H0 :�best performer/most signi�cant model is not better than benchmark�)
that do not control for the full set of alternatives are also reported. COMBINED is the combined model
using time-varying weights as outlined in Section 3.3. COMB-EQW is the equal-weights combined model.
The last column reports the model with superior predictive ability according to the SPA test.
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Table 7. Forecast evaluation and market conditions: up-market vs down-market days

Forecast accuracy measures
Up market Down market

Stock Model HMSEU AMAPEU LLU HMSED AMAPED LLD

GARCH-RV 1.3371 0.2362 0.4086 1.4154 0.2522 0.4701
ATT GARCH-RR 1.7217 0.2532 0.4601 1.7095 0.2720 0.5272

GARCH-RPV 1.1766 0.2319 0.3831 1.1736 0.2462 0.4385
GARCH-RBP 1.3882 0.2370 0.4125 1.4695 0.2560 0.4814
Bene�t (%) 49.36 12.88 26.33 47.02 17.66 29.03
GARCH-RV 1.5765 0.2394 0.4079 0.5877 0.2138 0.2934

AXP GARCH-RR 2.8559 0.3006 0.6294 1.2300 0.2590 0.4368
GARCH-RPV 1.1585 0.2199 0.3498 0.5004 0.2027 0.2666
GARCH-RBP 1.6098 0.2365 0.4105 0.5689 0.2121 0.2881
Bene�t (%) 61.55 18.24 35.71 43.11 17.70 37.38
GARCH-RV 0.5706 0.1860 0.2439 0.3047 0.1700 0.1990

BA GARCH-RR 0.8777 0.2159 0.3202 0.4768 0.1834 0.2334
GARCH-RPV 0.5463 0.1870 0.2427 0.3048 0.1705 0.1972
GARCH-RBP 0.5953 0.1899 0.2513 0.3430 0.1733 0.2039
Bene�t (%) 23.15 6.51 14.62 -5.44 12.78 27.15
GARCH-RV 1.1568 0.2379 0.3742 0.7687 0.2029 0.2921

CAT GARCH-RR 1.7984 0.2838 0.5136 1.1500 0.2290 0.3766
GARCH-RPV 0.9993 0.2312 0.3459 0.6747 0.1997 0.2766
GARCH-RBP 1.1291 0.2431 0.3795 0.7867 0.2072 0.3008
Bene�t (%) 56.00 24.31 42.60 50.07 21.46 39.29
GARCH-RV 1.1349 0.2483 0.3841 0.7107 0.2111 0.2866

DELL GARCH-RR 0.7562 0.2099 0.2846 0.4764 0.1839 0.2245
GARCH-RPV 1.1342 0.2505 0.3887 0.6689 0.2091 0.2848
GARCH-RBP 1.2166 0.2510 0.3974 0.7366 0.2086 0.2880
Bene�t (%) 37.90 14.42 27.51 5.59 5.75 10.30
GARCH-RV 0.7266 0.2165 0.3115 0.8220 0.2057 0.2982

GE GARCH-RR 0.9816 0.2465 0.3854 1.1415 0.2233 0.3577
GARCH-RPV 0.4909 0.2016 0.2622 0.6706 0.1944 0.2690
GARCH-RBP 0.6961 0.2193 0.3148 0.7963 0.2056 0.2931
Bene�t (%) 39.32 15.43 27.98 27.02 12.69 26.17
GARCH-RV 1.7644 0.2494 0.4439 0.8799 0.2218 0.3272

GM GARCH-RR 2.7927 0.3074 0.6368 1.4871 0.2752 0.4698
GARCH-RPV 1.7034 0.2509 0.4426 0.8864 0.2239 0.3300
GARCH-RBP 1.8966 0.2525 0.4595 0.8710 0.2181 0.3184
Bene�t (%) 18.23 5.81 10.47 -14.92 -0.71 -2.82
GARCH-RV 0.9333 0.2241 0.3351 0.7536 0.2162 0.3077

IBM GARCH-RR 1.3039 0.2615 0.4356 0.9965 0.2362 0.3665
GARCH-RPV 0.7941 0.2129 0.3019 0.5523 0.2013 0.2587
GARCH-RBP 0.9498 0.2239 0.3379 0.7097 0.2150 0.3013
Bene�t (%) 47.68 25.61 40.16 34.59 15.67 27.52

The up- and down-market classi�cation is for day t� 1 and the forecast is for day t: Bold denotes
the best forecasting model. Bene�t (%) indicates the percentage forecast error reduction that the
best forecasting model brings relative to the baseline GARCH. Italics in the last row (Bene�t %)
denotes the regime where the largest forecast error reduction is achieved.

.
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Table 7. Forecast evaluation and market conditions: up- vs down-market days (cont.)

Forecast accuracy measures
Up market Down market

Stock Model HMSEU AMAPEU LLU HMSED AMAPED LLD

JPM GARCH-RV 0.4908 0.1797 0.2214 0.5099 0.1953 0.2810
GARCH-RR 0.6533 0.2116 0.2870 0.7197 0.2158 0.3304
GARCH-RPV 0.2927 0.1695 0.1886 0.3673 0.1873 0.2549
GARCH-RBP 0.5136 0.1785 0.2209 0.4786 0.1919 0.2745
Bene�t (%) 80.09 35.87 58.64 61.98 22.00 38.32

KO GARCH-RV 0.3356 0.1685 0.1908 0.2435 0.1577 0.1704
GARCH-RR 0.4895 0.1929 0.2400 0.4181 0.1836 0.2182
GARCH-RPV 0.3326 0.1739 0.2277 0.2570 0.1626 0.1762
GARCH-RBP 0.3895 0.1717 0.1984 0.2834 0.1623 0.1766
Bene�t (%) 28.46 4.53 16.02 38.40 18.06 34.33
GARCH-RV 0.6195 0.2036 0.3431 0.9406 0.2241 0.3927

MCD GARCH-RR 0.6494 0.2026 0.3304 0.8911 0.2177 0.3651
GARCH-RPV 0.4322 0.1975 0.3146 0.7127 0.2086 0.3567
GARCH-RBP 0.5575 0.2028 0.3303 0.9412 0.2168 0.3842
Bene�t (%) 29.09 5.64 9.38 48.78 13.65 31.18
GARCH-RV 0.8588 0.2158 0.3137 0.7290 0.2085 0.2939

MSFT GARCH-RR 0.6800 0.2024 0.2755 0.6370 0.2009 0.2695
GARCH-RPV 0.7535 0.2099 0.2951 0.6511 0.2036 0.2774
GARCH-RBP 0.8689 0.2138 0.3133 0.6838 0.2071 0.2849
Bene�t (%) 52.06 22.50 38.35 46.96 18.38 34.57
GARCH-RV 0.2634 0.1556 0.1627 0.2664 0.1612 0.1722

PG GARCH-RR 0.4085 0.1723 0.2070 0.3063 0.1742 0.1940
GARCH-RPV 0.2733 0.1611 0.1808 0.2778 0.1694 0.1961
GARCH-RBP 0.2965 0.1592 0.1697 0.3005 0.1661 0.1784
Bene�t (%) 62.59 24.79 43.60 59.40 18.44 38.27
GARCH-RV 0.5214 0.1916 0.2355 0.5056 0.1896 0.2564

WMT GARCH-RR 0.6356 0.2080 0.2738 0.6358 0.1987 0.2747
GARCH-RPV 0.4364 0.1831 0.2193 0.4281 0.1839 0.2391
GARCH-RBP 0.5556 0.1882 0.2371 0.5024 0.1903 0.2540
Bene�t (%) 53.87 21.67 37.14 31.15 15.13 29.71
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Table 8. Forecast evaluation and market conditions: high volume vs low volume days

Forecast accuracy measures
High-volume regime Low-volume regime

Stock Model HMSEH AMAPEH LLH HMSEL AMAPEL LLL

GARCH-RV 1.3273 0.2577 0.4662 1.4227 0.2356 0.4256
ATT GARCH-RR 1.8214 0.2734 0.5240 1.6410 0.2565 0.4781

GARCH-RPV 1.1375 0.2512 0.4356 1.2052 0.2313 0.3980
GARCH-RBP 1.3726 0.2602 0.4753 1.4812 0.2381 0.4328
Bene�t (%) 23.62 10.67 17.36 57.59 19.28 34.69
GARCH-RV 0.8144 0.2344 0.3456 1.3061 0.2208 0.3564

AXP GARCH-RR 1.7002 0.2855 0.5268 2.3333 0.2757 0.5404
GARCH-RPV 0.6148 0.2156 0.2958 1.0078 0.2082 0.3194
GARCH-RBP 0.8121 0.2313 0.3455 1.3210 0.2190 0.3538
Bene�t (%) 53.96 19.03 38.87 58.95 17.22 34.57
GARCH-RV 0.4284 0.1814 0.2190 0.4649 0.1770 0.2272

BA GARCH-RR 0.6494 0.2070 0.2821 0.7289 0.1966 0.2796
GARCH-RPV 0.4148 0.1824 0.2174 0.4522 0.1775 0.2258
GARCH-RBP 0.4565 0.1866 0.2289 0.4982 0.1793 0.2306
Bene�t (%) -19.46 7.02 14.65 30.11 10.78 23.68
GARCH-RV 0.8655 0.2254 0.3234 1.0636 0.2190 0.3462

CAT GARCH-RR 1.3967 0.2649 0.4394 1.5799 0.2539 0.4593
GARCH-RPV 0.7333 0.2237 0.3090 0.9375 0.2113 0.3176
GARCH-RBP 0.8283 0.2309 0.3296 1.0793 0.2231 0.3534
Bene�t (%) 49.81 21.01 36.98 56.19 24.80 44.17
GARCH-RV 0.8471 0.2303 0.3322 1.0195 0.2321 0.3456

DELL GARCH-RR 0.5771 0.1970 0.2555 0.6703 0.1985 0.2582
GARCH-RPV 0.8208 0.2312 0.3381 1.0051 0.2317 0.3435
GARCH-RBP 0.9178 0.2299 0.3443 1.0626 0.2329 0.3497
Bene�t (%) 8.38 3.76 9.38 39.68 16.31 29.46
GARCH-RV 0.5550 0.2078 0.2939 0.9635 0.2122 0.3119

GE GARCH-RR 0.8313 0.2299 0.3558 1.2681 0.2362 0.3814
GARCH-RPV 0.4492 0.1963 0.2679 0.7086 0.1983 0.2644
GARCH-RBP 0.5633 0.2128 0.3034 0.9064 0.2103 0.3016
Bene�t (%) 27.52 15.04 27.27 34.12 13.18 26.89
GARCH-RV 1.1687 0.2261 0.3465 1.3335 0.2394 0.4014

GM GARCH-RR 1.7939 0.2746 0.4821 2.2502 0.3001 0.5881
GARCH-RPV 1.1490 0.2270 0.3469 1.3085 0.2419 0.4028
GARCH-RBP 1.2192 0.2241 0.3469 1.3863 0.2394 0.4040
Bene�t (%) -2.17 -0.45 -2.63 12.13 3.68 6.61
GARCH-RV 0.9134 0.2215 0.3289 0.7810 0.2187 0.3145

IBM GARCH-RR 1.2293 0.2455 0.4051 1.0733 0.2498 0.3942
GARCH-RPV 0.6869 0.2062 0.2793 0.6491 0.2071 0.2787
GARCH-RBP 0.8400 0.2177 0.3165 0.8090 0.2202 0.3202
Bene�t (%) 32.65 15.82 26.73 48.72 24.18 39.46

See note in Table 7.
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Table 8. Forecast evaluation and market conditions: high vs low volume (cont.)

Forecast accuracy measures
High volume Low volume

Stock Model HMSEH AMAPEH LLH HMSEL AMAPEL LLL

JPM GARCH-RV 0.4093 0.1885 0.2537 0.5723 0.1877 0.2518
GARCH-RV 0.6559 0.2158 0.3086 0.7141 0.2126 0.3111
GARCH-RPV 0.3390 0.1862 0.2439 0.3264 0.1734 0.2076
GARCH-RBP 0.4020 0.1854 0.2482 0.5688 0.1861 0.2497
Bene�t (%) 62.82 22.95 38.66 77.37 33.50 55.18

KO GARCH-RV 0.2859 0.1655 0.1901 0.3066 0.1626 0.1759
GARCH-RR 0.4086 0.1861 0.2254 0.5009 0.1910 0.2351
GARCH-RPV 0.2835 0.1676 0.1958 0.3153 0.1702 0.2148
GARCH-RBP 0.3291 0.1699 0.1943 0.3587 0.1658 0.1851
Bene�t (%) 34.66 12.32 28.32 28.39 8.37 19.18
GARCH-RV 1.0436 0.2341 0.4230 0.5718 0.1987 0.3267

MCD GARCH-RR 0.8801 0.2217 0.3873 0.6744 0.2010 0.3182
GARCH-RPV 0.6893 0.2128 0.3591 0.4679 0.1959 0.3167
GARCH-RBP 0.9416 0.2265 0.4054 0.5840 0.1977 0.3204
Bene�t (%) 38.57 6.67 22.15 44.75 11.50 20.53
GARCH-RV 0.7841 0.2138 0.3101 0.7844 0.2095 0.2958

MSFT GARCH-RR 0.6805 0.2070 0.2881 0.6350 0.1969 0.2589
GARCH-RPV 0.7343 0.2118 0.3009 0.6624 0.2015 0.2717
GARCH-RBP 0.7753 0.2134 0.3076 0.7524 0.2069 0.2883
Bene�t (%) 34.33 14.38 27.52 57.73 24.59 42.54
GARCH-RV 0.2609 0.1634 0.1702 0.2686 0.1533 0.1636

PG GARCH-RR 0.3188 0.1716 0.1921 0.4138 0.1745 0.2111
GARCH-RPV 0.2747 0.1656 0.1784 0.2763 0.1636 0.1942
GARCH-RBP 0.2881 0.1658 0.1737 0.3074 0.1588 0.1729
Bene�t (%) 56.75 19.30 38.79 64.52 24.90 43.78
GARCH-RV 0.4574 0.1910 0.2413 0.5610 0.1909 0.2514

WMT GARCH-RR 0.5413 0.1976 0.2634 0.7157 0.2084 0.2842
GARCH-RPV 0.3556 0.1812 0.2244 0.4966 0.1860 0.2347
GARCH-RBP 0.4328 0.1838 0.2267 0.6083 0.1944 0.2625
Bene�t (%) 53.42 20.73 36.21 37.31 16.34 30.85
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Table 9. Average daily statistics over di¤erent market conditions

Regime classi�cation of day t� 1
Up market Down market High volume Low volume

rt�1 0.6480 -0.6511 0.0608 -0.0531
rt -0.0131 0.0112 0.0257 -0.0276
~�2t�1 3.3091 3.9892 4.3227 3.1242
~�2t 3.2125 4.0836 4.0673 3.3180
V OLt�1 11,162,392 11,531,944 13,534,828 9,620,517
V OLt 11,091,917 11,594,947 12,432,407 10,499,129
�(~�2t�1; ~�

2
t ) 0.6687 0.7034 0.7118 0.6633

rt is the return on day t; ~�
2
t is the sum of 5-min squared returns, V OLt is

volume. The last row reports the correlation between the population varian-
ce (proxied by the sum of 5-min squared returns) on days t and t� 1. The
regime classi�cation is based on (11) and (12).
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